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The paper considers endospectral trees, a special class of graphs associated with the production
of numerous isospectral graphs. Endospectral graphs have been considered in the literature
sporadically (the name was suggested very recently [M. Randi¢, SIAM J. Algebraic Discrete
Meth. 6, 145 (1985) ]). They are characterized by the presence of a pair of special vertices that,
if replaced by any fragment, produce an isospectral pair of graphs. Recently Jiang [Y. Jiang,
Sci. Sin. 27, 236 (1984) ] and Randi¢ and Kleiner (M. Randi¢ and A. F. Kleiner, “On the
construction of endospectral trees,” submitted to Ann. NY Acad. Sci.) considered alternative
constructive approaches to endospectral trees and listed numerous such graphs. The listing of
all such trees having n = 16 or fewer vertices has been undertaken here. It has been found that
relatively few endospectral trees have novel structural features and cannot be reduced to some
already known endospectral tree. These few have been named “irreducible endospectral trees.”
They are responsible for the occurrence of a large number of isospectral trees, leading to, when

one considers trees of increasing size, the situation that led Schwenk [A. J. Schwenk, in New
Directions in the Theory of Graphs, edited by F. Harary (Academic, New York, 1973), pp.
275-307] to conclude that “‘almost all trees are isospectral.”

I. INTRODUCTION

Collatz and Sinogowitz' were the first to report that
different graphs can have all graph eigenvalues (spectra) the
same. Their finding remained dormant for a number of years
until the late 1960s and the beginning of the 1970s when
there was a rediscovery of isospectral graphs in physics® and
chemistry.? At first there was considerable interest in “hunt-
ing down” isospectral graphs,* followed by observation of
intriguing properties of selected isospectral graphs, which
allowed several constructive approaches to be developed.’
Herndon® and Zivkovié, Trinajstié, and Randi¢’ indepen-
dently observed the presence of special vertices in some iso-
spectral graphs, called by Herndon® “isospectral points,”
and called by Zivkovié et al.” “active sites.” The term of
Herndon appears a better term, being more specific, and will
be adopted here. These vertices, appearing in pairs (in more
general situations several vertices or several pairs may ap-
pear), have a property that when they are used for adding an
arbitrary fragment the exchange of the sites (which pro-
duces different graphs) will leave the characteristic polyno-
mial the same. In Fig. 1 we illustrate one such endospectral
tree, a graph having n = 9 vertices, studied in some detail by
Schwenk.® The positions 2 and 5 are the isospectral points,
or as we prefer to call them here (vide infra) endospectral

 This work is dedicated to Professor Allen J. Schwenk as an acknowledg-
ment of his many contributions to spectral graph theory.
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points. Any fragment (another graph) attached to either
vertex 2 or vertex 5 will produce a pair of isospectral graphs.
The simplest is the case of attaching a single edge to either
vertex 2 or vertex 5, also illustrated in Fig. 1. The isospectral
points thus can produce numerous isospectral graphs. Iso-
spectral points also can occur in different (already isospec-
tral) graphs as illustrated in Fig. 2. Again adding the same
fragment at the given sites (each time to a different graph)
will produce isospectral graphs as shown in Fig. 2. We find it
useful to differentiate the two cases, that of Fig. 1, where a
single graph has been used to give two isospectral graphs and
that of Fig. 2 where two different graphs have been used, in a
somewhat analogous way, to produce two isospectral
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FIG. 1. Schwenk’s tree and a pair of isospectral graphs produced by attach-
ing a single edge to endospectral points.
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FIG. 2. A pair of isospectral graphs having isospectral points (shown as
circles) and the property that when a fragment (here a single edge) is at-
tached to either of the two points another isospectral pair is produced.

graphs. Hence, we refer to the former as endospectral graphs
and its “active” points are termed ‘“endospectral points,”
while those of the two isospectral graphs capable of generat-
ing additional isospectral graphs by additions to the selected
“active” points, we call “isospectral points.” This narrows
the term originated with Herndon to cases of the spectral
points appearing in different (isospectral mates) graphs,
while the term “endospectral points” is reserved to such
points occurring within a single graph. The distinction is
particularly useful when both types of graphs are discussed;
if no confusion is possible, the term isospectral points can be
used, if desired. Finally the reader should be reminded that
there are isospectral pairs of graphs that have no isospectral
points at all, just as there are graphs that are not isospectral
and yet have special points (termed “unusual”)® character-
ized by the property common with endospectral and isospec-
tral points: having the same count of self-returning walks
and same coefficients for associated eigenvectors. In Table I

TABLE L. The number of trees (), number of trees having vertices of the
same code (D), percent N /D, number of pairs of endospectral vertices
(EV), and the number of endospectral trees (ET) forn =9 to n = 16.

n N D % EV ET
9 47 1 2.1 1 1
10 106 3 2.8 0 0
11 235 13 5.5 3 2
12 551 44 8.0 4 4
13 1301 133 10.2 11 7
14 3159 364 11.5 18 13
15 7741 1107 14.3 42 25
16 19 320 3012 15.6 72 45

Legend: n—number of vertices,
N—number of trees (acyclic graphs, restricting the maximal va-
lency to 4),
D—number of isocodal vertices,
% —percent of trees having isocodal vertices,
EV—number of pairs of endospectral vertices,
ET—number of endospectral trees.
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we give the count of occurrence of these unusual points in
trees, as found in another study of Knop and collaborators. '°
Table I gives the percentage of trees having these special
structural features, showing a rapid increase in the number
of such cases with the increase in the size of trees as measured
by n, the number of vertices in a tree.

Endospectral graphs are of interest for construction and
possibly characterization of isospectral graphs. If structural
conditions for isospectrality can be fully understood one
could revive (conditionally) use of the characteristic poly-
nomials for representation of graphs. Equally, study of endo-
spectral graphs should help to resolve some problems in
graph’s spectra (e.g., occurrence of common eigenvalues),
which in turn are of interest for the problem of graph recog-
nition. In physical chemistry, in the study of structure-prop-
erty correlations, isospectral graphs may signify molecules
with same (or similar) properties, while the chemical phys-
ics isospectral networks necessarily point to lattices that will
have some statistical constants (e.g., the dimer converings)
the same.

Il. ENDOSPECTRAL TREES

Besides the tree of Fig. 1, studied by Schwenk, several
additional trees have been reported in the literature, see Fig.
3 (Randié,"" Jiang,'? and Randi¢ and Kleiner'?). Jiang was
first to report on a single constructional approach using alge-
braic properties of trees that produced more than a dozen
endospectral trees having less than 20 vertices. Thus for the
first time one could examine a collection of such graphs, in-
stead of individual cases. Among trees, the only known cases
are the tree of Schwenk,® the tree of Godsil and McKay, '
and that of Randié.!* Work of Jiang stimulated a search for
alternative constructional approaches to generate additional
endospectral trees. Although endospectral trees appear to be
rare, success in constructing additional trees raises the possi-
bility of finding still others. One cannot be sure, unless the
constructional approach involves an exhaustive search,
which the schemes of Jiang and Randi¢-Kleiner do not, that
all the endospectral trees of a particular size have been
found. It is highly desirable to arrive at the complete list of
endospectral trees of a particular size. The only sure ap-
proach at this moment is an exhaustive search for the endo-
spectral graphs, preferably with the use of a computer. In
this paper we report such findings. We have undertaken a
systematic computer-assisted search for all endospectral
trees having n = 16 or fewer vertices. In all, we screened
618 050 trees to report some hundred endospectral cases.
Subsequently we have analyzed the derived endospectral
trees and found that only about a dozen of them can be con-
sidered as “essential,” i.e., nontrivially related. These struc-
turally interesting trees we call irreducible endospectral trees.

11l. COMPUTER SEARCH FOR ENDOSPECTRAL TREES

The basis for the computer-assisted search for endospec-
tral trees is the available program designed for enumeration
and construction of all trees.'>'® The program and the algo-
rithm have been described fully elsewhere'” so we will men-
tion only the main features of the approach. The first step in
generating trees is to devise a unique code for trees. There are
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n=9 Schwenk (1973)

n=12 Rondié¢ (1980}

n=1l  Jiang {I1983)
and many other cases

n=12 Randi¢ & Kleiner
(1984)

/k?’C\ and many other cases

FIG. 3. Some of endospectral trees previously reported in the literature.

several alternative schemes that generate graphs.’®?' The
program used here has been developed and implemented at
the Computer Centre at the University of Diisseldorf.'” Let
us illustrate the code used on Schwenk’s tree (Fig. 1). The
code consists of a string of digits separated occasionally with
a colon or a slash. For the graph of Schwenk one obtains

943/3:7/311110100 .

The first entry is n, the number of vertices, and the second
entry is the ordinal number for the graph (among all graphs
having a same n). For example, if one desires to construct all
trees having n = 9 vertices, use of the particular algorithm
will give Schwenk’s tree as the 43rd output. The numbers
between the slashes /3:7/ are labels of the vertices that are
endospectral. The labels are implied by the last string of dig-
its, each position in which corresponds to a single vertex.
One starts with a vertex having the highest valency, which
assumes label 1, and its valency is the first digit of the string
(n-tuple). For every vertex but the first, one records not its
valency v but v — 1, valency decreased by 1. To proceed to
the selection of the second vertex one erases vertex 1, which
partitions the tree into three disjoint components, each of
which has to be examined. We will assume here that the
codes for these smaller components are known (if not they
can always be constructed as a separate task ). Having codes
for the fragments one concatenates these partial strings into
a single code. In order to have a unique code one selects the
combinations that make the final code lexicographically
maximal. Each vertex of the tree is thus mapped onto one
component of the n-tuple. The approach can be extended to
rooted trees and even polycyclic graphs built of regular hex-
agonal cells.’>? The listing of the program and discussion of
its logical functions has been published.!” An important
component of the program is the subroutine PLTREE, which
plots trees. Hence the output is graphical as well as digital,
which is an important advantage, not yet common to graph
generating programs. The subroutine PLTREE transforms
the representation of a tree as an n-tuple graphically by
drawing the Ariadne thread described by the n-tuple. It
spreads the thermal edges uniformly in all directions. Other
edges take the directions given by the mean value for the
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angles of the terminal edges reachable through the chain of
intermediate edges from the branching site. In the full draw-
ing, vertices are shown as full circles (in fact they are drawn
as small octagons, but these are too small to be recognized
necessarily as such). In the present work a minor modifica-
tion is made by enlarging the circles indicating the endospec-
tral points. The output is shown as Fig. 4, which shows all
endospectral trees having from 9 to 13 vertices.

IV. RESULTS

Most of our results are shown graphically starting with
Fig. 4, which shows all endospectral trees having n = 9 (the
graph of Schwenk), n = 11, and n = 12, as plotted by a com-
puter. Observe that there are no endospectral trees having
n = 10 vertices. Also observe that among the three outputs
for n =11, we have only two distinctive trees, labeled as
#185 and #218. Moreover, the tree # 185 is related to the
Schwenk’s graph #43: it can be viewed, as derived from the
former, by adding a single edge at both endospectral points of
Schwenk’s graph. It follows from the analysis of Schwenk
that such a process will necessarily leave an endospectral
graph endospectral. Moreover, both the old endospectral
points as well as the two new points will have the endospec-
tral property. We conclude therefore that such augmenta-
tion of a graph does not introduce an important novelty and
will be referred to as trivial, and will be of no further interest.
Hence, we have only one endospectral tree with n = 11 ver-
tices, the tree #218, reported by Godsil and McKay.'* Ob-
served, that although the tree of Schwenk and the tree of
Godsil and McKay both have the endospectral points at the
same distance they are not simply related. Even though they
have some common structural features, they both have the
same central parts (the part between the endospectral
points) and one of the end parts the same, but they differ in
the other thermal group.

A. Endospectral trees having n = 12 vertices

The lower part of Fig. 4 shows endospectral trees on 12
vertices, in all, four different trees. None of these trees can be
related to either Schwenk’s tree or the tree of Godsil and
McKay, because they have an odd number of vertices! The
reduction and the augmentation process previously men-
tioned increases or decreases the number of vertices by an
even number. The trees cannot be reduced, because there are
no endospectral trees on # = 10 vertices. Except for the tree
7389, the endospectral trees on n = 12 vertices have been
reported previously in the literature: #435 by Randi¢ and
Kleiner'?, #533 by Randi¢!*, and # 539 by Jiang.'2 Graph
435 is particularly interesting; the two endospectral ver-
tices are adjacent to one another. Hence the two “halves” of
the graph obtained by disconnecting the endospectral ver-
tices balance one another when it comes to the count of self-
returning walks. Hence, the two “halves” are “exchange-
able,” if considered as components of larger graphs. Let us
illustrate one such case. We show in Fig. 5 the tree of Godsil
and McKay on 11 vertices, which we augmented by adding a
single edge at both endospectral vertices. The derived tree
has as one of its end groups the terminal portion of the endo-
spectral tree #435 with the adjacent endospectral points.
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S. 43/ 3: 7/311110100

>JX

11. 185/ 1t 4/32121100000 11. 185/ 8:10/32121100000 11. 218/ 2¢ 5/31121110000
12. 389/ 3: 9/411210101000 12, 435/ 2¢ 3/322110110000 12. 533/ 3¢ 9/311121101000

—

12, 539/ 3: 8/311111210000

FIG. 4. Computer printout of all endospectral trees having n =9 (one case); n = 11 (two trees, one having trivial extension); and n = 12 (four cases)

vertices.

We now perform a “surgery” by replacing the end of the
augmented graph in the middle of Fig. 5 by the other endo-
spectral “half” of the tree #435. This produces a tree on
n = 15 vertices, which we expect to be endospectral, and
indeed the graph is found in the computer output under the
number #7194. Another more apparent procedure of pro-
ducing novel endospectral trees from graph #435 is that of
the insertion of any symmetrical fragment between the two
endospectral points. In Fig. 6 we show several so-derived
endospectral trees. Tree $#435 is the smallest endospectral
tree having adjacent endospectral points, and at the same
time the smallest nontrivial endospectral tree having endo-
spectral points with valency greater than 2.

The previously unreported endospectral tree # 389 has
its endospectral points at a distance 3:
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A comparison with Schwenk’s graph is instructive: #389
can be viewed as structurally related to the Schwenk’s tree by
having additional branches L, and L,. It thus appears that
adding L, near one of the endospectral points is ““compensat-
ed” by adding the other (larger) fragment L, near the other
endospectral point. Observe that the fragments L, and L, are
not in a general way equivalent, but just in the particular
environment dictated by the other points in #389. How-
ever, if the above “balancing” act of the two fragments L,

Knop et al. 2604



FIG. 5. Construction of endospectral graphs from a parent structure.

and L, is valid, it ought to hold also if we double the number
of L segments. That is, we anticipate that the tree

L,

-
-
-
—
—
N

also will be endospectral. Here instead of L, we have 2X L,
and instead of L, we have 2 X L,, resultingina treeonn = 15
points. By examining our computer output we find the above

1L

154
hdad

FIG. 6. Simple constructions of numerous endospectral trees all derived by
insertion of a fragment between two adjacent endospectral vertices.
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tree is endospectral tree # 3190, thus verifying the validity of
our speculation. We may refer to the two vertices used for
the substitution as restricted sites, by which we want to indi-
cate that qualified fragments (like L, and L,) may be at-
tached here without upsetting the endospectrality of the par-
ent (unsubstituted) graph. It is of interest to compute the
n-tuples for the three graphs #43, #389, and #3190:

Schwenk’s tree #43: 311110100,

this work #389: 411210101000,

this work #3190: 511310101010000 .

The above codes can be written in a condensed form as
#43: 3(1)2(1)(10)2(0) ,

#389: 4(1)2(2)(10)3(0)2,

#3190: 5(1)2(3)(10)4(0)3,

which clearly suggests the existence of a family of endospec-
tral trees having codes

(k+2)(D2(k)(10)(k + 1) (0)k, k=12,3,...

B. Endospectral trees having 7 = 13 vertices

In Fig. 7 we show all endospectral trees having 13 ver-
tices. In all seven different trees, some appear two or three
times in view of the presence of trivial endospectral points. It
is not difficult to identify the trivial cases: # 684 and #1138
can be derived from Schwenk’s graph #43, while #1120 is
similarly related to Jiang’s tree #218. Finally #1136 can be
derived by insertion of a (symmetric) vertex between the
adjacent endospectral points of #435. This leaves only three
nontrivial cases, #658, #1191, and #1264, the last case
already reported by Jiang.?*

C. Endospectral trees having n = 14 vertices

Five of the 13 endospectral trees (Fig. 8) immediately
can be identified as trivial by simply observing that they per-
mit more than one pair of sites for the endospectral vertices.
Of these #£1423, #2165, #2835, and #2962 have a pair of
bonds attached to an existing endospectral point in smaller
endospectral trees ( #435, 389, #1533, and #539, respec-
tively), while #2932 is derived from #£435 by insertion of a
symmetric fragment. Inserted pair of vertices, can also act as
isospectral points. In the case of #2632 we also have an
insertion of two vertices in a symmetrical fashion, thus this
case also can be discarded as having no structural novelty.
We are left with seven nontrivially related graphs: #2450,
#2890, #3004, #3080, #3105, #3120, and #3126. The
pair #3105 and #3120 are intriguing, they differ in a single
detail, i.e., the linkage of one of the endospectral terminal
groups to the central portion of four vertices in a chain. We
find tree #3105 is particularly interesting; if one erases ei-
ther of the endospectral points one obtains as one fragment
Schwenk’s tree on nine vertices.

V. LARGER ENDOSPECTRAL TREES

We have seen from examining cases # = 13 and n = 14
that the number of trivially related endospectral trees grows
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13. 658/ 6:10/4220011101000 13. 684/ 1: 4/4213110000000 13. 684/ 8:11/4213110000000
ﬁ >‘\}
13. 1120/ 2: 5/3212211000000 13. 1120/ 9¢11/3212211000000 13, 1136/ 2: 4/3212110110000
yT \J\\’
13, 1138/ 1t 4/3212110100100 13. 1138/ 8:11/3212110100100 13. 1138/ 9112/3242110100100
»\‘ y—\
13. 1191/ 4:11/3211121000100 13. 1264/ 6:11/3112111100100

FIG. 7. All endospectral trees having n = 13 vertices (seven different trees, several having trivial extensions).

fast. In the remainder of the paper we will therefore no lon-
ger consider such cases. Besides the graphs derived by add-
ing a fragment at endospectral points of a smaller endospec-
tral tree, which forms one class of trivial extensions, we also
have the cases of insertion of symmetrical fragments between
initially adjacent endospectral points, which form the other
class of simple augmentation of endospectral trees. When all
the above are discarded, out of 25 endospectral trees with
n = 15 vertices we are left with 11 trees (shown in Fig. 9):
#4557, #4598, #5094, #5233, #6355, #6470, #6533,
#7252, #7583, #7607, and #7638. The question is
whether any of these 11 can be derived, perhaps by some new
structural procedure, from smaller endospectral trees. We
have already seen how trees #43, #389, and #3190 with 9,
12, and 15 points, respectively, form a family of endospectral
trees; each next member in the family to have to increase the
size by 3. Are there other such (nontrivially) related endo-
spectral trees? By examining the trees reported in this paper,

2606 J. Math. Phys., Vol. 27, No. 11, November 1986

we find that comparison of the following may be of interest:

#1264 with 13 vertices and the code: 3112111100100,
#2890 with 14 vertices and the code: 32121000111100,
#5233 with 15 vertices and the code: 421111001210000,
#6811 with 16 vertices and the code: 5211110012100000 .

The regularity in the codes starts to become apparent, and
we are anticipating these endospectral trees to be members of
another family of endospectral trees. The above graphs are
shown in Fig. 10, which suggests that the centrally located
vertex allows certain substitutions. The above codes appear
somewhat scrambled: we see that the correct digits are there,
but for the first two members of the family they are in some-
what permuted order. We will see that this is not an error in
the programming and the coding, but follows from the fact
that endospectral trees # 1264 and #2890 are also the lead-
ing members of additional families of endospectral trees. The
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14. 1423/ 1t 2/43200001101100

S

14. 1423/ 6114/43200001101100

A

14, 2165/ 21 6/42001221010000

e

14, 2165/ 3t12/42001221010000

AN

14. 2430/ 2: 5/41131120000000

S

14. 2632/ 21 4/32221101100000

J\

14. 2839/ 1t 4/32121200011000

a

14, 2835/ 8:13/32121200011000

S,

14. 2890/ 5:10/32121000111100

ﬂX‘

14. 2832/ 2: 5/32112110110000

>‘\T

14. 2932/ 31 4/32112110110000

™

14, 28962/ 1e¢ 6/32111212000000

>\

14. 2962/11:213/32111212000000

>\

14. 3004/ 3:10/32111110011810

s

14, 3080/ S5:12/31211110110100

\r«

14. 3105/ 2: 5/31121111010100

[N

14, 3120/ 2: 6/31112111100100

e

14, 3126/ 2: 6/31112110101100

FIG. 8. All endospectral trees having n = 14 vertices (13 different cases).

2607 J. Math. Phys., Vol. 27, No. 11, November 1986

Knop et al.




L

15. 4557/ 4: 9/422100011110100

v

15. 4398/ 6¢10/422001200111000

15. 5094/ 3112/421121100101000

S

15. 5233/ 4t11/421111001210000

e,

15, 6355/ 3t13/411220010110100

13. 6470/ 3t11/4111221061610000

5

15, 6533/ 3t 8/411112210010000

L

15, 7252/ S5111/321210810111100

15, 7583/ 5112/312111211001000

S

15. 7607/ S5:13/312111112000100

=

15. 7638/ 21 8/311211211100000

FIG. 9. Nontrivial endospectral trees having n = 15 vertices.

problem to consider is as follows: Which fragments qualify
for the substitution at the central vertex of the parent
#1264? It appears that any fragment substituted at the cen-
tral vertex will not upset the inherent endospectrality of the
parent skeleton. In Table II and Fig. 11 we illustrate the
above for all possible families that can be constructed re-
stricting the size of graphs to n = 16. The two portions of the
graph #1264 are, however, not equivalent (i.e., exchange-
able) because they have a different number of vertices. We
anticipate that the above illustration is but a special case of a
more general situation that we will state as a proposition.

Proposition 1: Endospectral trees that have a vertex lo-
cated in the middle of the two endospectral vertices at which
a branching occurs will remain endospectral, irrespective of
the fragment at the branching site.

The proof of this proposition can be argued along the
following lines. The two “halves” of the midsection are iden-
tical, except for the relative orientation with respect to the
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endospectral points. We assume two items: endospectral tree
with a midpoint and endospectral tree, the same as above,
except for an additional branch (an edge) at the midpoint.
The second endospectral tree ensures that at the midpoint
there is a 1:1 correspondence between any walk starting at
one endospectral point and ending at the midpoint. Reach-
ing the midpoint in this way, one can ignore the “history” of
the walk, and clearly from there on the two walks starting at
different end points will have counts identical to those of any
longer walks extending into the substituted fragment. In
searching for additional structural families of endospectral
trees, one has to exercise some care and not rush to suggest-
ing novel relationships without carefully examining a// con-
tributing terms. For example, if we consider the parent tree
#1264,

S00aalE
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#1264

#2890

#5233

4 68I1

#7252

#13863

#17792

#18405

Pt

FIG. 10. A sequence of endospectral trees having the same “end” groups
and suggesting a presence of a “central” (symmetrical) vertex at which an
arbitrary fragment can be attached.

and recognize the special role of the central vertex, we ought
not to forget that this property of the central vertex is tied to
the presence of the particular ending segments. One may
speculate that the tree derived from a symmetrical insertion
of two vertices adjacent to the central vertex also will be
endospectral, and a parent of yet another family of endospec-
tral trees. However, the derived tree is not endospectral, be-
cause now the central part of the tree requires different end
groups (if such exist and can be found). This is the reason
why we underlined endospectral in our proposition. Hence
an endospectral graph has to be taken as a whole. Sometimes
one can replace one end group with another, but this does
not necessarily mean that analogous constructions valid for
one family will hold for the other. An illustration is provided
by comparison of # 1264 having 13 vertices and #7638 hav-
ing 15 vertices. The endospectral tree #7638 can be viewed
as derived from # 1264 by changing one of the end groups.
The graph has a midvertex, but is not the source of another
family of endospectral graphs because by inserting a single
branching edge at the central site we produce a tree,

TABLEI1. Regularity in the codes for a family of structurally related endo-
‘spectral trees.

n Graph # Code

13 1264 3112111100100

14 2890 32121000111100
15 7252 321210010111100
16 18165 3212120010110100
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/\’/j/k/l\/\/ ,

that is not endospectral. This need not be surprising because
in #1264 the end groups balance each other creating the
special central site, but clearly, such balance is going to be
upset by changing only one of the end groups.

Finally in Fig. 11 we illustrate a number of nontrivial
endospectral trees having n = 16 vertices. They reveal addi-
tional interesting structural features. Two trees have adja-
cent endospectral points (of valency 3) and therefore can
produce families of endospectral trees analogous to those
previously discussed for 12-vertex graph #435.

Vi. SOME OPEN QUESTIONS

We have not exhausted all useful comparisons. It is pos-
sible that additional structural relationships will emerge, be-
coming more visible when the search of construction for
larger endospectral trees is continued. The main finding of
our work is that endospectral trees are rather rare, if one
discards trivial cases, and limits oneself to “sporadic” rather
than “families” of such trees. It is conceivable that few struc-
tural requirements, if not a single one, may typify numerous
endospectral trees. We have not succeeded in pinpointing
such a structural element, but with continuing interest in
endospectral and isospectral graphs we may have a more
complete picture of the structural characteristic of these
graphs. There are still a number of open and not yet consid-
ered questions, which eventually may help in resolving other
such questions. For example: Is there a single constructional
approach that would cover al/ cases? Can we write any “cen-
tral” portion of a graph (tree) and then find “end” groups
that would make the tree endospectral? Are there trees with
more than a single (nontrivial) pair of endospectral vertices?
In the case of cyclic graphs (Fig. 2), we have cases of two
(and more)isospectral points. Can endospectral points be
terminal points (of valency 1)? Can endospectral points
have different valency? In all the cases considered here (in-
cluding trivial cases also), the endospectral points always
have the same valency: In nontrivial cases valency 2 or 3 (in
trivial augmentations higher valencies) can occur. Do endo-
spectral (and isospectral) points come in pairs? Or is it possi-
ble to have a triplet of such points? Are there endospectral
trees (and for that matter isospectral trees) in which there
are no vertices of valency 2? Are endospectral trees responsi-
ble for all cases of isospectral trees, “sporadic” cases merely
being the intersection of different families if isospectral
graphs? Some of these questions may be easier to answer
than others and not all are of equal merit. Schwenk® an-
swered the first two questions: endospectral points necessar-
ily have a same valency. Since u and v are endospectral this
implies that Ch(G — u;x) = Ch(G — v;x), it must be that
G — u and G — v have equally many edges. Therefore, u and
v must have the same degree. Concerning terminal endo-
spectral points, when they occur in a tree T, their neighbors u
and v are necessarily endospectral in the tree
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B

16. 11094/ 2: 3/4222101012000000

i

16. 12895/ 3¢ 11/4212210000110100

>kT

16. 13452/ 4:13/4211220020001000

=

16, 13564/ 3113/4211200112001000

-

16. 14775/ 2t 6/4200121200120000

-

16. 14898/ 61 14/4200112200200100

e

16. 16384/ 8t 13/4112200112001000

A

16. 16436/ 21 5/4112121010 110000

—>-—%

16. 16677/ 2t 6/41112121106010000

s

16, 16786/ 2t 7/4111121210100000

-+

16. 17517/ 2¢ 3/3221200120001010

St

16. 18690/ 3t 9/32112000611111010

o

16. 19045/ 5112/31211200110 11100

i

16. 19164/ 3t 6/3112112101011000

TN

16. 19188/ 3: 8/3112111121010000

—

16. 19278/ 43 9/3111112111010100

FIG. 11. Nontrivial endospectral trees having n = 16 vertices.
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T' =T — u —v. Hence, the terminal endospectral points
can be viewed as trivial. This case is already illustrated in
Fig. 4 on # 185, Fig. 7: 684, #1120, #1138; and Fig. 8:
#2163, #2835, and #2962.

One of the reasons for a study of endospectral trees is
that they possibly can give some insight into the properties of
endospectral cyclic and polycyclic structures, the topic that
is of importance in attempts to characterize isospectral
graphs in general. If we succeed in characterizing isospectral
graphs, then the role of the characteristic polynomial in the
comparative study of graphs may be resurrected. Among the
numerous (endless?) list of graph invariants, the character-
istic polynomial, graph spectra, moments, random walks,
and in particular, self-returning random walks are very im-
portant. They are all intimately connected, some being ex-
pressed in integers (a result of a counting process), others
are analytical. A complete understanding of these funda-
mental invariants is clearly prerequisite for the study of any
other composite quantities. Considerable progress was made
in the last few years in this area: methods for fast (computer-
assisted) construction of the characteristic polynomials are
available,?>° alternative representations (via Chebyshev
polynomials®'—* have been explored, factoring of the char-
acteristic polynomial (for trees only>* but some extensions
are considered for graphs in general®®) have been studied,
which factoring is not the result of the symmetry of the
graphs. Finally the concept of ““characteristic equations™ has
been introduced. These are the equations that determine the
coefficients of the characteristic polynomial. It was found
that in most cases even isospectral graphs have a different set
of characteristic equations,®* although the existence of some
pathological (highly symmetrical polycyclic) structures, to
which Schwenk?® drew attention, make the characteristic
equations nonunique. Revival of interest in the characteris-
tic polynomial and related topics may provide some answers
to the above questions as well as to other closely related
questions. For example, a number of questions concerning
graph spectra, such as the occurrence of common eigenval-
ues,” inclusion of spectra of a smaller graph in a larger
one,*®?° the excessive “degeneracy” (i.e., multiplicity of
roots), all tied to nodal characteristics of graphs remain for
the most part unresolved, although some partial results have
been offered.*® We hope that study of endospectral graphs
may directly or indirectly help to resolve some of the prob-
lems mentioned.
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It is shown how all zeros of weight-1 6/ coefficients arise as particular cases of a four-parameter
family of such zeros. The parametrization is given explicitly.

I. INTRODUCTION

A Racah operator is a linear operator acting on a parti-
cular abstract Hilbert space, and gives rise to the Racah coef-
ficients. See Biedenharn and Louck® for a full discussion,
together with motivation for the importance of their study.
Considerable interest has been shown in the nontrivial zeros
of the Racah coefficients because these determine vector
spaces belonging to the null space of a Racah operator, and
accordingly give structural information concerning the op-
erator itself.

One method of classifying the zeros of the Racah coeffi-
cients has been given by Brudno.? Here, it is observed that
the explicit expression for each of the coefficients, as given by
Racah,? is an alternating sum, and the author bases his clas-
sification on the number of nonzero terms occurring in this
sum. This is shown to be equivalent to a classification by
weights of the corresponding Racah operator by Brudno and
Louck.*

We introduce notation for the 6j coefficient {525},
which up to sign is equal to a Racah coefficient. The coeffi-
cient is given by a polynomial function in the arguments
a,b,c.d,e, f, which represent angular momentum quantum
numbers; an explicit realization of this polynomial is given in
Biedenharn and Louck,’ p. 142. The domain of definition of
a,b,c.d.e, fis that they must be non-negative integers or non-
negative half-integers satisfying the triangle condition on
(a,be), (ac, ), (bd, f), (c,d,e) [where the triangle condi-
tionon ( p,g,r) isthat —p+qg+r,p—q-+r,p+q—rare
all non-negative integers]. An alternative notation for the 6/
coefficient is the 4 X 3 array of Bargmann®

d+f—b c+f—a c+d—e
r b e]_ a+f—c b+f—d a+b—e
d ¢ fl |ld+e—c b+te—a b+d—f|

at+e—b c+e—d a+c—f

The smallest entry in the Bargmann array is called the
weight of the corresponding 6/ coefficient and is equal to the
number one less than the number of terms in the alternating
sum, as mentioned above.

A nontrivial zero of a 6f coefficient is now defined tobe a
sextuple (a,b,c,d,e, f) of non-negative integers or non-nega-
tive half-integers, such that all entries in the corresponding
Bargmann array are non-negative integers. Since coeffi-
cients of weight-0 possess no nontrivial zeros, then nontri-
vial zeros of 6/ coefficients have corresponding Bargmann
arrays with every entry a positive integer.
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The first interesting case is that of weight-1 coefficients
having two terms in the alternating sum expression for the
coefficient. This has been studied by Brudno and Louck®
(see also Lindner’® for a more general statement) with the
following results. If {322} = 0 and is of weight 1, then by
applying a symmetry if necessary, it follows that there exist
integers X,Y,Z,U,V, W satisfying

X3+Y3+23=U3+V3+W3,

X+ Y4Z=U+V+W, Sy
with
a b e
[d c f]
_ng+u;a) uY+V_2)guV—z—4q
L ix-o wy-m" HW+Z—?5

They give a one-parameter solution to Eqs. (1) (actually in
the form given it is represented as a parametrization homo-
geneous in two parameters), due to Gérardin (see Dickson,’
pp. 565 and 713) in 1916. Bremner'® studies the Diophan-
tine system (1) further, and produces some two-parameter
solutions.

It is the object of this paper to show how all solutions of
the system (1) may be described in terms of a three-param-
eter solution. In particular, it follows that all nontrivial zeros
of weight-1 6j coefficients arise as particular cases of a four-
parameter family, which we give explicitly.

il. A FIRST PARAMETRIZATION

In Bremner, ' it is stated that for a nonrational variety
V, the problem of determining all rational points on ¥ is in
general a very difficult problem. However, using an observa-
tion of the second author of this paper, it turns out that the
system (1), representing geometrically a cubic threefold, is
actually a rational variety and, accordingly, a complete de-
scription of its rational points is readily forthcoming.

In (1), substitute

Y=X+a U=X+7,
Z=X+B V=X+35, (3)
W=X+(a+B—y—28).

The equations reduce to
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3X° +3X*(a +B) + 3X(@® + 8% + (& + B?) 2X [V + 8 + off — ay — ab — By — Bb + 8]
=(a+B)*(y+8) — (a+B)(y+6)*

=3X343Xx?
+ (@+5) —af(a+B) + ys(y +9). (4)

+3X(P+ 8+ (@+B—y—8)?)

We solve Eq. (4) for X, and then backsubstitute into
Eqgs. (3).

Multiplying throughout by the denominator to ensure
polynomial expressions [the system (1) is homogeneous],
simplifying to there results

+ (P +8+ (@+B—y—8)?),

X:YZUVv-w
= (—B+y7+8) —a(—B+7+8)+ (¥ +(B-N(B-6):

P (B—r—8)+a(—B>+V+8)+ (¥ +H(B—1(B-6) :

(=B +y+8) +a(B>— ¥+ + (=B (¥+8) +B +86) +¥8(y +86) :

a’ (=B +r+8) +a(—-B>+28B2y+8)— By +8)(r+8))

+ By +8) =By +8) 3y +8) +y(2¥* + 375 + 36%):

(=B +7r+8 +al—B2+28(y+28) — (v +8) (v +38))

+B%(y +8) — By +8) (v + 38) + 8(3y° + 396 + 28°):

?(B—y—8)+a(B>—4B(y +8) + (37" + 4y6 + 38%))

+ (=B (¥ +8) +BBY + 46 +38°) — (v + 8)(2° + v6 + 287)). (5)
This furnishes a parametric solution to (1), ostensibly in four parameters. However, by homogeneity, one can divide through-
out by, say, a to see that (5) is really a three-parameter solution in B/, ¥/a, and §/a. Nonetheless, it is preferable to leave
the parametrization in homogeneous form.

We now claim that any solution of (1) occurs as a special case of the parametrization (5). This is obvious, because the
inverse transformation to (3) gives

afBy:é=Y-XZ-X:U-XV—1X,
and hence a solution (X, Yy, Z,, Uy, Vo, W) to (1) arises from the parametrization (5) using the parameters
(a, B,'}’,CS) = (YO - XO’ ZO - XO’ UO - XO’ VO - XO)

To sum up, the parametrization (5) provides a complete description of all the solutions to Egs. (1).

Iii. A SIMPLIFIED PARAMETRIZATION

By means of the transformation (2), one now recovers a complete description of all nontrivial zeros of weight-1 6/
coefficients, as follows.
From (2) and (5), we obtain the parametrization of a zero coefficient as {§ ’c’}}, where

a=}[a*(—B+y+8) +al—B*+ BBy +28) — (2y +8) (v +6))
+B*(r+8) —B2y + 8 (r+ 8 +r(¥ + 276 + 8 — 1],

b=}la(—B>+B(y+28) —8Qy+8))+B*(y+6) —Br +8)(y +28) + 62 + 2y6 + &) — 1],

c=4[a?(B—y—38) +al—By +28) + (¥ + 278 + 28%)) + (BS(y + 8) — 8(¥* + ¥8 + 8], )

d=lay(~B+y+8) +Br(y +8) —vy(¥* + 6 + 871,

e=i[a*(B—y—8)+a(—2B(y +8)+ QX + 38 +28M)) + By + 8 — (¥ + OY(P +v6 + 6% — 2],

[=4aB> =2 +8) + (P + 78+ )+ (=B*(r +8) + 28(* + Y6+ 8") — (¥ + ) (¥’ + 8%)) - 1].

Now the triangle conditions on (a,b,e), (a,c, f ), (bd, f), (¢,d,e) reduce to the inequalities in terms of X, Y,Z,U,V, W given by
W—-Y>0, U+V>0, W—-X>0, U~-Z>0, X+Y>0, V—-2Z>0.

These in turn give the inequalities in terms of &, B, ¥, 8:
(=B +r+8)@(=B+y+8) +B(r+8) — (V¥ +v5+8))>0, (7
(—a—=B+y+8)la(—B+y+8) +B(y+8) — (¥ +v¥5+6%)>0, (8)
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(B—v)(B-=8)(—a+y+8)>0,

(—a—B+y+8)(—B+y+6(—a+yr+68)>0,
(B=a(—=B+7+6)+By+8) — (¥ +y5+6))>0,
(B=8)a(—=B+y+8)+By+8)— (¥ +v6+86))>0.

If we suppose

a(—B +y+8) +By+8) — (¥ +v5+86) <0,
then it follows from (7), (8), (11), and (12) that

—-B +v+6<0, (13)

—a—B +y+86<0, (14)

B—1v<0, (15)

B—56<0, (16)
whence from (9) and (10) that

a—y—6<0. (17)

But (14) and (17) imply £ >0 whereas (13), (15), and
(16) imply 8 <0, a contradiction.
Accordingly, we must have

a(—B+y+8)+By+8) — (P +y5+6)>0,

(18)

with

—B +rv+6>0, (19)

—a—pF +y7+6>0, (20)

B—v>0, (21)

B—6>0, (22)

—a+y+6>0. (23)
Now (19), (21), and (22) imply that

B=p+q+r, y=q+r, S=p+r, (24)
forp, g, r>0.

Then (20) gives

a=r—s, s$>0, (25)

and (23) is automatically satisfied.
Further, condition (18) becomes, on using (24) and
(25),

Pa>rs. (26)

Thus we may rewrite the parametrization (6) in terms of the
(positive) parameters p,g.r,s as follows:

a=4[pg(p+r)+rs(g+s)—1],
b=1i[pg(g+s) +rs(p+r) —1],
c=4(p~+s)(pg—rs),
d=14(g+r)(pg—rs),
e=(p+g+r+s)(pg—rs)—2],
f=ilpg(r+s) +rs(p+q)—1].

(27)

Then, subject to the inequality (26), the 6/ coefficient with
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9
(10)
(11)
(12)

r
arguments a,b,c,d,e, f given by (27) is a zero coeflicient of

weight 1. Conversely, any nontrivial zero of a 6j coefficient
of weight 1 arises as a particular case of the parametrized
form at (27); indeed, the parameters giving rise to a zero
weight-1 6/ coefficient {522} are given by

(psg,r,s)
=(—a—c+fi—b—-d+fb—d—fa—c—f).
We remark that Eqs. (27) admit the relations
a+c—f=p(pg—rs),
b+d—f=q(pg—rs),
—b+d+f=r(pg—rs),
—a+c+f=s(pg—rs),
at+b+c+d+1=(p+qg+r+s)pg,
a+b—e=(p+r+s)rs,

giving the precise connection between a,b,¢,d,e, fand p,q,7.s.
For numerical examples, we may, for instance, specify
g=s=1,p=r+ 1 Then

a=1rQ2r+35), d=i(r+1),
b=i(r+1)2r+1), e=41(2r+1),
c=ir+2), f=r(r+2),

where r is an arbitrary integer.
Cases r = 1,2,3,4 give the zero coefficients

134 [Py o3
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Generalized 6j symbols for G, in which all four triangular conditions involve the seven-
dimensional irreducible representation (irrep) (10) are multiplicity-free. Algebraic
expressions depending on the highest weights of the accompanying irreps are found by using
generalizations of the Racah-Wigner algebra. A rule is given for generalizing the SO(3) phase
factors. The results are applied to finding algebraic expressions for a class of isoscalar factors

for SO(7) OG,.

I. INTRODUCTION

It has been realized for many years that the apparatus of
the quantum theory of angular momentum, as represented
by the Racah—Wigner algebra for the group SO(3), can be
very extensively generalized to other groups. An apprecia-
tion of this fact is apparent in the early work of Wigner,' but
it is only within the last 20 years or so that specific examples
have been described. The generalizations to finite groups
were initiated by Griffith,2 and a substantial tabulation of
the 3/ and 6 symbols for the crystallographic point groups
has been recently provided by the book of Butler.> Hecht*
developed the Racah—Wigner algebra of SO(5) for applica-
tions in nuclear physics, while a few special cases of general-
ized 6j symbols for SO(5) have been listed in connection
with the Jahn-Teller effect.>® The unitary groups have been
the subject of many articles because of their relevance to
particle physics as well as nuclear physics. References in
those areas can be found in the work of Draayer and
Akiyama’ and of Haase and Butler.?

A major problem facing any extension of the Racah—
Wigner algebra from SO (3) is the appearance of multiplicity
difficulties. A given irreducible representation (irrep) I" of a
group G may occur more than once in the decomposition of
the Kronecker product "X I'”. This enormously compli-
cates the calculation of general expressions for the 6; sym-
bols for the group G. What is more, all isoscalar factors (that
is, factored parts of generalized Clebsch—Gordan coeffi-
cients) involve irreps of both G and a subgroup H of G, and it
can well happen that a given I" contains a particular irrep of
H more than once. The attention that has been paid to cop-
ing with these difficulties has tended to obscure the fact that
many types of problems are multiplicity-free or almost so. In
the limited regions where multiplicity complications are not
encountered we might expect to be able to develop formulas
for 3j and 6/ symbols as well as for their higher nj forms. The
absence of multiplicity difficulties enables us to give defini-
tions of the 6j symbols in terms of recoupling coefficients
that exactly parallel the corresponding definitions for
SO(3). That is, the equation

[J'l J2 js}
Js Js Js
=(— 1) iz +iatis [+ 1) (s + 1)]—1/2

2616 J. Math. Phys. 27 (11), November 1986

0022-2488/86/112616-07$02.50

X((J1J2) J3s JasJs| 1 Fada) s Js)
is replaced by

= (- 1)¢>(I‘,)+¢(I‘2)+¢(I‘4) +@(T5) [D(F3)D(l"6)]_”2

X((T4T) 5,0, | T ((T T ) T, Ts)

where D(T") is the dimension of the irrep I" of G. Only the
form of the phase factors ( — 1)®‘™’ remains to be settled.
Of course, the recoupling coefficient itself conceals phase
choices that are implicit whenever a sequence of coupled
irreps is written down. These can be determined only for
specific bases, a task that is distinct from the issues facing us
at the moment.

Some work in generalizing the SO(3) 6/ symbols to oth-
er groups G has been recently carried out for the groups
SO(n) (where n> 3).° The stimulus to do so was provided
by the Jahn-Teller effect for an electronic state coupled to
two vibrational modes, each belonging to the irrep (10) of
SO(5). (Here and throughout this article we label an irrep
by its highest weight.) Excitations of a particular mode only
involve irreps of the type (w0), and these are particularly
easy to handle. By evaluating matrix elements of selected
tensor operators in a boson basis and relating the results to
the standard Racah-Wigner formalism in which a 6/ symbol
for SO(n) appears, it proved possible to obtain explicit ex-
pressions for such multiplicity-free 6j symbols as

{(wO---O) (20.-:0) (w+ 1,10---0)]
(10-0) (w+1,0--0) (210---0)

as a function of w.

To demonstrate that the method can be generalized to
other groups, formulas were given® for all G, 6j symbols of
the type

{(wO) (10) U’}
(10) (w0) U"}’

where U’ and U " of G, range over the five acceptable irreps
(w + 1,0), (wl), (w0), (w—1,1), and (w — 1,0). We fol-
low Racah!® in using an acute-angled coordinate system to
specify the highest weight (ww,); the connection to the la-
beling scheme (a,a,) of McKay and Patera'' is given by

(1.1)
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TABLE I. Highest weights (w,w,), Dynkin labels (a,a,), dimensions
D(U), eigenvalues g( U) of Casimir’s operator G for G, and irreps D, of
SO(3) for the embedding (10)—»Z ;.

(w,@,) (aya;) D) 12g(U) L

(00) (00) 1 0 s

(10) (01) 7 6 F

(11) (10) 14 12 PH

(20) (02) 27 14 DGI

2n (11) 64 21 DFGHKL
(30) (03) 77 24 PFGHIKM
(22) (20) 77 30 SDGHILN

w, = a, + a,, w, = a,. In order to make our notation clear, a
few examples are given in Table I. Having tabulated, then,
the 25 algebraic expressions (1.1), we are led to ask whether
other formulas can be found. There are grounds for opti-
mism because, for the general irrep (w,w,) of G,, the Kron-
ecker product (w,w,) X (10) decomposes according to
(ww,) X (10)
= (w; + Lw,) + (w, + Lw, — 1)
+ (wpw, + 1) + (ww;) + (wpw, — 1)

+ (w,— Lw, + 1) + (w, — Lw,), (1.2)
adirect sum in which no given irrep appears more than once.
Thus all G, 6f symbols of the types
{(wle) (lo) (w5w6)] {(wlwz)

(10)  (wawy) (10) 17 l(wwy)

(10)

(ugug)]
(10)

(w,wg)
(1.

are multiplicity-free and should therefore be susceptible of
algebraic evaluation. The products (w,w,) X (11) contain
(w,w,) twice in the general case, and so the replacing of any
irrep (10) by (11) (or by any irrep of higher dimensionality
for that matter) opens the way for multiplicity ambiguities.
In spite of this limitation, it should be of considerable inter-
est to study those 6j symbols of the type (1.3), since (10) is
the first nontrivial irrep of G,, as can be seen from Table I. It
is the aim of the present paper to make a start on that pro-
gram and to show how our knowledge of some G, 6/ symbols
makes it possible to calculate general expressions for some
isoscalar factors for SO(7) DG,.

Il. PHASE

In the absence of multiplicity complications we can take
the formulas of angular-momentum theory for SO(3) as giv-
en, for example, by Edmonds'? and simply replace every 6/
symbol by the corresponding generalization to G,. That is,
the six j’s are replaced by six U’s. The dimensional factors
2j + 1 that appear in the formulas are replaced by D(U),
where

D(U) = iy (w, + w, + 3) (wy +2) 2w, +w, +5)

X(w1+2w2+4) (w, —w, + 1) (w, + 1).
(2.1)

Reduced matrix elements of a SO(3) tensor T**’ become
reduced matrix elements of a G, tensor of the type T‘?.
Only one problem remains: how do we find the analog of
( — 1Y? We want our 6/ symbols for G, to exhibit all the
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symmetries of their SO(3) counterparts—a phase-free inter-
change of columns and an equally phase-free interchange of
pairs of arguments in the upper and lower rows of the 6j
symbol. Studies of the properties of generalized 6/ symbols
with multiplicity labels attached indicate that the general
phase problem is highly complex.*'>-'5 It is natural to hope
that we can escape the morass of that analysis, or at least
evade its more intricate aspects. After all, we are making two
specializations: one to G, and a second to multiplicity-free
Kronecker products.

Wigner’s celebrated analysis'® of simply reducible
groups is of value here. Irreps &; of SO(3) are classified as
even or odd according to whether they occur in the symmet-
ric or antisymmetric parts of Kronecker squares &, X %,
where k is integral. This evenness or oddness is represented
by the phase factor ( — 1)/. Because G, is not simply reduc-
ible a given irrep U’ sometimes occurs in both the symmetric
and the antisymmetric parts of U ?; however, a glance at the
table of special cases'” indicates that every irrep (10) and
everyirrep (11) occur in the antisymmetric part of U2, while
(00) and every irrep (20) occur in its symmetric part. To see
why this might be true in general, consider the embedding
G,D2S0(3) for which (10)—Z,. Suppose that we intro-
duce the commuting SO(3) tensors T’ and T$® that act in
identical but distinguishable spaces A and B. We can write

(TPTE ) 2 |(U, Uy ) (00)S )

=2E(U’,U”,rUi)l(U;\U{;)TUiL), (2.2)
where the second ket indicates that U’ and U ” are coupled to
those various irreps U, that contain & ; of SO(3). The sum
in Eq. (2.2) runsover U, U", U,, and the multiplicity label
7. Now, we have

(TETE)Y® = (= DHIPTE) ™, (2:3)
(UAURTUL) = (— D (UgUL)TUL), (24)

where p = 0 or 1 according to whether 7U; occurs in the
symmetric or antisymmetric partof U’ X U’. Since (00) nec-
essarily occurs in the symmetric part of U?,

[(U, Ug)(00)S) = |(Ug U, )(00)S') . (2.5)

The replacements (2.3)-(2.5) are made in (2.2). Next, we
exchange the labels A and B. For the original equation (2.2)
to be recovered we must have

E(UUU) = (= HEYPEWUU'TU) . (2.6)

Thus the only kets | (U 4 U )7U,L ) that can be generated
by equations of the type (2.2) correspond to even L + p.
Almost all irreps U; of G, contain irreps &, of SO(3) for
which L runs over both odd and even values. These U; can-
not be assigned a unique p by the present method and they
may be found in either the symmetric or antisymmetric parts
of Kronecker squares (or both). However, we see from Ta-
ble I that L is always even for (00) and (20), and it is always
odd for (10) and (11). Thus p follows L in being even for the
former and odd for the latter. Although our argument de-
pends on the assumption that a state [(U 3 Ug)7U,L ) can
be generated from an § state by means of an SO(3) tensor of
rank L, we have complete freedom in choosing U and T,
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The latter, for example, may be the superposition of many of
the irreps of G, that contain & . It is thus highly plausible
that p = 0 for (00) and (20), and that p = 1 for (10) and
(11).

If, in addition, we suppose that the phase ( — 1)#'? to
be associated with theirrep U [in analogy to ( — 1) for &, ]
is of such a form that we can write ¢ (w;w,) = aw, + bw,,
then our results for (00), (20), (10), and (11) limit our
choice for a and b very severely. In fact, @ must be an odd
integer and b an even one. Without loss of generality we can
takea = 1and b = 0. Thus the phase associated with (w,w,)
becomes simply { — 1)*.

lll. FORMULAS FOR G, 6/ SYMBOLS

The starting point for the construction of algebraic ex-
pressions for the 6j symbols (1.3) is the initial five-by-five
block of entries for (1.1).° To match the phase procedure
outlined in Sec. II, it is necessary to set the single undefined
phase £ of that table equal to — 1. The Racah backcoupling
relation [Eq. (6.2.11) of Edmonds'?] immediately provides
expressions for

{(wO) (10 U ]

wo) (10) U'l”

The Biedenharn-Elliott identity [Eq. (6.2.12) of Ed-
monds*?] can now be brought into play. Gaps in the tables
can be filled by using the orthonormality relation for 6j sym-
bols [Eq. (6.2.9) of Edmonds'?]. To reduce the complexity
of the algebra, we define a U coefficient similar to that of
Jahn'®:

U(Ul U, U,

U, U U3]
U, U, U,

u, Us U’

3.0
The introduction of a second meaning for the symbol U
should not cause any difficulty since it necessarily precedes a
large and visually characteristic parenthesis. The third col-
umn of the U coefficient can be interchanged with either of
the others on a phase-free basis, but dimensional factors need
to be included. For example,

) = [D(U)D(Ug) 12 [

U, 10) U3)

II. F las fi ( .
TABLE ormulas for U 10y U, (10)

(U1 U, U2>

D(UZ)D(US)] (Ul U, U3)
U, U, U

D(U3)D(U) U, Us U/

(3.2)
Formulas for U coefficients corresponding to the forms
(1.3) are given in Tables II and III. The replacement
u = 2w + 5is used to simplify the tabulation. In spite of our
procedure for interpreting the phase factors in the standard
formulas of the Racah-Wigner algebra, the Biedenharn—El-
liott identity often gives only the squares of new U coeffi-
cients. Phase factors ¢, are introduced for such occasions
and retained in the analysis until freedom to make a specific
(though frequently arbitrary) choice is clear.

Tables II and III are limited to reasonably elementary
examples. As we proceed to more complicated cases the al-
gebra becomes correspondingly intricate. For example, we
find (forw> 1)

((WI) (10) (wl))
(wl) (10) (wl)
_ w8 + 6u° — 102u* — 4481° — 15942 + 594u — 2916

u(u+2)y (u—=3) (u+5) (-7 (u+9)
(3.3)

Some compression is possible here. Just as the SO(3) U coef-
ficient

L 1 L

o1 1)
can be expressed as a function of L(L + 1), so Eq. (3.3) can
be simplified by introducing Casimir’s operator G for G,. Its
eigenvalues g for (w1) are given by'®

g=(u*+2u—15)/48,
and the right-hand side of Eq. (3.3) simplifies to

(16g° —23g° — 17g — 3)/g(g — 1) (16g+5) .

In spite of the infinite sequences of 6j symbols provided
by every line of Tables II and III, an accidental vanishing is
rare. The only examples that we have noticed are

[(10) (10) (11)} . [<60) (10) (51)]
10y 10y anl ¢ leoy a0 Gl

U,U,U,

U coefficient

(w0) (w0) (w+ 1,0)
(w0) (w0) (wl)

(w0) (w0) (w0)

(w0) (w0) (w—1,1)
(w0) (w0) (w—1,0)
(w0) (wl) (wl)

(w0) (wl) (w—1,1)
(w0) (w—1,1) (w—1,1)
(w0) (w—1,1) (w—1,0)
(wl) (wl) (w+1,1)
(wl) (wl) (w+ 1,0)
(wl) (wl) (w2)

(wl) (wl) (wl)

(wl) (wl) (w—1,1)
(wl) (wl) (w— 1,2)
(wl) (w—1,1) (w—1,2)

— [6/(u? —25)]'?

— [ —81) /2

[(u42) (u—5)/6u(u
(0 — 1) [Qu+T)/3u(u—3) (u+5)]"

(w4 1) [(u—7)/3u(u+3) (u—
— [(u—2) (u+5)/6u(u+3)]""?

—[(u+2) (u—"T7) (u+9)/6u(u—3) (u+5)]"2
— [ —3) (u—"7)/3u(u—5)]*"
[u—2) (u+7) (u—9)/6u(u+3) (u
— [(u—2)/3(u+3)]"?

(e +5)[u(u—7)/6(u—1) (u+2) (u—5) (u47)]""?

—uu—T) (u+9/12(u—3) (u—5) (u+7)}""?

(u+5) {u(u—3) (u+11)/4u+ 1) (u+3) (u—5) (u+7) (u+9]"?
— (@ +2u+9) [6/u(u+2) (u—3) (u+5) (u=7) (u+9]""?

— (=3 [(u+2) (u+9)/6u(u+3) (u—5) (u+T7)]"

(0 —3) [(u+2) (u+5) (u—9)/4(17 — 1) (1 —5) (&2
_49)11/2

_3)11/2

5)]1/2

~.5)]1/2

_ 49)]1/2
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TABLE III Formulas forU(U‘ (10) Uz)_

U, (10) U,

U,U; LU,

U coefficient

(w0) (w0); (w+ 1,0) (w+ 1,0)
(w0) (w0); (w+ 1,0) (wl)

(w0) (w0); (w+ 1,0) (w0)

(w0) (w0); (w+ 1,0) (w~ L1)
(w0) (w0); (w+ 1,0) (w~1,0)
(w0) (w0); (wl) (wl)

(w0} (w0); (wl) (w0)

(w0) (w0); (wl) (w— 1,1)

(w0) (w0); (wl) (w— 1,0)

(w0) (w0); (w0) (w0)

(w0) (w0); (w0) (w—1,1)

(w0) (w0); (w0) (w— 1,0)

(w0) (W0); (w— L1) (w—1L1)
(w0) (w0); (w—L1) (w—1,0)
(w0) (w0); (w— 1,0) (w— 1,0)
(w0) (w+ 1,0); (w + 1,0) (wl)
(w0) (w+ 1,0); (w + 1,0) (w0)
(w0) (w+ 1,0); (wl) (wl)

(w0) (w+ 1,0); (wl) (w0)

(w0 (wl); (w+ 1,0) (wl)

(w0) (wh); (w+ 1L,0) (w—11)
(w0} (wl); (wl) (wl)

(w0) (wl); (wi) (wO)

(w0) (wl); (wl) (w—1,1)

(w0) (wl); (wO) (w—1,1)

(w0) (wl); (w—1,1) (w-1,1)
W) (w— 14,1} (w—1,0) (w—- L1
(w0) (w— L1); (w— 1,0) (w0)
(w0 (w— L1} (w— L,O) (wl)
(w0) (w— L1} (w— L1 (w—11)
(w0) (w—1,1); (w—1,1) (w0)
(w0) (w—1,1); (w—1,1) (wl)
(w0) (w— 1,1); (w0) (wl)

(w0) (w— 1,1); (wl) (wl)

(wl) (w— 1, 1); (w]) (wl)

(wl) (w— L1); (w— 1,2) (wl)
(wl) (w— L1); (w— L,2) (w0)
(wl) (w—1,1); (w—1,2) (w—12)
(wl) (w—1L,1); (w—1,1) (wl)
(wl) (w—1,1); (w—1L1) (w—1,2)
(w) (w— L) (w—L1) (w—-1,1)

10/u(u — 3)

(4 — 61)/(w* — 25)

10/ulu + 3)

2(u — 6)/u(u —5)

—2(u +6)/ulu+5)

[8(u+2) (u—5) (u+7)/u(u — 3)2(u+5)]""2
[4(u +2)/u(u—3) (u+5)]'"?

[8Cu +2) (u—T)/u?(u? —9)]"?

[(u® —4) (P~ 25)/u?(u* — 9y }/?
(u—TN(u+17)/u(u—3) (4 +5)

[32(u — 4) (u + 7Y /u{u — 3) (u —5) (u+ 52}
(1 — 17) [(W? — 49)/u?(u® — 9) (u* — 25312

— [8(u —2) (u+ Ty /(> —N]'"?

— B2+ 2w =T /u(u+3) (u+5) (u—5721"2
— [4u—2)/u(u + 3) (u—5)1"/?

—(u+N(u— 17/ u(u+3) (u~35)

—[8(u~2) (u+5) (u— T/ (u+ 3 (u—5)1"?

[16(u —5)/(u — 3)* (1 + 5)]'?
—[(u=35) (u+7)/(u—3) (u+5)]""?
— (W4 2u—31)/(u—3) (u+5)
—[16(u+7)/(u —3) (u+ 5)?)/?
[200 = T) (u+ 9 /utu —3)2(u + 5)]'?
~ [u+2) (u—T)/u(u— 51"
— 40— du— 9 /ulu—3) (u+5)
[(w—D*u~+2) (u—7) (u+9)/u(u—3) (u+5)2wu~—5)1"2
— [8Cu+2) (u+9)/u*(u> =251

[2¢u —3) (u—T)/u(u~5)*(u+5))'"?

(w>1)

1200 +7) (u —9)/u(u + 3)*(u ~ 5)1"2
[8(u —2)/(u+3) (4> —25)1'?
[{u—2) (u-+ T ulu+ 5312
412 +4u—/u(u+3) (u—25)
— [+ D2u—2) (u+7) (u—9)/uu+3) (u+5) (u—5)2]'"?
[8(u —2) (u—9)/u(u? —25)]"?

[2Cu +3) (u+ Tyu(u—5) (u+ 5%

(w>2)

— 2+ 2u - 2T/ u(u+5) (u—T)

[120u+2) (u—3) (u—9)/u(u+75) (u— T u+T)}'?
[3(d® — 9) (u® — 81)/4(u® — 25) (u* — 49)]V/?

— (4® —73)/2(4* — 49)

— [ —4) (W?—9) (® —81)/u*(u? — 25) (u* — 49)}'/?
— [12¢u = 2) (u +3) (u+9)/u(u—5)(u+7)*(u~T7)]"?
2 —2u—2NV/u(u—=5)(u+17)

The zeros implied by such factorsas (¥ — 7) and (u — 9) in
all other formulas in Tables II and III correspond to the
violation of a triangular condition. The most common exam-
pleis

{10y, (1), (1D} =0.

IV. SYMMETRIES OF JUCYS

It is well known that many formulas of angular-momen-
tum theory are invariant (to within a phase factor) with
respect to replacements of the type j— — j — 1. The charac-
teristic Casimir form j(j + 1) is unchanged, while the di-
mension % + 1 of &; merely changes sign. In his book with
Savukynas, Jucys'® touches on the analogous property for
G,. Our choice of u rather than w in the algebraic expres-
sions of Tables II and III exposes this symmetry. Under the
replacement u— — u, we find, for (w0),

gw0)y—g(w0), D(wl)— — D(wl) .
Other irreps (w,w,) appear to become interchanged. For
example,

g(wl)—g(w - 1,1), D(wl)—»—-D(w-—1,1).
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These interchanges are summarized by
(w0)(wo), (w+ 1,0)(w—1,0),
(whe(w-—11), (w2)(w—22),
(w+ LDoeWw—-21), (w—12)e(w—12),

and tally with the substitutions (18.14) of Jucys and Savu-
kynas." It is easy to verify that the formulas of Tables 1T and
III are consistent (to within phase factors) with the simulta-
neous substitutions u— — u and (4.1). Since all the formu-
las of Tables II and III were calculated separately, this pro-
cedure provides excellent checks on the magnitudes of the U
coefficients.

(4.1)

V.ISOSCALAR FACTORS FOR SO(7) DG,

As an example of the usefulness of Tables IT and 111, we
show how certain isoscalar factors can be calculated for
SO(7) 5G,;. Our method is the analog of one that can be
used to find the Clebsch—-Gordan (CG) coefficients for
SO(3)D5S0(2). If S and L are two commuting angular mo-
menta with resultant J, the CG coefficients in the sum
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Z (SMg,LM, |JM,)|SM,LM, )

Mg M,

5.1

corresponding to well-defined J and M, can be found by
insisting that (5.1) be an eigenfunction of 2S-L with
eigenvalue J(J + 1) — S(S + 1) — L(L + 1). The calcula-
tion is carried out by taking 2S-L in the form
2S,L, +S.L_+S_L, (where S, =5, +1iS,, etc.),
which enables enough linear equations to be set up to evalu-
ate the CG coefficients (to within a phase) and check them.

In the notation of Racah,'® a multiplicity-free isoscalar
factor for SO(7) DG, is written

(WU, + W,U,|W,U,) , (5.2)
where W, stands for an irrep of SO(7). We can think of

H

(5.2) as a CG coefficient for SO(7) DSO(2) with the CG
coefficient for G, DSO(2), namely
(UBL M, UBoL:M,; , |TUB,L:M, 5 ), (3.3)

factored out. If we can evaluate (5.2) directly we can avoid
the problem of coping with the multiplicity labels 5; and 7in
(5.3). As a particular example we choose W,=(w10) and
W,=(100). Our program consists in finding algebraic ex-
pressions for all possible W5, U,, U,, and U; in (5.2).

The 21 generators of SO(7) belong to the irrep (110).°
To distinguish the two commuting sets (the analogs of S and
L) we write T{"'® and T§''?. We have

TgllO) — T%llO) + T;“O) (54)

as the analog of J = S + L. In a similar way, the 14 genera-
tors of G,, which belong to the irrep (11), can be written as
TV, The part of T{"'® not coincident with T{'" belongs to
the irrep (10) of G, thus forming the tensor T{'®. Our ten-
sors are conveniently normalized by means of the equations

((100)[|T "'|(100)) = [D(110)]'> = v/(21) ,
(AT V) (10)) = [DAD ]2 =v/(14),  (5.5)

where the first reduced matrix element implies reduction
with respect to SO(7), and the second with respect to G,.
The quadratic scalar operators

G!Z%T(IIO).T(IIO), G=%T(“)°T(“) (5.6)

are Casimir’s operators for SO(7) and G,. Their eigenvalues
g (W) and g(U) for the irreps W= (w,w,w;) and
U= (w,w,) are given by
g =4 [w (w, +5) + wy(w, +3) + ws(ws + D],
g(l) =4 [w} +wl + ww, + 5w, + 4w,] . (5.7)
To find the analog of 2S8:L, we note that we can write
2T§'°)°T§1°)
= (T(1O + Ty (T 4 THO) — (T(10)2
— (T2 — (T{'V 4+ TE")(T{™ + T§'Y)
+(T{")? + (T2 =5G; — O, (5.8)
where
O =5G| +5G; — 4G, + 4G, + 4G,. (5.9)

The analog of the sum (5.1), which represents the ket
|JM,), is
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|(W W) W3Us)

= z (U, + W2U2|W3U3)|W1U1,W2U2,U3> ’
U,.U;
(5.10)

where the ket on the right indicates that U, and U, are cou-
pled to U,. The corresponding coupling in (5.1) is represent-
ed by the trivial SO(2) condition M, = Mg + M, . All we
have to do now is demand that 2T{'®-T{'® + €, when acting
on the right-hand side of Eq. (5.10), yields the eigenvalue
5¢'(W;). The part Q is diagonal in the basis
|W,U,,W,U,,Us), and the central problem is to evaluate

(W U WU, U | T{OTS O\ W U ,W,U 5,Us) (5.11)
It is here that we turn to the familiar formulas of the

Racah-Wigner algebra. For the special case of W,=(w10),
W,=(100), Eq. (7.1.6) of Edmonds'? reduces (5.11) to

qu a0 o,
(=D [(10) Ui (10)
% ((100) (10)[| 7% (100) (10)), (5.12)

where y = @(U ) + ¢(10) + ¢ (U;). This phase is calcu-
lated according to the rule given in Sec. II. Since both T{'®
and T{'® are the components of the generators for their re-
spective SO(7) groups, the values of their reduced matrix
elements are independent of how the irreps (w10) and (100)
are constructed. For the former, it is convenient to think of
the irrep (w10) as being produced by the coupling of two
parts (a and b, say) belonging to (w00) and (100). The
tensor T{'? is regarded as T{'® + T{'”, and we apply Ed-
monds’ Egs. (7.1.7) and (7.1.8), which refer to tensors act-
ing on the first part or the second part of a coupled system.
Since (w00)— (w0) under the reduction SO(7)—G,, we
have only one kind of reduced matrix element for G, to
evaluate, namely

((w00) (w0)||T || (w00) (w0)). (5.13)
Applying the Wigner—-Eckart theorem, we see that (5.13) is
equal to
((w00) (w0)|(w00) (w0) + (110) (10))

X ((w00)||T 1| (w00)) , (5.14)
where the reduced matrix element in this product is reduced

with respect to SO(7). Since (T"'?)? has eigenvalues
Sg(W), it is easy to show that

(W T\ W) = [SD(W)g(W)]"2. (5.15)

As for the isoscalar factor in (5.14), the reciprocity relation
of Racah'® gives its value as

[D(10)D(w00)/D(w0)D(110)]"/2 = (42

} (WO U T |(w10)U )

to within an arbitrary phase. This phase disappears when the
reduced matrix element of T$'® in (5.12) is combined with
that of T{!?.

All the pieces are now in place to calculate the isoscalar
factors of Eq. (5.10). They are set out in Table IV. Every line
is associated with an arbitrary phase; each has been chosen
to reproduce Racah’s phase for the two columns headed
(w0) and (wl) when we set w = 2, corresponding to the
special cases listed in his Table IT1Ia.'® However, all the en-
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TABLE IV. The isoscalar factors ((w10) U, + (100) (10)|W,U,).

U
W, U, (w—11) (w0) (wl)
(w—1,10) (w-21) 1 n 0 . 0
(w—1,0) _( 16 ) ((u+3) (u—7)) 0
(u+1) (u—3) (u+1) (u—75)
(w—1,1) _(.M)_(“_—”_)"’ ( 8(u—2) (u+3) )‘/2 ((u—2) (u+3)2(u+7))1/z
’ u(u + 1) (4> —25) (u+1) (u—5) (u+5)? u(u+1) (u+5)>
(00) (w0) _(2(u -3 (11—7))‘/2 ww -9 )"2 (2(u+ 3) (u+7))'/2
Su(u—>5) A 5(u®—25) " Su(u+5)
(wll) (w—1,0) ((Lt:”_)_u) ____L__) 0
(u+1)(u=5) (u+1) (u—35)
-1 - (ESDEED @=9))” (e n ) ()
’ 2u(u+1) (8—75) 2(u+ 1) (¥* —25) w(u+1) (u+5)
(w—1.2) (u _ 1) / 0 (u +;1)|/z
2u 2u
(w0) _ ((u +3) (:4—7))"2 ( 16 )V’ _((u—3) (u+7))'/2
2u(u—5) u2—25 2u(u + 5)
(wl) _( 9u—3) )"2 _( (u+DHi(u—-T7) )"2 ((u+2) (u—3) (u+9))V2
u(u—1) (€—75) 2(u—1) (¥ =25) 2u(u—1) (u+3)
(w+1,0) 0 ______)”’ ((L—jMiﬂ)‘”
’ (u—1) (u+5) (x—1) (u+5)
(w20) (w—2,2) 1 0 0
(w—11) _((u—2) (u+3)2)‘/2 _((u+3) (u+7) (14—9))"2 ( u—9 )"2
’ 2u(u2—25v)2 2u+5)%(u—75) u(u+5)f/2
(w—12) _(u2+1 0 (u—l)
U
(w0) _((u+3) (u+7))‘/2 ~(4(142—49))'/z ((u—s) (u—N\"
10u(u — 5) 5(u? —25) 10u(u + 5)
(wl) ( u+9 )‘/2 ((u—3) (u=T7) (u+9))”2 ( (u+2)(u—3) )"’
u(u—5)? 2(u—5)*(u+5) 2u(u? —25)
(w2) 0 0
(w+ 1,10) (wl) _((u+2) (u— 3)2(11—7) )1/2 ( 8(“+2) (u—3) )1/2 ( 2(“—7) (u +9) )V2
u(u—1) (u—15)2 (u—1) (u—5)2(u+32) u(u—l) (u —25)
(w+ 1,0) 0 Q—_”W_”_)) ___ 1
(u—1) (u+3) (u-—l)(u+5)
(w+1,1) 0 0 1

tries in the column (w — 1,1) possess opposite signs to those
of Racah. This phase difference can be traced to our decision
to use G, phases that parallel those of SO(3). For us,
@(w — 1,1) differs from @(w0) and @(wl), while for his
limited applications Racah was able to avoid having to intro-
duce any general convention for the irreps of G,.

Vi. CONCLUDING REMARKS

The procedure for calculating the entries of Table IV
has been described in some detail in order to bring out the
parallelism to the familiar SO(3) formulas. Like the 6/ sym-
bols, the isoscalar factors exhibit the symmetries of Jucys.
The checks that these symmetries provide are totally miss-
ing, of course, if purely numerical calculations are per-
formed. However, the main significance of our method is
that it circumvents the need for a detailed basis. This feature
could prove extremely useful for groups possessing a larger
number of generators than G, or SO(7).

Finding explicit closed forms for the general G, 6/ sym-
bols of the types (1.3) remains an intriguing possibility. Any
general formula that encompasses the far from trivial entries
of Tables II and III would necessarily have to exhibit a fair
degree of complexity. The sequences of the factors (u — a)
in Tables II and III seldom suggest the ratio of factorial
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functions, so it would be difficult at this stage to make con-
jectures for a general formula.
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The three-wave resonant interaction equations (2D-3WR) in two spatial and one temporal
dimension within a group framework are analyzed. The symmetry algebra of this system,
which turns out to be an infinite-dimensional Lie algebra whose subalgebra is of the Kac—
Moody type, is found. The one- and two-dimensional symmetry subalgebras are classified and
the corresponding reduction equations are obtained. From these the new invariant and the
partially invariant solutions of the original 2D-3WR equations are obtained.

I. INTRODUCTION

The group analysis of nonlinear differential equations
has received much attention in the last years.!~> The main
feature of this approach is the finding of all infinitesimal
generators (which constitute a Lie algebra) of those groups
of point transformations that leave the equations under con-
sideration invariant.

Several authors have mainly dealt with systems in one
spatial and one temporal dimension.' The group investiga-
tion of nonlinear differential equations, in more than two
dimensions, is still at the beginning. However, the applica-
tion of the group method to some special cases® succeeded in
revealing new features of certain integrable equations of
physical significance, such as the Kadomtsev—Petviashvili
and the Davey—Stewartson equations.®’ Notable properties
are (i) the existence of infinite-dimensional Lie algebras of
the Kac-Moody type,® (ii) the discovery of interesting
classes of solutions admitted by reduced versions of the origi-
nal systems, and (iii) their possible connection with equa-
tions of the Painlevé type.

In this article we study the three-wave resonant (2D-
3WR) equations in two spatial and one temporal dimension®
from the group point of view. These equations, which play an
important role in plasma physics and in nonlinear optics,*!°
allow a linear eigenvalue problem'"'? and Bicklund trans-
formations and can be solved via the inverse spectral trans-
form."?

In Sec. II we scrutinize the symmetry algebra of the 2D-
3WR system, which turns out to be an infinite-dimensional
Lie algebra whose subalgebra is of the Kac-Moody type.
The symmetry group corresponding to the symmetry alge-
bra is treated in Sec. III. Section IV is devoted to a classifica-
tion of one- and two-dimensional subalgebras of the 2D-
3WR algebras, into conjugacy classes under the action of the
adjoint group of the symmetry group of the 2D-3WR sys-
tem. Furthermore, we introduce a finite-dimensional subal-
gebra of physical meaning, having a scale generator that
leads to an interesting reduced system with nonconstant co-
efficients in two independent variables. This system, dis-
cussed in Sec. V, possesses a linear spectral problem derived
using a prolongation technique.' In Sec. V we examine the
reduced equations arising from the low-dimensional symme-
try subalgebras considered in Sec. IV. We obtain both classes
of the new invariant and the partially invariant solutions of
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the 2D-3WR equations. From among these a few stand out
that are closely related to solutions of the Painlevé VI equa-
tion. Finally, in Sec. VI we report some comments and con-
cluding remarks.

Il. THE SYMMETRY ALGEBRA OF THE 2D-3WR SYSTEM

For the sake of definiteness, we consider the three-wave
resonant process in (2 + 1) dimensions in the case of explo-
sive instability® described by the equations

Aj=u;, + ¢;u; + djuy, — iufut =0,

JkI=123, j#k £, (2.1

where u;(x,p,t) are the complex amplitudes of the wave
packets, ¢;,d; are their group velocities, the asterisk denotes
complex conjugate, and subscripts mean partial derivatives.

The quantities A; are functions defined in the space
X X UY, where X = (x,p,t) and

1
U = (e sty il thy 43

are, respectively, the manifold of the space-time variables
and of the amplitudes, their derivatives, and their complex
conjugates [we have used the abbreviation u; for (u,,uy,u;)
and soon].

In order to look for the symmetry algebra for Eqgs. (2.1),
let us introduce the vector field

V=£60,+709,+79,+¢,0,+8 0, j=123,
2.2)
on X X U, where U = ( Ej,u}") is the space of the dependent
variables, and £,7,7,4;,4, are functions of (x,y,z,u;,u}*) de-
fined in X X U. Here d,=d /dx, d,=d/d,,... and the con-
vention over repeated indexes is understood.
The prolongation of ¥ to X X UV is given by?

prV=V+¢;d, +¢/9, +¢d,,

where the fields ¢7,¢7,... are defined by
¢j’n =D, (¢j — ui,mgi) + ulxm ; i=1,23, (2.4)
where
; 9%
W, = y, X1=X, Xo=y, X;=1,
\ ax[ ax,,, 1 2=) 3
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gl =§’ §2=77’ §3=T9 ¢]1= ;’-'-7
and D,, is the total derivative with respect to x,,,.
We recall that® a local group of transformations G is a
symmetry group for Eq. (2.1) if and only if
prV[A]=0, (2.5a)
prV[Ar] =0, (2.5b)
whenever A; = A* =0, for every generator ¥ of G where

pr Vis expressed by (2.3). Equation (2.5a) yields the rela-
tions

(¢;d,+d;9, +3d,)(c;T—§) =0, (2.6a)
(¢;d,+d;0,+3d,)dT—7)=0, (2.6b)
—igRut — idtuf + ¢; (@ — it uful’)

+d; (¢, — it upul) + id,, ugul — i¢ju;“k"1

+ ¢, —irutut =0, jkl=123. (2.6¢c)

Constraints similar to (2.6) can be obtained from (2.5b).
Equations (2.6) are satisfied by

E=az'c,@(§) + a5 'epa(8,) +ai e (83)
N =az'd@,(§)) + a5 'dupy(8,) + aj; 'dps(63)

T=a5;'9(8) + a5 'e:(8) +a 'es(8) ., (27)
where

ay,=4A/(d, —d,;), (2.8)
with

A=d(c;—¢;) +dy(c;—¢3) +ds(c,—c;) (29)

and @;(£;) (j=1,2,3) are arbitrary functions depending
on the variables

Cr — G cxd; —c,dy

;- =X — + s
) d—d,° " T4 —4
bkl =123, j#k #I (2.10)
Furthermore, we have
b =pit;, 9 =puf, j=123, (2.11)
where the quantities p, are given by
1 .
pPi= ——z¢k(§k)y (2.12)
2.5

where ¢, =dp;/d¢;. The generators of the Lie-point symme-
try algebra A4 associated with the 2D-3WR equations (2.1)
can be written as

V=X(p,) + Y(p,) + Z(g;) , (2.13)
where
X(p)) =@:(61)9,, — i‘l"l(;l)(“z d,,
+ u¥ 8,4 + u, 3,,3 + u¥ 8ug,) R (2.14a)
Y(g,) = ¢’2(§2)a§z - £¢2(§2)(u, aul
+uf au?‘+u3 au3 +ug‘ au!) H (2-14b)
Z(ps) =¢3(§3)¢9§3 - ié’s(gs)(“l aul
+ u¥ au, +u,d,, +uf 8!‘!) ) (2.14c¢)
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and the operators agj are expressed by [see (2.10)]
6§j=ak_,‘(cj d,+d;d,+9,), (2.15)

where a,, is given by (2.8) and the indexes j,k,/ = 1,2,3 are
cyclic.

In what follows, we shall assume that each function
@;(£;) takes the form of a Laurent series expansion in the
argument ;. Then we restrict ourselves to deal with the sub-
algebra L of A having the basis

Xn =§’1' ag, - %ng’li_l(uﬂ?uz

+ u¥ au, +u3d, + ug‘c?u?) , (2.16a)
Y, =§3 9, —inl3 ' (ud,,
+ u¥ au?‘ +uyd,, + u3"‘8u3) , (2.16b)
Z,=¢19, — g1 w4,
+ u¥f a..f‘*‘“z 8,‘2 + u¥ au,). (2.16¢)
The commutator relations
(XX ]=(m—m)X, .,
[Y,.Y,]=(m—m)Y, ., (2.17)

[Zn’zm] = (m - n)zn+m—l ]

(X0 Y] = [XnsZn ] = [Yn:Z ] =0
hold, where n,meZ.

From (2.17) we see that L is the direct sum of the ideals
generated by {X,},{Y,},{Z,}. Each of these ideals is an
algebra isomorphic to the Z-graded algebra R[£,t —'] (d /dr)
(see Refs. 5 and 8). Since the last is a simple algebra, then L
is semisimple.’”” We notice that Eqs. (2.17) enable us to
obtain commutator relations among the infinitesimal gener-
ators (2.14), provided that any function ¢, (£;) may be ex-
pressed as a Laurent series. We have, for example,

[X(qa f”),X((p?’)] =X(¢§l)¢') gz) ——¢§”<p 52)) .

(2.18)
Equations (2.17) define an affine Lie algebra of the Kac-
Moody type.

lll. THE SYMMETRY GROUP OF THE 2D-3WR SYSTEM

In order to obtain the symmetry group of Eq. (2.1), we
need to integrate the infinitesimal symmetries (2.13) and
(2.14). In doing so, let us consider the equations

d ! ’ ’ I3 ’ ’ d ! ’ ’ ’ ’ ’

_;,%25()‘ It ulut), d—":1=77(x,y,t Ut

dt’ —_ (AP R 1) dul' (AN T 1

E - T(x Wy ol 7uj,uj )y _d7 = ¢j (-x 4 N ’uj’uj ) ’

X7 -

djl =¢(x' .yt uur), (3.1)
where

x'(0) =x, y'(0) =y, t'(0) =¢,

4 (0) =u;, u} (0) =ur, (3.2)

&n,7 and ¢,4 are, respectively, given by (2.7) and (2.9).
Now looking at (2.8) and (3.1) we introduce a set of func-
tions § /(4), such that
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Lti=pD. Sti=mh),
d (3.3)
Eﬁ =@3(53),
with the conditions
§10) =81, §;(0)=¢, £3(0)=4;5. (3.4)
The system (3.3) can be easily integrated to yield
$1(Ag) =F{'A+Fi({D), (3.52)
$1(A5) =F; A+ F(8), (3.5b)
§3(A,65) =F3_l(/1 + F5(83)), (3.5¢)
where F;~ ! is the inverse of the function defined by
&) =f ¢f’(ss) (j=123). (3.6)

Of course, the variables x’,y’,t ' may be found in terms of £ ;
from Eq. (2.8), where primes are understood. Resorting to
Eq. (3.1) and taking account of (2.10) we get

12
@ (&) (é‘ll) ] . (37)
@ (E e (E7)
wherej#k #1and x,p,t are regarded as functions of x',y",¢ ",
This set of formulas provides a new solution

{u;(x',y,¢") } of the 2D-3WR equations in terms of a known
solution {#; (x,»,¢)}.

uj(x'y',t') = u;(xp,t) [

IV. LOW-DIMENSIONAL SUBALGEBRAS
A. One-dimensional subalgebras

It is known that the group analysis of differential equa-
tions leads to the problem of classifying the subgroups (and
the corresponding subalgebras) under which certain classes
of solutions are invariant.’~* To this aim one needs to build
up the so-called optimal system 6., that is the set of represen-
tatives of the classes of s-dimensional subalgebras, L, which
are pairwise nonconjugates by the inner automorphism
group (adjoint group).' In doing so, first we construct the
system of one-dimensional subalgebras L,. Looking over the
commutator relation (2.18) and dropping the index 1 for
simplicity, from the Campbell-Hausdorff formula we de-
duce that the action of the adjoint subgroup exp[A ad X(¢)]
on X () is

exp[4 ad X(#) 1{X(¢)) =X(¢"),
where the function ¢ '=¢ (') is defined by

diﬂ C = HENREY — @ EWED,  (42)
with@ (£ )|, _o = @(£). Equation (4.2) has the solution®

(4.1)

@' (&) =@l )V/UEN), (4.3)
where
ENE) =F YA+ F()). (4.4)

Concerning Eq. (4.3), Neuman'® has shown that a function
¥(£) canbechoseninsuchawaythatg '(§ ')=1. Asaconse-
quence, all one-dimensional subalgebras generated by ele-
ments of the X(g) type are conjugated to d; =X,. Similarly,
any generator of the form Y(g,) and Z(g;) can be conjugat-
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ed to d,, =Y, and 9, =Z,, respectively, via suitable ele-
ments exp[4 ad Y(¢,)] and exp[4 ad Z(¢;) ] of the adjoint
group. However, the conjugacy classes of X,, Y, Z, do not
exhaust all elements of 8,. For example, let us consider the
one-dimensional subalgebra spanned by X(@,) + ¥(g,).
Since the generators X and ¥ commute [see (2.17)], from
the Campbell-Hausdorff expansion we obtain

exp[4, ad Y(2,) lexp[4, adX(¢1)]<X(¢1) + Y(@,))
=X+ 7%,, 4.5)

where ¥, and ¥, must be taken in such a way that
Pi(E1) =@;(53)=1[see (4.3)].

Furthermore, it is easy to show that X, + ¥, cannot be
related to the conjugacy classes of X, ¥, Z,. We can likewise
deal with the subalgebra generated by X(g,) + Z(@,),
Y(@:) + Z(@5), and X(@,) + Y(@,) + Z(@5), respective-
ly. We conclude that the optimal system is given by the con-
jugacy classes of

XO, Yo, Zo’ Xo+ Yo’ X0+ZO’

Yo+2Zy Xo+ Y, + Z,. (4.6)

B. Two-dimensional subalgebras

In order to classify the two-dimensional subalgebras L,
of the symmetry algebra, we have to determine the optimal
system 6,. Concerning this, it can be shown that only two
isomorphy classes of two-dimensional Lie algebras exist,
namely,

[UI,U2] =0 (4.7)

and

[U,U,]=U,. (4.8)
In both the cases (4.7) and (4.8), U, can be singled out
without loss of generality and identified with one of the ele-
ments in (4.6). Following a scheme analogous to that used

to derive (4.6), we obtain all the two-dimensional Abelian
representative subalgebras, i.e.,

{XO: Yo}, {X()yZO}y {YO’ZO}’ {XO’ YO + ZO} ’
{YO’XO + Zo}, {Zo,Xo + Yo} ,
which are related of course to the commutation property of

the translation generators. The non-Abelian subalgebras of
L, type can be classified starting from (4.8). They are

(4.9)

{Xo. X, + €,Y, + &7}, (4.10a)
{Y,,Y, + X, + 62Z,}, (4.10b)
{Z0,Z, + €.X, + €,Y,}, (4.10¢c)
{Xo+ Yo X, + ¥, + 6,20}, (4.10d)
{Xo+Zo. X, + Z, + €,Y,}, (4.10e)
{Yo+2Z,Y,+ Z, + €,X,}, (4.10f)
Ko+ Yo+ Zp X, + Y, +Z,}, (4.10g)

where the parameters €,,€, can take only two mutually non-
conjugate values (0, or, say, 1).

It is worth noticing that the algebra (4.10g) is endowed
with the generator of the scale transformation
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S=X,+Y,+Z =60, +6,9, +6:9,,

— (%3, +u}d,) (4.11)

(7= 1,2,3). We point out also that this algebra can be re-
garded as a subalgebra of the algebra L4 formed by the gener-
ators Xy, Y, Zos X, Y,Z, [see (2.16)]. Here L is a solvable
six-dimensional algebra that admits the semidirect decom-
position’

Le={Xo Y0 Zo} & {X,Y,,Z,}

with the Abelian ideal N = {X,,Y,,Z,}. It contains all the
infinitesimal transformations of straightforward physical
meaning, as, for example, translations and dilatations.

V. 2D-3WR EQUATIONS COMING FROM SYMMETRY
REDUCTION

Here we study the reduction equations of the 2D-3WR
system (2.1), which can be written in the simple form

Ay —— U; = iuuf, (5.1)

J

whose solutions are related to solutions that are invariant
and partially invariant under the subgroups of the subalge-
bras discussed in the preceding section. To achieve this goal
we use some mathematical notions with which the reader is
supposed to be acquainted. Anyway, one may consult some
basic references (see Refs. 1-3). We recall that the proce-
dure of symmetry reduction consists essentially in finding
the invariants of a given subgroup of the symmetry group
admitted by the differential equations under consideration.
In order to apply the reduction technique to the 2D-3WR
interaction, let us begin to analyze the invariants of the sub-
groups of the one-dimensional subalgebras (4.6).

A. Case I: reduction from one-dimensional subalgebras

Let us deal with one of the symmetries (4.6}, say Z,,. A
basis of invariants of the subgroup exp[4Z,] can be deter-
mined by the partial differential equation

9o,

955
which is fulfilled by an arbitrary function of the eight inde-
pendent solutions

11*_’;1, 12=§2, 12+j=uj, I5.+j=uj-", j=1,2,3
(5.3)

We observe that each solution of Eq. (5.1) can be re-
garded as a six-dimensional manifold U defined by

# — i (§1,6263) =0, w¥ —ur($,6285) =0, (5.4)
in the space Z.

Now if we require the invariance of the manifold U un-
der the subgroup exp[42Z,], we have that Ulis given implicit-
ly by six equations involving invariant functions only. These
equations can be solved with respect to six new variables,
which depend upon two invariants. Since we would express
U in the explicit form (5.4), the rank of the matrix
9(U,,....I3) / (uy,...,u$) has to be 6. Of course, this condition
is verified for the basis of invariants (5.3). Thus we can in-
troduce the new variables v, =1, , ,w¥ =1, ; (j=123)

(5.2)
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as functions of the independent variables §, =1, and
§, = I,. Furthermore, the functions u;, u¥ can be trivially
written in terms of v; and v}*. Hence, recalling that #* is the

complex conjugate of u;, Eqs. (5.1) provide

oy L — it | (5.52)
1

oy 22 = ior (5.5b)
2

vy =0. (5.5¢)

This system admits three classes of solutions, i.e.,
{O,O,U3(§1,§2)}, {v1(§2)’0’o}1 {O,U2(§1),0} ’ (56)

where the v;’s are arbitrary functions.

The symmetries X, and Y lead to similar results.

Now let us consider the operator Y, + Z,. Following an
analogous procedure, we have the basis if invariants

L=¢, L=§—%5 L,.;,=u, I, ; =uf, j= 1,2,3.

(5.7)
Thus, the reduced system reads
an = itot, @y 22 =ivter,
dt, 3¢,
(5.8)
a 20—3 = — ¥v¥
12 - 192 »
95,

where v,=v,({,{, —§;). Finally, for the symmetry
X, + Y, + Z, we obtain the set of invariants

Il=§1“§3’ Iz=§2"§3, 12+J-=uj,
15+j= _;l‘y ]:1,2,3

The reduced system becomes

dv .
1 ; 2 _
Ay — = WFVUY, a3 —= =iy,

96, 3¢, (5.9)
93 _‘9_”3) = _ jy*u*
a”(ag, + c9§2 vy,

where v,=v,(§, — £, 82 — &3).

The systems (5.8) and (5.9), which can be investigated
within the prolongation scheme'®*® and the inverse spectral
transform®'® may furnish new solutions of the original 2D-
3WR equations.

To conclude this section, we write down an interesting
reduced system coming from the scale symmetry (4.11),
which leads to the invariants

I =8/6=z,, L=§,/5=2, I =uls,

I*=urt, j=123. (5.10)
From (5.11) we obtain
T3 = Wi, as 0.,_v2‘ =iy,
z
! “ (5.11)

a[z(z1 9y + z, o + v3) = — k¥,
9z, dz,

The system (5.11), which has nonconstant coefficients,
has been studied in the framework of the prolongation the-
ory.'* It allows a linear eigenvalue problem and can be inves-
tigated in the context of the inverse spectral transform.
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B.Case ll:reduction from two-dimensional subalgebras
1. Subcase (a): Abelian subalgebras

Let us consider the subalgebra {Y,Z,}. The invariant
solutions related to this algebra must satisfy both Egs. (5.5)
and the reduced system corresponding to the symmetry Y,
simultaneously. This implies that the resulting system ad-
mits the solutions

{0,0,(£,),0} and {0,05(5))}, (5.12)

where v,, v, are arbitrary functions. On the other hand, the
algebra { ¥, + Z,, X, } gives rise to a reduced system formed
by Egs. (5.8) and a set of three equations of the type (5.5).
This system affords the solution {v, (¢, — £3),0,0}, where v,
is an arbitrary function.

2. Subcase (b): non-Abelian subalgebras

Let us consider, for example, the subalgebra (4.10c). A
basis of invariants of the subgroup of this subalgebra is fur-
nished by the equations

oI _y, (5.13a)
95
3 F) F)
——+E —
ARl
1/ 9 3 3 3
Y A w2 4 u I=o.
2(“‘ u, T G T, T au;)]
(5.13b)

First let us deal with the case €, = €, = 1. Then we find

/2 — 2 p— /2
I,=6—¢ L =u e Iy = utet”?, I, = u,e*?,

§|/2’ 16 — u3, 17 — u3* . (5-14)

I = u¥e
Taking account of (5.14), Egs. (5.1) yield
dv, 1 ) .
Ay — + — v, | = — ivfv¥,
23(84_2 2 1 2Y3

% —
v =0,

(5.15)
W2 _ s,
2
where v, =v;(§, — §1).
A simple solution of Eq. (5.15) is

{Ul,o exp[ — (4, — §1)],O,O},

where v, , is a constant of integration.

The case €, =0, €,=1 (or €, =1, &, =0) provides
analogous results, while for €; = €, = 0 we are led to solu-
tions of the 2D-3WR equations that are partially invariant
under the subgroup, say H, of the given subalgebra, in the
sense that their manifold U is a partially invariant manifold
of H (see Ref. 1, Chap. VI).

The algorithm that can be exploited to determine par-
tially invariant solutions of a system of differential equations
and the conditions assuring their existence are well estab-
lished (see, for instance, Ref. 1, Chap. VI, p. 22). In our case,
from (5.13) we get the basis of invariants

I, =§, L,=§, ILi=u/uf,
IS = uz/ul, I7= u? >

so that the rank of the matrix d(1,,...,I,) /3 (uy,...,u¥) is 5. As
a consequence, the defect § (see Refs. 1 and 2) of any solu-

as;

14 = uz/u; >
(5.16)
16 = u3,
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tion u € U turns out to be 1. This assures that u exists as a
partially invariant H-solution (see Ref. 1, p- 283).

Setting v, =15, v,=1I, vi=1I;, v,=1I, where
v, = v;($1,5,), from Eq. (5.1) we obtain
U, = 0 (5 17)

and, according to the choice (i) u,#0, 4, = Oor (ii) u; =0,
u,#0, we deduce that v,=v,(§,) and v,=v,(§,), respec-
tively, where v, and v, are arbitrary functions. We conclude
noticing that in both cases (i) and (ii) we have u, =0.

Furthermore, in correspondence with the choice (i) or
(i), we have that u,=u,(£,,{5) with

u1(52,63)/ut (52,63) =v1(83) (5.18)
or u,=u,({;¢3), with

uy(£1,63) /U3 (§183) = v,(61) - (5.19)
The relations (5.18) and (5.19) imply, respectively,

uy=,(&x83)explifi(52) ], (5.20)

uy = ,(§1,63)explifa, (S 1, (5.21)

where the (real) functions #; and f; are arbitrary. We re-
mark that #, and u, become invariant under H in the special
case in which they are independent from &.

A basis of invariants 7 of the subgroup of the subalgebra
(4.10f) arises from the equations

J a)
9 L9V 0, (5.22a)
(3§z 955
9 3 P
_—+ —_— —
Lﬁléxfé%
1 3 J
LY CT A 9
(“‘au1+ Yo o,
3 P 3
s 9 L, 9 e I=0. (522b
+ u; 3‘2"+u33u3+u3 (9113‘)] ( )

We get
I, = (& —&)exp( — §y/eN=z, L=u({,—¢3),
L=u¥X($,—8), Li=u(l,—E5),
L= 36— 6, Li=u5(5, -8,
L= w6 —§5) -
If v,(2) = L,, v,(z) =1,, and v5(z) = I, the reduced

2D-3WR equations coming from the subalgebra (4.10f)
read

(5.23)

0232%”2—1= — ie, (v¥v¥) V2, (5.24a)
al)z o *y1/2

as, z%? — v, ) =2ivE (v o), (5.24b)
aus T2y (9% 1/2

aq z—a; —v3) = — 2iv¥(v¥v,) c. (5.24¢c)

We shall discuss this system for the nontrivial case ¢, #0
elsewhere."

A notable set of reduced equations is found from the
solvable subalgebra (4.10g), where the explicit form of the
scale generator is furnished by (4.11). The invariants I of the
subgroup of (4.10g) can be written solving the equations
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a J d
G+ =" 529
[;1%‘*‘;232‘;"‘;3%_“}5%_“}* ai* ]I=0’
(5.26)
which yield the basis
I = (5, —63)/(& — §) =2z,
L=u(51—8), Li=u§~63), (5.27)

Li=u;(6,—83), Ls=ut(5,—43),
Is=u3(5,~§3), Li=u¥(—65).
Introducing the variables

v (2)=1/2, vy(z)=1,, v,(z2)=(1—-2)I;/z,
(5.28)
the 2D-3WR equations take the form
v, v¥v¥ v, vty
“ % T Ta-a & -9
' 2 (5.29)
A, vfv¥
Ap——== — .
9z z

We point out that Egs. (5.29) coincide with the scaling
reduction obtained for the 3WR equations in one spatial and
one temporal dimension. Furthermore, if we consider imagi-
nary solutions only, the system (5.29) is reducible to an
equation related via a one-to-one transformation to the Pain-
levé VI equation.**

VI. CONCLUDING REMARKS

In this paper we have carried out a systematic group
analysis of the three-wave resonant equations in two spatial
and one temporal dimension. The results of our investigation
show that the 2D-3WR system shares many features with
other nonlinear integrable partial differential equations of
physical significance in (2 + 1) dimensions, such as the Ka-
domtsev-Petviashvili, Davey-Stewartson, and modified
Kadomtsev—Petviashvili equations.>”’ In fact, all these
equations admit infinite-dimensional symmetry groups
whose Lie algebras contain arbitrary functions and involve,
as a particular case, Kac-Moody type algebras having a cru-
cial role in the theory of integrable systems.

Concerning the 2D-3WR equations, we have found the
connection between one- and two-dimensional symmetry
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subalgebras and reduction equations, which provide new so-
lutions of the original system. Among these, Eqs. (5.11) and
(5.29) deserve a special mention. The former is a nonlinear
partial differential system in two independent variables and
with nonconstant coefficients coming from the scale gener-
ator. It allows a linear spectral problem that has been derived
using a prolongation procedure.’* The latter is related to the
Painlevé VI equation via a one-to-one transformation. Other
reduced equations arising from our analysis, which seem
new at the best of our knowledge, are (5.24). These will be
considered in a forthcoming paper. !4

We conclude by noting that a natural continuation of
the present work is the search for the generalized symmetries
of the 2D-3WR equations and their algebraic properties.
This program will be dealt with in the near future.
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The Titchmarsh-~Weyl theory is applied to the Schriédinger equation in the case when the
asymptotic form of the solution is not known. It is assumed that the potential belongs to the
Wey!’s limit-point classification. A rigorous analytical continuation of the Green’s function,
obtained from the solution regular at the origin and the square integrable Weyl’s solution
(regular at infinity), to the ‘“‘unphysical” Riemann energy sheet is carried out. It is
demonstrated how the Green’s function can be uniquely constructed from the
Titchmarsh-Weyl m-function and its Nevanlinna representation. The behavior of the m-
function in the neighborhood of poles is investigated. The m-function is decomposed in a, so
called, generalized real part (Reg) and a generalized imaginary part (Img). Reg(m) is found
to have a significant argument change upon pole passages. Img(m) is found to be a generalized
spectral density. From the generalized spectral density, a spectral resolution of the differential
operator and its resolvent is derived. In the expansion contributions are obtained from bound
states, resonance states (Gamow states), and the “deformed continuum” given by the
generalized spectral density. The present expansion theorem is applicable to the general partial
differential operator via a decomposition into partial waves. The numerical procedure involves
all quantum numbers / and 1, but for convenience, and with the inverse problem in mind, this

study is focused on the case when the rotational quantum number equals zero. The theory is
tested numerically and analyzed for an analytic model potential exhibiting a barrier and
decreasing exponentially at infinity. The potential is Weyl’s limit point at infinity and allows
for an analytical continuation into a sector in the complex plane. An attractive feature of the
generalized spectral density of the present potential is that the poles close to the real axis seem
to exhaust or deflate the above-mentioned density inside the pole string. Qutside this string the
density rapidly approaches that of a free particle. This information is used to derive an
approximate representation of the m-function in terms of poles and residues as well as
free-particle background. In order to display the features mentioned above, the present study is
accompanied with several plots of analytically continued quantities related to the Green’s

function.

I. INTRODUCTION

In a scattering experiment one is interested in the out-
come of the interactions between colliding particles as mea-
sured, for instance, by the velocity dependence of the appro-
priate cross sections of the various processes.

An important feature of the theoretical description of
the scattering experiment lies in the possibility of relating
observed cross-section data with details of the interaction. In
this analysis, short-range properties of the potential as well
as long-range and background effects are found to be related
to bound and quasibound states formed by the partners of
the collision. And, conversely, the spectral density related to
the physical process defines the potential uniquely.!

Even though atomic and molecular scattering theory is
in a relatively privileged position from the viewpoint of rig-
orous foundation and applicative power, there are neverthe-
less open problems that need attention. One such problem is
related to the question of how to decompose a cross section
into resonance contributions and background effects. In a
wider context this problem concerns a generalization of the
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Hamilton-Liouville time evolution generators to the com-
plex energy or k-plane. Generalized spectral properties as
well as spectral expansion theorems are therefore needed to
analyze and classify the dynamics of the colliding system.

In a previous study,” we gave a formulation of scattering
theory in terms of the classical Titchmarsh-Weyl theory.**
We paid particular attention to the connection between var-
ious spectral densities and the scattering cross section. In
addition to an asymptotic analysis of the densities, we also
demonstrated how the resonance contribution could be
uniquely defined and numerically calculated.

In order to extend the formulation, we will here devote
attention to the following developments: continuation of the
partial wave Green’s function to the second Riemann sheet;
evaluation of the generalized spectral density on the second
sheet; analysis of the various generalized imaginary and real
parts of the Titchmarsh—-Weyl m-function; the Nevanlinna
representation of the Titchmarsh—Weyl m-function and the
associated Green’s function; analytic extension of the
Green’s function based on the Nevanlinna formulation; de-
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flation of the generalized spectral density and the behavior of
the background contribution; and treatment of potentials
with laborious tails, i.e., when the asymptotic form of the
solution to the associated differential equation is unknown.

Since the formulation of the inverse problem in scatter-
ing theory is focused on the spectral density, the present
generalization offers several possibilities. In addition to an
analysis of the analytic properties of the interaction poten-
tial, it is also possible to use the generalized expansion tech-
niques treated here to solve the Gel'fand-Levitan®¢ and
Marchenko”® equations in connection with the inverse prob-
lem in a sector of the complex plane.

Il. PRELIMINARY DEFINITIONS AND NOTATIONS
A. Definition of the appropriate Green'’s functions

Since the present investigation aims at the analytical
properties of the differential equation and its associated
Green’s function we will give a rather detailed preliminary
account of the actual equations. The starting point is the
time-independent Schrodinger equation

(E—Hyy=Vy, (2.1)
where
2 2
Hy(r) = # — V>4 Vo(r) and E= 7k , (2.2)
2,u 2u

with the boundary condition of regularity of #/(r) at the ori-
gin. Asymptotically, #(r) then behaves as

Y~ + f(Q)e*/r, (2.3)

Wesolve (2.1) formally by introducing the Green’s function
defined by

|l'|—>oo .

(E—Hy())G (r—x)=6(r—1"),
G *(r —r') ~outgoing waves for r’ fixed,
G*(r—r)—0 for v fixed, |r|—0.

rl—>w,

(2.4)

Using (2.4), the formal solution is

¥(r) = @(r) +fdr’G+(r—r')V(r')¢(r') (2.5)

Equation (2.5) is an integral equation for (r), where
@(r) is the plane wave solution of the homogeneous equa-
tion

(E—Hy)p=0. (2.6)
We decompose G * (r — #') into partial waves, as is usually
done, in the form

G*(r—r’):E%

1
Grnr)y 3 YHQ) YMQ).

[} m= —1
2.7
Inserting this in (2.4) we get
1
DS (E—H,(r))zh—"z‘G(r,r’)YT(ﬂ) Y
I m= —1
=6(r—r'), (2.8)
where
# 1 d? l(l+1))
H = _ = - 7 . .
.7 2#( TGRS P ACHEL)
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Noting that
]

>3 YR YRW)

I m= -1

1
= z z (QlIm){Im|Q¥) =6(Q —Q),
I m= —1
we find
Qu/fPNE — H,(N)G [+ (rr) =8(r—r)/r. (2.11)

For convenience we extract some constants from H, (r) by
defining

(2.10)

H #w #
(1) =—0L,(r) and Vy(r) =—U,(r), (2.12)
2u 2u
with
1 4* IJ+1)
Li(r)= s r +—= > +Uy(r).  (2.13)

The partial wave Green’s function in (2.8) now satisfies

A—=L)G () =6(r—r)/P, (2.14)
where the energy parameter 4 is given by
A=k?= Qu/#)E. (2.15)

For atomic units we instead get the connection A = 2E.
Equations (2.12) and (2.13) can be simplified to the follow-
ing expressions:

A=L)G [ (rnr)=58(r—7) (2.16)
and

» d> lU+1)

Li(ry= —— Uy(r), 2.16'

(7)) dr2+ = + Uy(r) ( )
upon defining

@f“ (nr)=r'G/ (rr). 2.17)

Since G * (r,r') with ¥ ﬁxed should be regular both for
r—0and r— 0, we find that G * (r,#") must be proportional
to ¢, (r_)x/t (r. ), where ¢,(r) is regular for 0 and
¥t is regular for — o0 . Replacing the outgoing y* by
the ingoing y; we trivially get G ; -Herer_andr_ arethe
smaller and the larger of r and 7, respectively.

Alternatively, the Green’s functions G * can be ob-
tained from the operator resolvent (A + ie — L,) ! asso-
ciated with the differential operators (2.12) or (2.16), viaan
appropriate limiting procedure.

The proportionality constant is easily determined by in-
tegration of (2.16) over the junction point r =/ and is
found to be the reciprocal of the Wronskian between ¢, (r)
and y,* (7). Thus we get

G (nr') =t (r xit (r Y W(hyt) (2.18)
In the free-particle case [ U,(r)=0], this reduces to
G (rnry=J,(r YR r VWA, (2.19)

where J, ( p) and h [t ( p) are Riccati-Bessel and Riccati-
Hankel functions, respectively.

Above we have discussed the free-particle Green’s func-
tion, i.e., G, and its generalization with the presence of a
reference potential U,,. In what follows we will let U,=0 and
consider the Green’s function incorporating the actual inter-
action potential U = (#*/2u) ' V. This Green’s function
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will assume the same form as the one in (2.18).

Before we proceed to an investigation of the analytic
properties of G ™ and associated generalized expansions, we
will first briefly discuss the classical Titchmarsh-Weyl the-

ory.

B. The classical Titchmarsh-Weyl theory

To set up the framework for the analytical extension, we
consider the radial Schrédinger equation in the form

_d? l(l+1))_ ) _
( dr2+(U(r)+—-—-———-—r2 Ally(ry=0.

We have dropped the subindex / indicating the rotational
quantum number. In order to treat bound states and the
continuum in a unified way, we will here first assume 4 to
contain a nonzero imaginary part.

We define two linearly independent solutions ¢ and ¢ by
the left boundary conditions at a point » = a in the interval
(0,00):

((p ¢') _( sin a cosa)
@' ¥)—a \—cosa sina/’
If the potential is less singular than the Coulomb potential at
the origin, a can be chosen zero without loss of generality.
However, in general, and this concerns the Coulomb poten-
tial even if the latter is limit circle at » = 0, 4 must be differ-
ent from zero, with the angle o chosen in the interval ( — 7/2,
7/2) such that () is regular at the origin. The logarithmic
derivative of #(r) at the point r=a is then ¢'(a)/
Y(a) =tana.

Provided special care is exercised, the limit a—0 can be
taken in the final spectral density.” Furthermore, one usually
assumes — 7/2 <a <7/2, but the limit ja]—>#/2 can also
be taken.” ™

Any solution to (2.20), except ¥, can be written in the
form

¥ =) +yY(r)m(E). (2.22)

We do not worry about the overall proportionality con-
stant here since it is only the logarithmic derivative that re-
lates to the quantization condition via suitable boundary val-
ues. One important thing to observe is the possible existence
of a pole in m occurring when y and ¢ satisfy the same
boundary conditions in the limit of real A. The m-coefficient
in (2.22), which will be uniquely defined below, will be seen
to be intimately connected to the spectral density associated
with (2.20).

We now impose the following real right boundary con-
ditionony{(r)atr=»5b>a:

cos By (b) +sinBy'(b) =0, (2.23)
for some 3, where — w<B<7. Using that £ is real implies

(2.20)

(2.21)

Im(y'/y),., =0. (2.24)
Introducing the square bracket notation

[uv] =uv —u'p, (225
(2.24) can be rewritten as

lxx1(6) =0. (2.26)
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Inserting (2.22), this can be transformed to a condition on
m:
(log 1 + mlyp ] + mlpy] + mm[ygy]),_, =0.
2.27)
After using Green’s formula and the relation [yg]

= — [@¢], this condition on m can be shown to force m to
lie on a circle in the complex plane with center

C, = — [@¥1(b)/[¢9](b) (2.28)
and radius
R, = 1/|[¢y](b)]. (2.29)

Upon using Green’s formula, it is a simple matter to show
that

b
[¥] (k) = 2i Im(A) fo ¥ dr

goes to infinity for Im(A4) #0, in the limit-point case, which
includes most potentials of physical interest. A sufficient cri-
terion for a real potential to belong to this classification is
given, for instance, by Ref. 10 as

V(r)> __K’,Z’

for every r>r, and some K > 0.

In the numerical applications, the POP ratio (phi over
psi)

POP(r) = @(r)/¥(r) (2.32)

is computed. Provided the unique square integrable solution
X (r) vanishes at infinity, in the limit-point case, the POP
ratio converges to — m(A) as r-> oo if Im(4)#0 (see Ref.
11). We will refer to such a procedure as the use of the POP
method.

For pathological cases, the limit-point solution y(7)
may not go to zero at infinity.'” However, if i’ is also square
integrable, then y(7) must necessarily vanish at infinity,'?
and the POP method is applicable. If ¥ is not square integra-
ble, more general techniques as previously discussed in Ref.
11 must be applied. In what follows we will assume that both
y and ¥’ are square integrable on the interval [a, 0 ).

The circle procedure, and, in cases when y' is square
integrable, the POP method, can be used to calculate the
wave function and the associated spectral information with-
out explicit knowledge of the asymptotic form of the differ-
ential equation.

It can be shown that m(A) is an analytic function of
Nevanlinna type {see below) whose imaginary partis a spec-
tral density that will occur in the completeness relation

(2.30)

(2.31)

S(r—1vr) =f V(o) (o,r)dp(w) , (2.33)

where

plw,) —p(wy) = lim if)z Im(m(A +ie))dA . (2.34)

>0t T
The function y*°F obtained is of either outgoing or ingo-
ing character depending on the sign of Im(A4). This can be
visualized by the following argument.

Let us for simplicity assume that 7¥(r)-—»0 when 7— 0.
Any solution to (2.20) is then asymptotically a linear combi-
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nation of outgoing and ingoing Jost solutions. (In the case of
the Stark effect, these solutions would instead be Airy func-
tions of exponential type.) We then get

y(r) ~A exp(ikr) + Bexp( — ikr) . (2.35)

For energies A (on the first Riemann sheet) with
Im(A) >0, we have Im(k) and Re(k)>0, and the second
exponential blows up for 7— . However, ¥*°F is square
integrable on the interval [a, o ). The POP method therefore
inherently chooses the purely outgoing solution for those
energies. Conversely, for complex energy values, with
Im(A) <0, the POP method gives the purely ingoing solu-
tion. In the general limit-point case, the concepts of in- and
outgoing waves must be interpreted in an extended sense.
Symbolically we get

+
XPOP___{X , for Im(1)>0, (2.36)

- ¥~ , for Im(4)<0.
For the m-values obtained by the POP method, we similarly
have
mt(A4), for Im(1)>0,
m—(A), for Im(1)<O0.
It is possible to let the energy A approach the continuum
part of the real energy axis.'*> However, y*°F i

mPP(1) = { (2.37)

is then no long-
er square integrable, albeit finite at infinity. Care must be
taken as to which side of the real energy axis the limit is taken
from. Compare, for instance, the corresponding probiem of
approaching the cut of the Green’s function.

As can be seen from (2.35), the solution obtained by the
Titchmarsh—-Weyl-POP method (corresponding to the
point limit of Weyl’s circle) is square integrable on the inter-
val [@,c0 ). For Im(4) <0 (on the “unphysical” Riemann
sheet), one notices that the corresponding outgoing waves
are no longer square integrable.

Furthermore, this defines a unique formal solution to
(2.20) that corresponds to a diverging outgoing Gamow
wave. This boundary condition leads to the occurrence of
complex eigenvalues. On the first sheet the spectral density
occurring in the completeness relation (2.33) is, of course,
confined to the real axis in agreement with the self-adjoint
nature of the differential operator. Hence, when treating di-
vergent waves associated with complex energies the compu-
tational procedure no longer converges to the desired solu-
tion. This problem, however, can be solved by a simple
complex scaling trick.

Although the idea here is to find m even if the asympto-
tic form of the solutions f T is not known, it is easy to obtain
the connection between m and f ( 4- branches not de-
noted). This connection has been given many times, see, e.g.,
Ref. 13. For ¢ = #/2 one gets

m=f'(JA ,a)/f(J4 ,a) . (2.38)
From this relation the spectral density exhibiting the proper-
ties of m(A) can be found.

IIl. DILATED VERSION OF THE TITCHMARSH-WEYL
THEORY

To carry out the appropriate analytic modifications, we
first consider Eq. (2.20) for complex radial distances #':
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2

dr* r?

In (3.1) we have assumed the real potential U(r) has an
analytic extension to some sector in the complex plane,
which, according to the Schwartz reflection principle, ful-
fills

uery= u(r),
for complex values 7.
At the starting point 7 = a’, we define two linearly inde-

pendent initial value solutions ¢ and ¢ by the boundary con-
ditions

(¢> 1/:) _( sin cosa)
¢ V¥)r-o \—cosa sina/’

If the starting point # = a’ is chosen nonreal, the angle
is nonreal in general. This somewhat more complicated situ-
ation will be treated in a later article. Here we restrict a’ to be
real, @’ = a>0, ensuring the initial value matrix in (3.3) to
be real. In the present numerical applications, / is chosen to
be zero (and g = 0) for convenience.

At this point it is suitable to introduce complex scaling.
If a is positive, we are led to the utilization of exterior com-
plex scaling.'*'¢ Otherwise, if a = 0, as in our numerical
investigation, we invoke uniform complex scaling.

Wenow consider (3.1) along theray 7 = a + 5(r — a),
where 7 is a real radial distance coordinate and 7 = |7|e®
(6>0), the complex scaling parameter. In what follows, r
belongs to the interval [a, ). Rewriting (3.1) using the
definitions

Xq(r)=xla+n(r—a)) and r,=a+n(r—a),
3.4)

(3.2)

(3.3)

we arrive at

d? I(1+1)
(—E—r;-i-(an(r,,) +772——r2——)—772/1)1,7(r) =0,

7
(3.5)
where the differentiations from now on refer to the real coor-
dinate r.
Noting that
dy(r)

» (7) =77( - ) )
Xn dar v =a+n(r—a)

and similarly for ¢ ;, (r) and zﬁ;, (r), the boundary condition
(3.3) assumes the following form:

(3.6)

(‘177’7 ’/’7> =( sin a cc')s a). (3.7)
¢J11 1p-q r=a —7ncosa mMsma
Imposing now the boundary condition

(Xnx41(8) =0, (3.8)

for y, (r) at r = b, we find in parallel with the real case that
m must lie on a circle in the complex plane with center

Co = — [@,9,1(0)/[¥,4,](B) (3.9)
and radius
Ry = 1/|[¥y¢, 1(D)] . (3.10)
The formula corresponding to (2.30) is then
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[¢,¥,1(0) = [¢,¢,](a) + 2if Iz//,,lz(lm( 7°A)

— Im(an(r,,) +7? L(—l-;:—l—)—))dr. (3.11)
7

We note that Im( 57?4) is the distance (including sign) from
the ray 7~ 2R * in the complex energy plane.

We further note that (3.11) differs from (2.30) in the
occurrence of the imaginary part of the effective potential in
(3.5). This may perturb the convergence properties of
Weyl’s circle in the complex plane. For the model potential
used in our study, the additional potential terms just men-
tioned will be dominated by the Im( 7?4) term provided
Arg( ) <m/2. We therefore realize that the radius of
Weyl’s circle will shrink to zero provided the energy does not
belong to the rotated cut 7 2R *.

After complex scaling, the equation corresponding to
(2.35) is now

Xq(r)~4 exp(iknr) + B exp( (3.12)

The sign of Im(k7), or equivalently the sign of Im( 7°4),
determines the behavior of the POP method where the modi-
fied POP ratio

POP, (r) =@, (r)/¢, (1) (3.13)
is computed. By an argument similar to the real case, we get

— ikyr) .

+ for Im( 7°4)>0,
XEoP = [X ’ 7’2 (3.14)
X, » for Im( 7°1) <0,
and for the m-values
+ 2
POP m*(4), for Im(n°1)>0,
= 1
my " (4) {m“(i), for Im( 7°4) <0. (3.15)

Furthermore it follows that y " and y, are square integra-
ble on [a, ) as long as A does not lie on the rotated cut
77 2R *. A sufficient condition for the radius R, >0 as b— oo
is then that the integral in (3.11) diverges to infinity.

IV. GENERALIZED SPECTRAL EXPANSION OF
GREEN’S FUNCTIONS AND THE RESOLUTION OF THE
IDENTITY

A. Spectral expansion over real energy states

We will now derive a spectral resolution of the Green’s
function (2.18). In addition to dropping the subindex /, we
also temporarily suppress the coordinate dependence of the
Green’s function. The resulting equation can also be looked
upon as a resolvent operator expression. One can then write

’G\g+(/{)__..J‘bo __dM

A+i0—w
_E ResG+(/1 ) +f°° [d#(w)/dw]dew
A+i0—4; o A+i0—w

A#d. (4.1)

In order to interpret (4.1), we will compare this formula
with (2.18) of Sec. IT A. This is easily done by letting A
approach the real axis. Let us for the moment take A real and
indicate the limit from the upper part of the complex plane
byA + i0. As will be seen below, the resolvent representation
is based on an analytic representation of Nevanlinna type.
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As a consequence both Res G+ (A) and d7(w)/dw (@>0)
are real quantities. Now we extract the imaginary part of
(4.1) by using the well-known distribution formula

1 1
—P — s —w), 42
el “2
obtaining
ImG*(4) = —77(‘1%(“’)) : (4.3)
dw w=A
From (2.18) we also get, using y* =¢ + ¢¥m™* and
W(gy) = 1, that
Im 6,+ (rr)y= —Im(y(r_)y*(r.))
= — (NP )Im(m™), (4.4)

where the notations 7 . and 7 have been dropped since they
occur symmetrically. We have used here that @ and ¢ are
real since the differential operator as well as the energy is real
and the initial conditions are real by construction. We now
rewrite (4.1) in the coordinate representation, using (4.3)
and (4.4) to the form

a+(/1;r,r’) _ 2 V(AN YA, /(Y (A) |[Y(4;))
y A+i0—24;
n * Ww,r)Y(o,r) (1/m)Imm™ (0))do
[} A+i0—w
* Ylor)P(or )dp(w) (4.5)
—w A+i0—w
where
8o —4;)
_—  —  for 0,
b _ | > Wy O “6)
do 1 for w>0.

— Im(m™* (®)),
T

Using (2.18) and (4.1) we further find that the residue parts
occurring in (4.1) are related to the normalization of the
bound states. By letting the operator (4 + i0 — L) work on
(4.5), we immediately conclude that the spectral density in
(4.6) is exactly the one occurring in (2.33).

As a general remark it is also possible to relate (4.6) to
the Kodaira form needed, for instance, in the Gel’fand-Levi-
tan equation for the inverse problem. In this case one finds
that

dp(®) _
do | fi(K))?

where f;(k) is the well-known Jost function. See, for in-
stance, (1).

k2!+1

for >0, k’=ow, 4.7)

B. The Nevanlinna representation

It is obvious that the Green’s function previously dis-
cussed is uniquely defined once the Titchmarsh-Weyl m-
function is known for all energies. However, in order to ana-
lytically extend the Green’s function [or m(A)] it is
necessary to study the appropriate analytical properties in
more detail. From the Titchmarsh—Weyl theory, it can be
shown that m (A1) belongs to a class of functions said to be of
Nevanlinna type. We will here briefly give the definition.

Engdahl et a/. 2633



A function f{(z) is said to be of Nevanlinna type if it
maps the upper (lower) complex half-plane onto itself. It is,
of course, assumed that f(z) is Cauchy analytic in each half-
plane with possible singularities on the real axis. Further-
more the theory of Nevanlinna functions leads to the exis-
tence of a uniquely defined function (), called the spectral
function of f(z). For general properties of o(w), see Refs. 9
and 17. For an example see Fig. 1 where a suitable integra-
tion contour for the Cauchy representation of f(z) is dis-
played. From this it is easy to show that f(z) can be written
in the form

flz) = — EJZ Rfff(? +L % ”)In;f(_wznt 0)dw
=r dote) (4.8)
where e
do(@) S —Resflz)8(0—2), for 0<0,
- (4.9)

do L imflo +i0), for ©>0.
w

In addition, the Nevanlinna property defines o(w) as a
nondecreasing function of w. It is required that | f(z)|—0
sufficiently fast for |z|— o so that the contribution from the
circie Cy vanishes for R—c0.

A good candidate for this representation is
SA) =m(Ad) — myg,. (1), where the free-particle m-func-
tion is given by m,.. (1) = iy . Here we restrict ourselves
to the case / =0 and a = 0, although the general Green’s
function formula that we will obtain can be found for any
rotational quantum number /. Hence we get

m(A) —iJT:z__._._lzes ’”/1( )
7 j

7

r’ (1/m) (Im(m™* (@) — Jo)dw
+
o w—A

=r do(@) (4.10)
o w—A
where
do(w) = dp(w) — dpg. ()
_ {dp(w) —dQw*?/37), for w>0, @.11)
"~ ldp(w), for w<0, '

with p(@) given by (4.6).

FIG. 1. Integration contour for
the Cauchy representation show-
ing the necessary deformation

X X T —————
around bound states and the cut
along the positive real energy
axis.
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C. Deformation of the integration contour in the
Nevanlinna representation of m(1)

We are now going to deform the integration contour in
(4.10) fromw = 0to w = oo and therefore we need the ana-
lytical continuation of Im{m* (@)) occurring in the spectral
density.

From the analysis of Sec. III we also assume that the
relations (3.14) and (3.15) are valid. This means that the
pair of functions m™ (1) and m ™~ (A) have analytic contin-
uations onto a higher-order Riemann sheet. If m* (1) and
m~{A) are nonreal for real energies, their respective imagi-
nary parts differ only by their signs in agreement with the
Nevanlinna character previously discussed. Hence, for real
energies we realize that

Im(m* (1)) = (m*(A) —m~(A))/2i. (4.12)

The analytic extension Img(m™ (1)), here called the
generalized imaginary part of m™ (1), is then immediately
given by the left-hand side of (4.12). When we deform the
contour in the way shown in Fig. 2, we must take care of the
residues of Img(m™ (1)) at the resonance energies corre-
sponding to Gamow waves. The residue contributions corre-
sponding to resonances will appear together with bound
states, as can be understood from the figures. Since m~ (1)
has no poles in the lower half energy plane [m~ (1) is by
definition evaluated on the first Riemann sheet], the for-
mula (4.12) immediately gives

Res(Img(m™ (1)) = Res(m™ (1))/2i . (4.13)

From the analytic information above the following gen-
eralized Nevanlinna representation holds:

— Resm(4;)
mA) —iJji =¥ ———1°
,Z A=A
(1/7) (Img(m™* (w)) — Vo )dw
+ ,
c w—A

(4.14)

where C'is the positive real axis rotated downwards twice the
argument of 7.

D. Spectral expansion of the Green’s function with
deformed integration contours in the complex energy
plane

We are now going to deform the integration contour in
(4.5) in the same way as we did in the generalized Nevan-
linna representation (4.14). Thus we also need the analytical
continuation of the wave function product ¥ (w,r)¢¥(w,).

FIG. 2. Integration contour for the
Cauchy representation showing the nec-
essary deformation around bound states
as well as resonance poles and the rotat-
ed cut in the complex energy plane.
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We note that since ¥ (@,7)¥(@,r') occurs in an operator
kernel the last factor should be a complex conjugated quanti-
ty. This is of no importance here as long as both @ and r are
real since then the wave functions are real. The appropriate
analytical continuation is then given by ¥(w,r)¥(®,7).
Since ¥ (w,r) is real for real w and r, the two conjugations will
annihilate each other here.

By defining the residue of the m™-function at a pole
(bound or resonance states) by

Res(m™ (4,)) = — ($(A)|P(4,)) ",
where the scalar product takes the general form

WA WA,y = f YA, (4.16)
7R "

(4.15)

we arrive at the following generalized spectral resolution of
the Green’s function:

V(4,1 P(A;,r')Res( —m™(4;))

G+ Arr) = z

5 A=A

+ f Yo, Y(w,r)(1/7)Imgm™ (0))dw
c A—w ’

A #4 (4.17)

wherer,r licon theray nR *, and Cis the rotated continuum
77 2R *, as before. Note that the discrete sumin (4.17) con-
tains, in addition to bound states, also those resonances that
are exposed by the complex rotation, see Fig. 3. This is equi-
valent to saying that the corresponding Gamow waves are
square integrable, i.e., the integral (4.16) converges. All oth-
_er nonexposed poles are contained in the generalized spec-
tral density occurring in the integral part of (4.17).

As in the conventional case, we now apply the operator
(A — L(r)) on (4.17) obtaining

S(r—7r) = z Y(A;,r) YA, )Res( — m™ (4)))
J

+J (o, Y(o,r)dp(w), (4.18)
C
where
dow T

-5 xx
w x
E -10 _—

5 * \‘\

ReE

FIG. 3. Polestring for m* (1) (A4 = 2E). Theray 2R * displays the inte-
gration contour for the Nevanlinna representation (4.14). Along the weak-
ly drawn line the generalized spectral density is vanishingly small. Outside,
along the thick solid line the generalized spectral density is that of a free
particle. The broken line shows a transition region.
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is a generalized spectral density. Since 7,7 belong to the ray
7R %, the delta function in (4.18) is different compared with
that occurring in (2.33). It belongs to the space of ultradis-
tributions. See Ref. 18 for more details.

V. NUMERICAL APPLICATION AND RESULTS

A. Numerical integration and the convergence of the
POP ratio

The de Vogelaere method ' for numerical integration of
second-order differential equations without a first-deriva-
tive term has been implemented in the program POP. The
method is suitable since the initial values required for the
algorithm consist of the value of the function and its deriva-
tive at the starting point. Compare, for instance, with (3.7).

The numerical integration of Eq. (3.5) for the two solu-
tions @, and 7, continues until convergence of the POP
ratio (3.13) is reached. One of the convergence criteria that
we have used is based on the change of the POP ratio, which
is computed successively for a specified increment of radial
distance. If the absolute value of the change is smaller than a
certain value supplied by the input, convergence is assumed.

B. Computation and analysis of quantities related to m

The POP method has been tested numerically and ana-
lyzed for a model potential,”® which in atomic units
(A =2E) is given by V(r) =7.5%¢ " ". The potential is
Weyl!’s limit point at infinity and allows an analytical con-
tinuation into a sector in the complex plane. This potential
gives no bound states but it has a barrier that results in the
pole string shown in Fig. 3.

For convenience we have only treated the case when the
rotational quantum number is zero and the left end point of
the interval is a = 0.

The program POP gives us the possibility of computing
several quantities related to the Titchmarsh—Weyl function
m(A). They consist of some special combinations of m™ (1)
and m~ (4). Some of these quantities are the analytical con-
tinuations of quantities usually studied only for real ener-
gies.

The various quantities are as follows.

(1) m™ (A) for energies A continued to the second Rie-
mann sheet of the lower energy half-plane. m™* (1) is com-
puted using a specified complex rotation angle 8. This allows
the energies 4 to be situated in the half-plane determined by
Im(e?%4) > 0.

First we note the general property m* (A) = m~ ().
Therefore, by taking the mirror image of that plot in Fig. 8,
see below, with respect to the real energy axis, we get the
modulus plot of m™ (1) for our model potential on the first
sheet of the upper half-plane.

In Figs. 4 and 5 we show the analytical continuation of
m™ () onto the second sheet of the lower half energy plane.
In addition to the string of poles of m™, we also find zeros
situated between the poles along the same string.

If the potential had been absent, the equimodular con-
tours would have been circles centered at the origin. De-
pending on the chosen axis setup, this virtually corresponds
to ellipses on the plots. With the potential present, the equi-
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FIG. 4. Abs(m™ (4)).

modulars curve around one or several of the poles. Figure 6
indicates that the argument of the m ™ -function along a ray
from the origin is almost constant aside from the pole string
region. Looking at the three-dimensional plot in Fig. 7, we
see that passing the poles implies an argument shift of
around 7 radians.

On the argument plot we also see some “slip faults”
from the poles and the zeros of the m™-function. This is
further described in the section about Reg(m™* (1)) below.

(2) m~(A) for energies A on the first Riemann sheet.
m~ (A) is computed using the complex rotation angle — &
and thus allows the energies to be situated in the half-plane
determined by Im(e ~?%4) <O0.

Since the solution, regular at the origin, is never square
integrable for energies on the first sheet [except for bound
states energies where m (1) has a pole] m~ (1) exhibits no
pole in the lower half energy plane.

When analytically continued to the second sheet of the
upper half-plane, there may be poles in m~(4). The poles
lying close to the real axis may influence the behavior of
m™ (4) even on the first sheet.

Figure 8 shows the modulus of m~(4) for our model
potential on the first sheet. The two poles closest to the real
axis can be detected from the concentration of contours near
it. We see that at larger absolute values of the energy the
m ™ -function rapidly approaches the value corresponding to
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FIG. 6. Arg(m™ (1)).

a free particle, i.e., m~ (1) = — i/ . This can also be seen
from the argument contour plot in Fig. 9.

(3) The generalized imaginary part of m™,
Img(m™ (A)) = (m™ (A) — m™ (1))/2i. Img(m™ (1)) is the
analytical continuation of Im{m™(4)) for real energies.
Note that this quantity is complex in general. This quantity
is proportional to the generalized spectral density occurring
in the spectral resolution of the Green’s function and in the
Nevanlinna and related representations of the m-function.

For our model potential, Fig. 10 shows that
Img(m™ (A4)) is almost zero inside the pole string. This,
together with the observed properties of Img(m™(4)

— m T e (A)), described below, is the empirical motivation
for the conjecture of deflation, see below.

(4) The generalized real part of m™,
Reg(m™ (1) + m™(1))/2. Regim™ (4)) is the analytical
continuation of Re(m™* (1)) for real energies. This quantity
is also complex in general.

For real energies, Re(m™ (4)) can be used to localize
poles on the second sheet since it shows sign shifts upon
passing poles lying close to the real axis. For complex ener-
gies, one can therefore assume that Reg(m™ (1)) exhibits
some phase change upon pole passages.

When scanning along lines close to poles that do not lie
near to the real axis, it is possible to mimic the above-men-
tioned behavior either by considering Re(e” m™* (4)), where

FIG. 5. Abs{m™* (1)).
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€ is a suitable chosen phase factor, or by letting the scan-
ning line go in a suitable chosen direction depending on the
phase of the residue of the m-function at the resonance pole.

The argument of Reg(m * (1)) for our model potential is
shown in Fig. 11. Inside the pole string the argument seems
to be almost constant. QOutside, where the modulus of
Reg(m™ (A)) rapidly goes to zero, the argument increases
steadily following curves locally parallel to the pole string.
The argument increases slowly for trajectories far away,
whereas it increases quickly inside the string defined by the
zeros of Reg(m ™ (4)). In the latter case we find “slip faults”
in the argument plot since the program POP uses the con-
vention that the argument should be in the interval from

— 77 to . The slip faults go from the zeros of Reg(m™*) to
the poles of Reg(m™) (or m™ itself). Encircling any slip
fault end point shows a complete argument cycling.

(5) Img(m ™ (4) — m™ g, (4)). This quantity occurs in
the spectral density in the Nevanlinna representations for
m™(1). It is also a necessary ingredient in the Gel’fand-
Levitan integral equation for the inverse problem. Figure 12
shows the modulus of Img(m™* (1) —m™g.. (1)) for our
model potential. Our numerical study shows that this quan-
tity is negligible outside the pole string. Inside, where
Img(m™ (A))is negligible, it assumes approximately the val-
ue — Img(m™q.. (1)). Comparing with Fig. 10 we find that
only in a narrow transition region do we have a more compli-
cated situation.

FIG. 8. Abs(m ™ (4)).
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FIG. 7. Arg(m™ (4)).

We are thus led to a conjecture of a deflation effect.
Referring to Figs. 3 and 13-15, we now discuss the following
approximation. For the integral appearing in (4.14), we as-
sume a sharp transition point between a negligible and a free-
particle spectral density located somewhere on the dashed
part of the integration contour. This point will be denoted by
. With this approximation we find that the integral occur-
ringin (4.14) is explicitly evaluable. This leads to the follow-
ing approximate representation of the m-function in terms of
poles and residues as well as free-particle background and
pole-background interaction:

— Resm(A))
mA) —iJl = — "7~
; A —A
2 VA (A +V0)
-=Ja+
T T (J —V8)

(5.1)

C. Computation of resonance energies

At a resonance energy A = A;, m™ (1) exhibits a pole.
Therefore 1/m™ (A1) has a zero. By the program POP, these
zeros can be searched for using a Newton-Raphson-like
method. For such a computation the complex rotation angle
must be chosen large enough so as to uncover the pole, i.e.,
make the corresponding Gamow wave function square inte-
grable.

_5 L
w
E -0}
-15 |

FIG. 9. Arg(m~(4)).
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FIG. 10. Abs(Img(m* (1))).

VI. CONCLUSIONS L e LA

We have investigated a generalization of the Green’s
function and the associated completeness relation to a sector
in the complex plane defined by the complex rotation meth-
od. For bound states, McIntosh?' has studied the precise
effect of the quantization condition for quantum mechanics
in Weyl’s theory formulation of second-order differential
equations. Furthermore he analyzed the associated Green’s
matrix expression with regard to the corresponding discon-
tinuities. The present study extends this discussion to reson-
ances in the complex plane.

Previously, Berggren?” has obtained analytically con-
tinued Green’s functions using Zel’dovich regularization
without any complex deformation of the coordinate. Investi-
gations by Gyarmati and Vertse? show that the result ob-
tained in the Zel’dovich framework?* is independent of the S S
convergence factor used. In fact their analysis coincides with
the technique of uniform and exterior scaling for the local-
ization of the Gamow wave.

The present study shows that the Berggren continu-
ation, with the Zel’dovich regularization replaced by com-
plex rotations, yields a rigorous formulation of the Green’s
function and the completeness relation in a sector in the
complex plane. This approach has the additional feature of
providing a consistent relation between the analytic proper-
ties of the potential and the spectral density.5 L o

Our numerical results display, in addition to the above- 10 20 30
discussed deflation property of the spectral density, that the ABS E
Green’s function can be approximately represented by  FIG. 14. Abs(Img{m™ (1)) along the ray displayed in Fig. 3.
bound state and resonance poles and a background contribu-

ABS E
FIG. 13. Abs(m™ (1)) along the ray displayed in Fig. 3.

e
o
T
i

ABS[Img m"]
[o,]

:q, 10 - T
)
o
E - -
+|
w % 6 .
E =
= - 4
g,
< 2 J
10 20 30
Re E ABS E
FIG. 11. Arg(Reg(m™(1))). FIG. 15. Abs(Img(m™ (1) — m™* . (1)) along the ray displayed in Fig. 3.

2638 J. Math. Phys., Vol. 27, No. 11, November 1986 Engdahl et al. 2638



tion. The formula (5.1) has been preliminarily tested and
found to contain the relevant information necessary for the
construction of the Green’s function. The string of corre-
sponding residues used in formula (5.1) shows a smooth
trajectory pattern in the complex plane in parallel to the
complex pole distribution. For bound states, the residue of m
is a negative quantity related to the normalization integral,
see (4.15). For resonances with small widths, the real part of
Res(m) is still negative but the imaginary parts are nonzero.
When the resonance pole trajectory reaches its maximum
real energy and turns, see Fig. 3, we found that for the pres-
ent potential the real part of Res(m) changes sign. This
seems to represent an alternative way of classifying the reso-
nance poles in a primary and secondary class, see Ref. 25.
The primary class, with a negative real part of Res(m),
would then correspond to detectable structures in, for in-
stance, the cross section.
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Auto-Bicklund transformation, Lax pairs, and Painlevé property
of a variable coefficient Korteweg-de Vries equation. |
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Using the Painlevé property of partial differential equations, the auto-Béicklund transformation
and Lax pairs for a Korteweg—de Vries (KdV) equation with time-dependent coefficients are
obtained. The Lax pair criterion also makes it possible for some new models of the variable
coefficient KdV equation to be found that can represent nonsoliton dynamical systems. This
can explain the wave breaking phenomenon in variable depth shallow water.

. INTRODUCTION

Exciting and important discoveries have been made in
the nonlinear dynamics of dissipative and conservative sys-
tems. Numerical, analytical, and experimental works in the
last two decades show that most of the nonlinear systems
exhibit a transformation from “regular” to “chaotic” behav-
ior.! Recently,? the connection between movable singulari-
ties and algebraic integrability of dynamical systems is wide-
ly studied in different contexts. For an algebraically
completely integrable system the independent, single-valued
integrals of motions are part of a compact, complex tori on
which the motion is linear.

Ward* has extended the study of the Painlevé property
(PP), well known in the context of ordinary differential
equations, to partial differential equations (PDE’s). A sys-
tem of PDE’s in n independent variables is considered in the
complex domain, the coefficients being analyticon C". If S'is
an analytic noncharacteristic complex hypersurface in C”,
then the PDE that is analytic on .S is meromorphic on C". A
weaker form of the PP was suggested by Weiss e al.> while
studying the Lorentz series expansion of the solutions in the
neighborhood of a movable singularity.

It is a well-known conjecture that if a field equation has
the PP then it is completely integrable.® The limitations of
this conjecture, known as the Ablowitz—Ramani-Segur
(ARS) conjecture, have been pointed out by many auth-
ors.>? The complete integrability is also defined in terms of
the existence of the inverse scattering transform (IST) or the
auto-Bicklund transformation (ABT).” The existence of an
IST solution is assured by that of Lax pairs.

A well-known’ model for an IST solvable and complete-
ly integrable dynamical system is the celebrated constant
coefficient Korteweg—de Vries (KdV) equation:

u, +auu, +pPu,,, =0, (1.1)

the coefficients o and 3 being constants and the suffix indi-
cating a partial derivative with the respective variables. This
equation yields a highly collisionally stable particlelike solu-
tion, called a soliton.

*) Present address: Mathematics Section, International Centre for Theoreti-
cal Physics, 34100, Trieste, Italy.
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Here, we report the results of the PP analysis of a KdV
equation with variable coefficients. The PP is used to identi-
fy the values of the different parameters for which the system
loses its integrability. We have found these parameter values
using a property of Lax pairs obtained from the PP. The
possible ABT is also developed, when the system is integra-
ble.

Such an equation is particularly significant in the study
of the development of a steady solitary wave as it enters a
region where the bottom is no longer level.>'* It has been
found both theoretically and experimentally that when the
depth decreases to form a shelf, the solitary wave breaks into
a number of “solitons” while if the depth is increasing the
solitary wave degenerates into a cnoidal wave.

I. PAINLEVE PROPERTY OF VARIABLE COEFFICIENT
KdV EQUATION

We introduce a variable coefficient KAV equation:

u,+at"uu, +pt"u .. =0, 2.1
where m and n are real numbers and a and f are constant
parameters. The well-known KdV equation (1.1) is ob-
tained when m=n=0. For a=3,8=1 and m=0,
n = — 4, we can transform (2.1) to the well-known purely
concentric KdV equation

v, +v/t+ 3w, +4,,.. =0, (2.2)
through a nonlinear transformation

u=uwlt. (2.3)

Equation (2.2) is studied by several authors,'*!® and

ABT and IST are well known for this system. Some soliton-
like solutions of (2.2) in terms of Airy functions are also
developed.'®

Equation (2.1) has the PP when its solutions « (x,#) are
“single valued” about the movable, singularity manifolds,
determined from the singularity analysis of the Lorentz se-
ries expansion

u(x,t) =@"(x,t) Y u;(x.)@(x,0), (2.4)

j=0

where u; (x,t) and @(x,t) are analytic functions in a neigh-
borhood of the manifold
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@{x,t)y=0 (2.5)

and 7 is an integer to be determined. Substituting (2.4) into

Eq. (2.1), a leading-order terms analysis uniquely deter-

mines the possible values of 7. The PP requires that p be a |

negative integer. The resultant series expansion of (2.1)
gives the required ABT and Lax pair for the IST.

The leading-order terms analysis gives the value

= — 2. The recursion relations for u; (x,t) are found to be

J
uj-—3,t + (j—4)uj——2q3,t +at“ z uj—k(uk——l,x + (k_ 2)uk¢.x) +)8{m{uj—3,xxx + 3(j—4)uj—2,xx¢.x
k=0

+ 3(j— 3)(j—4)uj-—l,x¢,x2 + 3(j—'4)uj—2,x‘p,xx + (j”' 2)(j" 3)(j—_ 4)uj¢),x3

-+ 3(j_ 3)(]_ 4)uj— l@,x@,xx + (JI - 4)uj—2¢,xxx} = 0’ (2-6)
where
8¢7 o"u}- (x,t)
=X [ = ————— elC. 27

- ax * Ox 27

Collecting terms involving u;, it is readily found that

Bt7p P(j—6)(j—4)(J+ Dty =F(tj_ | esliy@ 1@ 5o ) 2.8)
forj=0,1,2,....

We note that the recursion relations (2.8) are not defined when j = — 1,4, and 6. These values of j are called the
“resonances” of the recursion relation and, corresponding to these values of j, we can insert arbitrary functions of (x,#) instead
of u; (x,t) into the series expansion (2.4). But for j = — 1, the series expansion (2.4) is not defined and so the admissible
values of resonances are j = 4 and 6 only.

Putting j = 0,1,2,... in (2.7), we get

Ji=0, uy= — (128/a)t™ "p.?, (2.9)

j=1, uy=128/a)" ", (2.10)

Ji=2 (@ a)p.p, tup,?— 3B/a)t™ " 2+ (4B/a)t" TP @ e =0, (2.11)

J=3, @ a)g,,+m—n)t " Va)p, tup . — @t (BT /)P =0, (2.12)
and

—n —n—1 m—n
j = 49 —a"’{t ‘P,x: + (m - n)t gp,x + uZQD,xx - “3@.):2 + ﬂt w,xxxx} = 0? (213)
ox a a
i
which is a compatibility condition. The compatibility condi- 128 ., Px 2128 i Px
. e ) ) u(x,t) = — ¢ + t + u,,
tion at j = 6 involves extensive calculations. a @? a @
When we assign #, = 1, = 0 and for #, = 0, we can find (2.22)
u; =0, forallj>3, (2.14)
o
provided u, is a solution of (2.1), which implies that r
n m — 2
Uy, + at Ul o +ﬂt Uy rxx =0, (2.15) u(x,t) =i2_‘§.t’”—"_a_..2_ (log¢>) + u,, (223)
From Eq. (2.4) and Eqgs. (2.9)—(2.15), we get a ax
— m-—n 2
Up=— (128/e)t P (2.16) where u(x,t) and u, are exact solutions of (2.1) and (2.15),
u = (128/a)t™ =" ., (2.17)  respectively.
(=)@, + U, 2 — (3B /)™ "p 2 Equations (2.16)—(2.23) define the ABT for the vari-
Poxu T 1o ¢ able coefficient KAV equation (2.1) provided (2.18) and

+ (48/a)t™ 7P @ axx =0, (2.18) (2.19) are consistent. If any one of the solutions u,(x,t) is
(t =)@, + [(m—n)/alt =" g, + up,, known then another solution u(x,t) of Eq. (2.1) can be de-

+ B/ g, =0, (2.19) termined using th?, ABT. Th.e consistency of Egs. (2.18) gnd

. - (2.19) can be verified by using a property of the Lax pairs.
Uy, + at"uyuy, + Bt U, =0, (2.20) The Lax pairs are obtained from the equations (2.18)
and and (2.19) by using a transformation

u; =0, forj>3. (221 P =V (224)
Substituting (2.16)-(2.21) in Eq. (2.4), we get Substituting (2.24) in (2.19) yields
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Ly, o) ey, By
a 2a a
V
+£t'"‘"V,x = =0. (2.25)
a V
Equation (2.19) also transforms to
LV, +uV, +%uz,xV+£t'"—"V,m =0. (2.26)
a

Eliminating¥, from Eqs. (2.25) and (2.26) we get

T B
2a 2 7 a V /x
2.27)
Integrating Eq. (2.27) with respect to x gives
'i—tm_"‘%“i'—é‘uz‘F———(m =) xpon = A,
(2.28)
or
f(t)[gt'"'"D2+—é—u2———(m6;”) xt ‘"“‘] v
=f(HA@D)V. (2.29)
Thus we get the linear eigenvalue problem
LV=uV, (2.30)

where u = A(¢) f(¢) and L is a linear operator defined by

L=£f1 [—i—t"'_"D2+%u2—(—m6;-L)xt —"—‘].
(2.31)
From Eq. (2.26) we get
V.= —at"{(48/a)t™ " "D*+ u,D + lu,, }V, (2.32)
or
V,= — BV, (2.33)
where the operator B is defined by
B=at"{(48/a)t™ " "D* + u,D + lu,, }. (2.34)

Equations (2.30) and (2.34) define the Lax pairs L and B.
However, Eq. (2.33) implies that the eigenfunction ¥ is in
time evolution so that
L, =LB—BL. (2.35)
The L, in (2.35) denotes the derivative with respect to
both the explicit time dependence of L and the implicit de-
pendence through u, (x,t).

From (2.30) and (2.33) we get the following results for
which (2.35) holds:

(1) m=n, f(t) =C’
(iiym=2n+1, firy=Ct"+},

(2.36)
(2.37)

where C is an arbitrary constant. For all other values of m
and n the Lax pairs are not consistent and hence the ABT
exists only for the values of m and # defined in Egs. (2.36)
and (2.37). Equation (2.36) implies that m and » can be
both zero together and then the respective L and B are the
well-known Lax pairs of the constant coefficients KdV equa-
tion (1.1).
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The above study shows that the variable coefficient
KdV equation (2.1) is IST solvable and has PP whenever
m = nor m = 2n + 1 and these properties are independent
of the constant parameters & and 8. For all other values of m
and n, the system is nonintegrable.

Iil. DISCUSSION

The variable coefficient KdV equation (2.1) that we
have introduced is a new member in the families of integrable
as well as nonintegrable PDE’s depending on the coeffi-
cients. The PP analysis leads to the ABT and Lax pairs when
it is integrable. The operator identity (2.35) of the Lax pairs
reveals that the system (2.1) can be integrable when m = n
and m = 2n + 1 only, whereas for all other values of m and
n, the system (2.1) is nonintegrable. The soliton solutions
are the products of IST solvable class of nonlinear PDE’s."’
The above study shows that the variable coeflicient KdV
equation (2.1) does not always have a soliton, but only in
two special cases. Hence in general a solitary wave solution
of (2.1) need not be a soliton and so it need not be collisional-
ly stable always.

The variable coefficient KdV equation (2.1) that we
introduced is a model for explaining the observations of soli-
ton-type solution’s instability reported earlier in different
contexts.> !

The existence of an infinite number of conservation laws
is considered as a necessary condition for the existence of
soliton solutions of IST solvable equations.” Here we are able
to give two of these members for general m and n,

u, +((a/2)t" + Bt ™u,,), =0
and
(L uz) + (_a_ " — B t™u 2+ Bt ’"uu,xx) =0.

2 /. 3 2 ’ xx
3.2)
The higher-order conserved quantities are not so direct and
they are now under investigation.

It is interesting to find the soliton solutions of the vari-
able coefficient KdV equation when it is IST solvable and
study their time evolutions, etc. Another interesting prob-
lem is that of finding the solution of (2.1) for general m and
n and then studying its time evolution for various values of m
and n. Such a study may shed some light on the possible
connection between movable singularity, the Painlevé prop-
erty, and the soliton stability of particular solutions of a non-
linear PDE.
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A Korteweg—de Vries (KdV) equation with time-dependent coefficients is studied in this
paper. The similarity transformation for this system is investigated and an exact solution in a
particular case is obtained. The Ablowitz—Ramani-Segur (ARS) conjecture is used to identify
the integrability of the system. It is found that in some special cases the system may be

integrable.

I. INTRODUCTION

One of the most important methods for developing ex-
act solutions of partial differential equations (PDE’s) is that
of reducing the number of variables, exploiting continuous
symmetries of the system. The solutions obtained by this
procedure are generally called similarity solutions.” This
method has been widely used in the past for developing solu-
tions as well as for the test of the Painlevé property (PP) of
various systems.*>

In an earlier paper* we have analyzed the existence of
auto-Backlund (ABT), Lax pairs (LP), and the PP of a
Korteweg—de Vries (KdV) equation with variable coeffi-
cients. In this paper we are reporting some similarity solu-
tions and an exact solution of the equation in a particular
case using the standard similarity method.

Il. SIMILARITY TRANSFORMATIONS OF A PARTIAL
DIFFERENTIAL EQUATION

under a family of one-parameter infinitesimal continuous
point group transformations

x=x+eX(x,tu) + 0, 2.2)
t=t+eT(x,tyu) + 0, 2.3)
u=u+eU(x,tu) + O(?) . (2.4)

Here X, T, and U are the infinitesimals of the variables x, ¢,
and u, respectively, and € is an infinitesimal parameter. The
derivatives of u are also transformed according to

u,=u, +€[U,]+0(), (2.5)
u, =u, +€[U]+0(), (2.6)
Usxx = Uxxx + G[Uxxx] + 0(62) ’ (27)

where [U, ], [U, ], and [U,,, ] are the infinitesimals of the
transformations of derivatives u,, u,, and u,,,. These are
called the first and third extensions depending on the order
of the derivative term. These “‘extensions”* are given by

[Ux] = Ux + (Uu _Xx)ux - Txul “quxz_ Tuuxur ’

. . . . 2.8
We shall give the essential details’ of the Lie continuous (28)
point group similarity transformation method to reduce the ~ LUl =U: + (U, = T)u, — X,u, — T,u,” — X, u,u,,
number of independent variables of a PDE, (2.9)
F(x,t,uu,u, u,,,..) =0 (2.1) and
J
[Uxxx] - xxx + (3Uxxu - xxx) x Txxxut + 3(Uxuu —Xxxu) x 3Txxuu u, + (Uuuu 3lllxuu) x
+ 3( Uxu - Xxx )uxx - Txx xt 3Txuuu Zut + 3( ue 3Xxu )uxuxx - 3Txuutuxx - 6Txuuxtux
- 3Tx U + ( Uu - 3Xx )uxxx quu u, 6qu U, zuxx - 3Tuu U, Zuxt
- Tuuu ux3ut - 3Xu uxx2 - 3Tu Uy Uy — 3Tu Uy — 3Tuu U U Uy — 4Xu Us Uy — Tuutuxxx . (2 10)

The invariance requirement of (2.1) under the set of transformations (2.2)—(2.10) leads to the invariant surface condition

oOF JF  _9F
T +x < +UuZ 4 [U,
XU+ ]

On solving (2.11), the infinitesimals X, 7, and U can be
uniquely determined, which give the similarity group under
which the system (2.1) is invariant.

) Present address: Mathematics Section, International Centre for Theoreti-
cal Physics, 34100, Trieste, Italy.
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(2.11)

XXX

By the infinitesimal transformations (2.2)-(2.4) we
have

uUx +eX+0(?), t+eT+ 0())=u+ €U + O(€%) .

(2.12)
On expanding and equating the O(€) terms on either side of
(2.12) we get
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T—dl + X ——=U=0.
dt dx
The solutions of (2.13) are obtained by Lagrange’s condi-

tion

(2.13)

dt/T=dx/X=du/U. (2.14)
Equation (2.14) gives the solution

X =x(1,c1,¢,) » (2.15)

u=u(tc,c,), (2.16)

where ¢, ¢, are arbitrary integration constants. The constant
¢, plays the role of an independent variable called the simi-
larity variable o and ¢, that of a dependent variable called the
similarity solution (&) such that

u(x,t) =f(o) . (2.17)

Substituting (2.17) in the original equation (2.1) the
resultant equation is an ordinary differential equation in-
volving only the derivatives with respect to the similarity
variable o.

HI. SIMILARITY TRANSFORMATION AND LIE ALGEBRA
OF VARIABLE COEFFICIENT KdV EQUATION

Here we consider a variable coefficient KdV equation
3.1

where a and S are arbitrary constant parameters and # and
m are real numbers. In a special case this equation can be
reduced to the well-known cylindrical KdV equation.*

Under the family of infinitesimal transformations
(2.2)-(2.4) the variable coefficient KdV equation (3.1)
yields

(U] +at™(u,U+u[U.])+ant” ‘uu,T
F Bt [Up] +Bmt™u,  T=0. (3.2)

On substituting the expressions for the extensions from
(2.8)—(2.10) and solving for the infinitesimals X, T, and U
we get the constraint equations

u, +atuu, +pt"u,,,. =0,

—X, +at"U+u(U, —X,))+nat""'uT=0, (3.3)
U, +at"ulU, +pt"U,, =0, (3.4)
tU, —3tX, + mT =0, (3.5)
u,—-T,=0,U,—X,=0, U, —3X,=0, (3.6)
T.=T,=X,=0. (3.7)

The constraints (3.3)-(3.7) can be uniquely solved. Then
we get the following solutions for X, 7, and U.
(i) When m and » are arbitrary,

T=0, (3.8)
X=alat"*'/(n+ 1] +b, (3.9)
U=a. (3.10)
For the Lie algebra,
at"t! g a
= -+ =, (3.11)
Yo+ 9 | du
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Gz=—(% (3.12)
[G,G,] = (3.13)
(ii) Whenm = 3n + 5,

T=t, (3.14)
X=Q+nmx+alat"+*'/(n+1)] +b, (3.15)
U=u+a. (3.16)

The Lie algebra is the same as in the last case [(3.11)-
(3.13)].

(iii) Whenm = — 2and n = -3

T=1t"2, (3.17)
= — (xt~"Y2/2) —2aat ~'* + b, (3.18)

U= (ut=V%/2) + (x/4a) +a. (3.19)

The Lie algebra is same as in (3.11)—(3.13), withn = — 3
In all the above cases [(3.8)-(3.19) ], a and b are arbi-

trary integration constants.

IV. SIMILARITY, SELF-SIMILAR AND EXACT
SOLUTIONS

Using (2.14) and (2.17) we can find the similarity vari-
ables, similarity reduced equations, and similarity solutions
for the above three cases [ (3.8)—(3.19)].

The set of infinitesimals (3.8)—(3.10) gives the similar-
ity variable

o =t (4.1)
and the similarity reduced equation
ﬁ (n + Daao,” fi= (4.2)
do, aat"t'+ (n+1)b
The corresponding similarity solution is
u(x,t) =((n+ Dax/aat"*' + (n + 1)b) + 1 . (4.3)

Equations (4.2) and (4.3) give an exact solution of the vari-
able coefficient KdV equation (2.1).
u(x,t) =[a(n+ Dx +c]/[act" '+ b(n+ 1)].
(4.4)
The solution (4.4) is not so useful as the third derivative
with respect to the variable x vanishes.

The set of infinitesimals (3.14)—(3.16) yields the simi-
larity variable

0y = — aa b . (4.5)
t"t? 0 (n4+ Dt (n+2)t"?
The corresponding similarity reduced equation is
3
o, Lorf,— (nt 20 L =0 (46)
do3
and the s1m11ar1ty solutlon is
u(x,t) =1tf,(0,) —a. 4.7)

When n = — 3, Eq. (4.6) can be reduced to a second-order
equation by integration with respect to o,. This yields

Bdf2+ fz + 0, f, = const . (4.8)

do
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Equation (4.8) is not easily solvable.
From Eq. (3.17)-(3.19) we get the similarity variable

o, =xt'? 4+ 4aatV'* — bt (4.9)
The corresponding similarity reduced equation is
d>f, df, b
B—=2+af,—=2+-—=0 (4.10)
do} f do; 2a
and the similarity solution is
u(x,t) = —o,/2a + bt /20 + tV*f,(0;) . (4.11)

Equation (4.10) can be exactly solved for the case b =0.
This gives the following solution of the variable coefficient
KdV equation (3.1) form= —2,n= — %

— (4a +x)t'"?

u(x,t) = Py

412

+ .
[(V=a/3B) (x + 4aa)t'? + c]?

The exact solution (4.12) is real valued only when a <0 or
B <0 and not both simultaneously negative. The solution
(4.12) has no characteristics of a stable configurationlike
“soliton.””®

The self-similar' solution can be developed for the vari-
able coefficient KdV equation (3.1) using the dimensional
analysis. The self-similar transformation is very much iden-
tical to the similarity transformations; nevertheless self-sim-
ilar solutions are not always obtainable by similarity proce-
dure.

For the variable coefficient KdV equation (3.1) we got
the self-similar transformation

(4.12)

u(x,t) =t "=3=253F(y), (4.13)
where 77(x,t) is the self-similar variable
n(xp) =xt ~ MDA, (4.14)

Equation (4.13) yields the following self-similarity re-
duced ordinary differential equation, on substituting in
(3.1):

3
B F+aFd—F—(”‘+1)

dFF m—3n-2
dn’ dn 3

—_— F=0.
dn 3

(4.15)

Unfortunately Eq. (4.15) cannot be solved for any values of
m and n.
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V. DISCUSSION

The variable coefficient KdV equation has attracted the
attention of several authors since 1969.%' The equation is a
standard mathematical model® for explaining the soliton
breaking phenomena observed in variable depth shallow wa-
ter. So far no exact solution for this model exists in the litera-
ture. Our work is an attempt in this direction.

Using the well-known Ablowitz—Ramani-Segur
(ARS) conjecture® one can study the PP of a PDE by reduc-
ing it to an ordinary differential equation (ODE), using si-
milarity or self-similar transformations. Equation (4.2) is
linear and so it is clearly a Painlevé-type. For n = — 3, Eq.
(4.8) is not a Painlevé-type equation whereas (4.11) can be
integrated once and it will reduce to Painlevé-type. This
equation (4.15) can be reduced to a second-order equation
for n = — 1, but not a Painlevé-type.

The exact solution (4.12) that we developed has no
smooth property of a soliton solution, which indicates that
the system has decaying solutions other than soliton solu-
tions when coefficients of KdV equation are variables.
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Periodic fixed points of B4dcklund transformations and the Korteweg-de
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A new method for studying integrable systems based on the “periodic fixed points” of
Bicklund transformations (BT’s) is presented. Normally the BT maps an “old” solution into a
“new” solution and requires a known “seed” solution to get started. Besides this limitation, it
can also be difficult to qualitatively classify the result of applying the BT several times to a
known solution. By studying the periodic fixed points of the BT (regarded as a nonlinear map
in a function space), integrable systems of equations of finite degree (equal to the order of the
fixed point) and a method for the systematic classification of the solutions of the original

system are obtained.

{. INTRODUCTION

A Bicklund transformation (BT) maps solutions of a
nonlinear system into solutions of (we assume the same)
nonlinear system. Customarily, the BT is applied iteratively
to a known (trivial) solution to generate a sequence of solu-
tions that may be of interest.

For instance, the (Schwarzian KdV) equation’

@./p, +{px} =4 (1.1)
has the Bicklund transformations'

1) e=(ay+b)/(cy+d), ad—bc=1, (1.2)

(i) @, =9, (1.3)
where

/0, + {gx}t = 4. (1.4)
The expression

3 (P 1 (P
o =L (=) -1 (&) 15

is the Schwarzian derivative, which is invariant under the
Moebius group (1.2).23
From Eg. (1.1) and identifying the variables

V= ¢xx/¢x’ (1.6)
U= {q);x}, (1.7)
it can be shown that!

o (=—17)

V.+—(V_ ——V?|=AV_, 1.8
J 3,

v+ 2 (v, +2v?)=aU,, (1.9)
dx 2

where Eq. (1.9) is the KdV and (1.8) the modified KdV
equation.’

Now, from Eqgs. (1.1) and (1.4), the BT (1.3) is com-
pleted by (either of) the equations

[ ¢; (xx)2 (¢n)2
Fe 0 2 (=) yoaa=(2=) +u, (1.10)
¢ U P ¥

_V’t__£=2i(¢’**)= _2i(¢**). (1.11)
¢x 'px ax ¢x ax 'px

® Mailing address: Division of Applied Sciences, Harvard University, Cam-
bridge, Massachusetts 02138.
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That is (1.3) and (say) (1.10) imply, by the integrability
conditions,

Pix = Pxs ¢tx =ty (1.12)

that (@,¥) satisfy Eq. (1.1). Since (1.3) is in involution, the
effective BT is the composition of (1.2) and (1.3):

@x = (c¥ + )/, (1.13)

2 2
L ——"—"—+(ﬂ‘i) —45_21n(¢+1)+u.
ax ¢
(1.14)

Through the iterative application of (1.13) and (1.14),

P=@ui1, Y=, (1.15)
withA =0,
Po =X, (1.16)

the sequence of rational solutions of the KdV equation can
be found.! These are

@, =x>+ 124,

@, = (x5 + 60ex> — 720t%) /x, (1.17)
etc.

On the other hand, with the solution

Po=e"" b=A+} (1.18)
an application of (1.13) and (1.14) obtains

@ =c* " 4 2cd(x —2t) —d%e > (1.19)

The continued iterative application of (1.13) and (1.14)
produces solutions that are rational functions of e*+ %, x,
and ¢. The “secular” terms in (1.19) will vanish only ifd or ¢
vanishes. Say, d = 0. But in this case ¢, = c’p, or @, is a
fixed point of the BT

Prsix =Pn/ P> (1.20)
2 2
¢n+l,t +¢n,t =(¢n,xx) _43_21n‘p"+u
¢n + 1,x ¢n,x ¢n,x ax
(1.21)

Since we do not find the usual N-soliton solutions by a
straightforward, iterative application of the BT, we propose,
instead, to study the periodic fixed points of the BT (1.20),
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(1.21). That is, we define Eqgs. (1.20) and (1.21) with
n=12,3,4,.. ,mod(N). (1.22)

The periodic fixed points continue to define a strong Back-
lund transformation of Eq. (1.1). That is, the integrability
conditions

¢n+ Lxt — Pn+ 1ex (123)
continue to imply that ¢, satisfy Eq. (1.1) and, by the peri-
odicity mod(N), the set {@,, » = 1,2,....mod(N)} are solu-
tions of (1.1). Therefore, it is enough to solve (1.20) and
then fix the time-dependent constants of integration by
(1.21).

The period three fixed points satisfy the system of equa-
tions:

Pix =P/ Pies Prx =P/ Pres Pix =P 2/ P

(1.24)

It is not difficult to show that Eqs. (1.24) with
€ =Qu/P; (1.25)

are equivalent to a Hamiltonian system and each ¢, will sa-
tisfy the equation

€ = €*(e — b)* — 4ae, (1.26)

which defines € as a Jacobi elliptic function. Also, each @,
will satisfy the equation

¢3‘/2 =b¢¢ 1/2 + e—bx/2¢) _+_aebx/2, (127)
and, when b = 0, Eq. (1.27) is
é
ds

Equation (1.28) defines a conformal mapping from the inte-
rior of a circle of radius |g|'/? in the ¢ plane into an equilater-
al triangle in the x plane. On the other hand, when the modu-
lus in Eq. (1.26) is 1, the usual one-soliton solution for the
KdV equation is found.

Before considering the periodic fixed points for the KdV
equation, we note the following remarks.

Remark 1: In general, it is to be expected that the fixed
points of a BT of an integrable system themselves define
integrable systems of finite degree. The degree of the system
(number of arbitrary constants in the solution) equals the
order of the fixed points.

Remark 2: When the order of the fixed point approaches
infinity we expect that the solutions of the associated systems
are “dense” in the manifold of solutions of the original sys-
tem.

Remark 3: There may exist analogies between the fixed
points of mappings and the fixed points of Bicklund trans-
formations, especially as regards their stability to perturba-
tion.

Il. PERIODIC FIXED POINTS AND THE KdV EQUATION

Consider the periodic fixed point of the Biacklund trans-
formation (1.20) of order N:

Piv1x =P/ P> (2.1)
where
j=1,2,3,...mod(N). (2.2)
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We define the variables
e = €, (2.4)
V: = @jx/ Ppes (2.5)
and find from Eq. (2.1) the equations
€1/ €1 T €€ =€ —€ 4, (2.6)
O 1+ 0, =" — ¥, (2.7)
Viere Ve =4V7 =V 1), (2.8)
where, from (2.1),
Vier + V, =2 /9;) = 2€; = 2%, (2.9)
Next, define the N by N matrices
1 1 0
0 1 1 0 O
0 0 1 1
A= , 2.10
0 0 ( )
0 1
1 1
1 -1 0
0 1 —1 0 0
0 0 1 —1
B= . 2.11
0 . .. 0 ( )
-1
-1 1
It can be shown that
detB=|B| =0, (2.12)

for all ¥ and the one-dimensional null space of B is spanned
by the N-vector

1
R 1
bo=] . (2.13)
1
Also,
4]=0 (2.14)

for N = 2k and 4 has a one-dimensional null space spanned
by

1
—1
" 1
G,= L (2.15)
—1
Finally, for N=2K + 1,
14| £0, (2.16)
and
A7 =1+ Q), (2.17)
where
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is a (2K 4 1,2K + 1) antisymmetric matrix
Q= —-Q,

with
|2 =0. (2.20)

The one-dimensional null space of (2.18) is spanned by the
(2K + 1) vector

(2.19)

1
1
Go=]1 (2.21)
1
and it can be shown that
Q=4"'B (2.22)
Now, define the N-vectors
Vi
~ v,
V= b (2.23)
Vn
0,
o 6,
0= A (2.24)
On
and
€
€
e=| 7 | (2.25)
€N
Then, using (2.2), (2.8), (2.10), and (2.11),
Vi
A y?
av. =Ll "7 |, (2.26)
2 :
Vi

and similar equations for (2.6) and (2.7). Foreven N = 2K,
A and B are singular and the contraction of Eq. (2.26) with
the null vectors (2.13) and (2.15) obtains the conditions

J N
> i=0

X 1

(2.27)
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-1 2.1
1 1 (2.18)
.,.'—'1/
0
|
K
Gy S Vi 1_ZV (2.28)
j=1 Jj=1

For odd N = 2K + 1, A is invertible and, using (2.17) and
(2.22), we find the equations

Vi
A V2
—Laf "2 |, (2.29)
2 :
Vi
e?
R e
0, =0 P (2.30)
on
e
and
€, 0 €, 0 1
¢ = € Q €, ol !
0 0 :
€n €y 1
(2.31)
From (2.9), (2.10), and (2.7),
&%
e=| : |=Lap (2.32)
e 2
and
e
=I+Q)] ! |=UT+Q) (2.33)
e
In this paper, we will require that
N=2K+1 (2.34)

and show that Eqgs. (2.29)—(2.31) are completely integrable
K-dimensional Hamiltonian systems with K integrals (and
one Casimir) in involution.

From (2.29) and (2.30),

V. =Qv; H, (2.35)
6, =0V, J,, (2.36)
where
1 N
H,=— z 3 (2.37)
6 j=
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L=3 ¢, (2.38)
=1
a/dv,
Vi = : (2.39)
3/dvy

Using the notation of Ref. 4, (), being a constant coefficient,
antisymmetric matrix, is cosymplectic and Eqgs. (2.35) and
(2.36) are Hamiltonian systems. Furthermore, the Hamilto-
nian systems (2.35) and (2.36) are connected by an inverti-
ble “Miura” transformation (2.32), (2.33), which may be
written as

V=U+Q)V,J, (2.40)

It is a result of Ref. 4 that if two Hamiltonian systems,

U, =0,V H, (2.41)
W, =Q,Vs Jy, (2.42)
are connected by a Miura transformation
|
e Vi+V,
. 0 . . 0
Vg J] = '. = -—2—- * .
0 0
e Vv + V)

e 9
N ‘. A,
[ ] 'eN
e
Vol = id,

U=B(W), W=C (2.43)
and
VoU=V;B,
Vo W =V;C, (2.44)
then the forms
Q = (Vo B)Q,(V, B)%,
(2.45)

Q;, = (V,0)Q,(V,O)*

are cosymplectic for Egs. (2.41) and (2.42), respectively. In
effect, this obtains the dual-Hamiltonian formulation for
Eqgs. (2.41) and (2.42) and the recursion operators for the
functional gradients of the conserved quantities

O,\VoH,, , =Q|Vy H,
Ve i =0V J,.

We refer the reader to Refs. 4-6 for further information.
For Eqgs. (2.29)-(2.31), using the formula

VoV=(+Q)V31I,

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

and the above result, the recursion operators for the gradients of the integrals of Eqgs. (2.29)-(2.31) are

QV’,} H2n+1 =Mf’vfl\/ HZn—l’
QV@, J2n+1 =M(§V(9 Jon -1

lee Hz’m+1 =M3Va Hén—l’

where
(Vi +V3)/72
0
My=(U+Q) Q
0
Vy+V)/2
e‘e, e—B.
0 . 0
M= - AQA4* . ,
0 0
e—BN e-g)v
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(2.51)
(2.52)

(2.53)

Vi+ V)72

* (I_Q)y

(2.54)

(Vy + V)72

(2.55)
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Q,=BA*=A*B=

In general, the forms (2.54)-(2.57) are cosymplectic and
singular, since || = 0. Also, since ) is singular the systems
(2.29)—(2.31) have “Casimir” invariants

N

H, = ~21 Vi, Jo= ~i1 6, H|= .il €. (2.58)
< I <
We note tlfle following results: J
OVy H; =MV H,, (2.59)
OVy H =0, (2.60)
OV Jo=MV;J,=0, (2.61)
QV.H{ =0. (2.62)

It is somewhat nontrivial to solve (2.51)-(2.53) for the inte-

grals since the operators involved are singular. To do so re-

quires a fairly detailed analysis to arrive at the result.
Theorem 1: For the Hamiltonian systems,

V. =0v; H,, (2.63a)
& =0,V . Hj, (2.63b)
there are K integrals
HyHgoHy 1y HYHY, o H oy, (2.64)
and one Casimir integral
N N
H =V, Hi =Y¢. (2.65)
1 1
The integrals are
N
Hyx oo =[] Vi + V1), (2.66)
j=1
N
w1 =[] € (2.67)
=1
Hy | _om=1/m)(—A)" O Hyp (2.68)
Higo1—om=1/mYL™oHjp (2.69)
for m =0,1,2,...,K, where
N 2
-39 (2.70)
SV
N 2
L= — 9 (2.71)

S 9613651
Furthermore, the integrals are in involution. That is,

(Vo Hy ) o QVy Hy =0, (2.72)
(Ve H3 ) oV H; =0, (2.73)
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1
0
, (2.56)
-1
)
(2.57)
r

for (j,1)e(0,1,...K). Also, (H,, ,,H ;) are homogen-
eous of degree 2j + 1. That is,

sz+ 1 (ill}) =4 v+ 1H2j+ 1 (?/),

) (2.74)
Hiy (A& =A% 'Hy (@),
forj=0,1,2,3,....K.
Finally,
MyViH,p ,, =0, MV, H;,, , =0, (2.75)
which implies that
QVy H =QOVy H, =0,
Vv 2K +3 | 4 1 (2_76)

Q1Ve H§K+3 =0V, H| =0,

and, in terms of the recursion operators (2.51) and (2.53),
the integrals (H,;, ,H 5, ;j=0,1,..,K) provide a basis
for their solutions.

To begin, it is enough to solve one of the sequences
(2.51)-(2.53) since the results for each follow by a change
of variable. For instance,

My =T+ Q)M (I-Q), (2.77)
Vo=(I—-Q)V3, (2.78)
where
é=147.
Now, consider the sequence
Qi~'2n+1 =M’f/i'2n—1, (2.79)

where the ilzj +1 are N-vectors (not necessarily the gradients
of integrals) and

(2.80)

Since () is singular with null vector (2.80), the right-hand
side of (2.79) must be orthogonal to (2.80), for every n, tobe
solvable. That is,

hioQhy, . =hioM,h,, ,=0. (2.81)
However, using the antisymmetry of M and induction on 7,
hioMyh,, = —hy oMy h = —h,, ,oQh

=hyoQhy,_, =hyoMy hy,_5, (2.82)
and after j steps

John Weiss 2651



A

bt oM; fhn_l = —hyy_1_y° ‘Q’illj+3 To see this, note that for every j, j=1,2,3,...,N, where

- - N=2K+1,
=hy, 3°Mphy, 5 (2.83) 9
which vanishes identically when € e, Hyg 1 =Hyg . (2.90)
j
j=(mn+1)/2 or j=n/2 (2.84) Therefore,
Therefore, the sequence (2.79) beginning from (2.80) exists
(although it is not unique). An identical argument, using the 1
. . 1
identity V. H2K+1 =H2K+1Ve H1=H2K+1 . (2.91)
h£m+loﬂh2n+1= _h;n—loﬂh2m+3 (285) i
to raise or lower indices, establishes that the “symmetries” ;4
{h, . , } are in involution:
€
;m+1 OQh2n+1 =0. (2.86) M.V Hyg,y =Hy Qv. H, =0,
Since €x
V. =QVy Hy = MpVy H,, (2.87) (2.92)
the symmetries {izzj + 1}, which are the gradients of func- where
tions, will obtain integrals of (2.87) that are in involution. H — i c. (2.93)
To find the integrals it is convenient to consider the se- ! =7
quence (2.53). Let Now, define the operator
N N 92
Hyo =]l & (2.88) L=-% —r—, (2.94)
j=1 j=1 d¢; d¢;
Then and apply the operator m times to (2.90) to obtain the iden-
MV, Hy. =0 (2.89) ity
J
a d d
ejiLm0H2K+,=L’"0H2K+1+m———( + )L"‘_‘OHZKH, (2.95)
7 Je; \ Je; _ O€;
for eachj = 1,2,...,mod (¥N). Therefore,
| D,(Dy + D,)
; € 0 1 5
2 VoL, O Hyg oy =| . JL7" 0 Huepr +m| Dy(D;_y + Dy 0) |77 0 My s, (2.96)
0 : :
€N 1
Dy(Dy_, +Dy)
where
p-2
O¢;

From the definition of (2, (2.18), the first term on the rhs of (2.96) vanishes when applied to {2 and the second term obtains

D,(—D,+Dy)
D(—D,_+D;, ) |L" "o Hy .. (2.97)

€xn :
Dy(—=Dy_, +Dy)

From (2.95),
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€D, (—D,_, +Dj+1)Lm_loH2K+l
=(—=D;_+D;, ) D, L™ "o Hy |

(2.98)

=(—D,_, +Dj+1){Lm~l °Hyx o1+ (m—1)Dy(D;_, +Dj+1)Lm_2°H2K+1}

=(—-D,_, +Dj+1)L’”_1°H2K+1 + (m — 1)D;(
=(_Dj—1 +Dj+1)Lm_10H2K+1’

since

(—‘DJ?—I +D}+1)L"‘_20H2K+1
=L™ (=D, +D? )Hy,, =0.

Combining (2.99) and (2.97),

OV L7 'oHy, = (1/m)M, VN .L"oH,, ,,
(2.101)

where (), is defined by (2.56). Therefore, by induction on m,
Hig i om=0/m)L" o Hy |, (2.102)

for m = 0,1,2,...,K, will satisfy the recursion relation

(2.100)

QVH g s 3m =MV Hig 1o (2.103)
for m = 1,2,3,...,K. Furthermore
, 1 i
H; =7<_!L’<0HZK+l =(—1)"j;ej (2.104)
and
OV H=MV.Hy,, ,=0 (2.105)

Equations (2.105) and (2.103) show that, in spite of the
nonuniqueness of solutions of the recursion (2.103), the in-
tegrals (2.102) provide a basis for the solution of (2.103) in
that this set of integrals is closed under the recursion
(2.103). The general solution of (2.103) can be found by
adding an arbitrary function of H, toa H ;; , , at each step of
(2.103) (since the gradient of H, is in the null space of (1)
and allowing for the effect of this addition under the recur-
sion (2.103).

It is immediate that

Hjy (A& =AY"'HS (&),
forj=1,2,3,....K.

By the previous remarks the {H;, ,;j=0,1,2,..K}
define (K + 1) integrals in involution and, by construction,
these integrals are independent. Thus, (2.63b) is a K-dimen-
sional completely integrable, Hamiltonian system with one
Casimir integral.

After the change of variable { (2.77) and (2.78)] and a
convenient scaling, we find that

(2.106)

N
Hyy =H(Vj+Vj+1), (2.107)
i
H2K+l-2m=(1/m!)(_A)moH2K+l, (2-108)
where m = 0,1,2,...,K and
(2.109)

A N az
_Zaw’
are (K + 1) independent integrals of (2.63a) in involution,
satisfying the recursion (2.51). The properties of (2.63a)
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—.D}_l +D}+1)LM_ZOH2K+1

(2.99)

r
follow directly from those of (2.63b) and will not be repeat-
ed.

We note that, as defined by (2.108),

e (L5 0) (2]

=1
(2.110)
which is not identical to (2.37), where
1
H;’=—6—z V. (2.111)
However, except for a possible difference in sign,
OVy H,=QVy HY (2.112)

and insofar as the dynamics of (2.35) and (2.63b) is con-
cerned there is no difference.
We turn next to the time dependence of the fixed points.
Theorem 2: For the modified KdV equation

_(9_ (Vxx __1_ V3) =0,
ox 2

the order N = 2K + 1 periodic fixed point of the Backlund
transformation is determined by the commuting (complete-
ly integrable) Hamiltonian systems

V. + (2.113)

V2

A 1 !

V. =ov;H;=—0al : |, (2.114)
Vi

V. =QVy H: =MV HY, (2.115)

where
” l i 3
Hy=—Y3 V3 (2.116)
6 i=1

Remark 1: The H? of (2.115) is not the H; of (2.108)
but differs by a constant multiple of H{ H, [as defined by
(2.108) ]. The time dynamics determined by Hy is equivalent
to a partial Galilean transformation (¢—¢,x —x + ct) of Eq.
(2.113).

To see (2.115) we can begin from the BT

2
P | Pirix +4i(@1)=(_"’f“) (2.117)
¢jx ¢j+ 1x ax ¢j ¢jx
or directly from
lex - QV:I"
A _é‘l : -0 (2.118)
* VNxx - %V?\’
and use (2.114) to find that
John Waeiss 2653



0 . 0
y,=L{1 . Q+t0 .
212 0o ° 0
Vi vy
where we use the identity
le le V%
. 0 . 0 . .
. -0 ° 0= ) Q .
0 0 0
VNx VNx
Let
V? y?
.0 . 0
Q=1 . Q0 - —Q
21 o 0
Vi Vi
We show that
M; =1,
Using

AT =4+ ), A =yd-Q),
Q=4"'B, Q4*= —B*

where

Vi Vi

It is straightforward to find

Vl+ V2

Vo+ V.
Q,= 2t V3 Q

and
Q,=M,,

which establishes (2.115).

Remark 2: The system (2.114) is a scale-invariant
Hamiltonian system of the type studied by Yoshida.” That is,
(2.114) is invariant under the scaling

X—a—'X, VoaV. (2.127)
By a leading order analysis
V~X"1C, (2.128)
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Q=4I+ Q021 - Q),

V, v, Vi
. ol °. Q ,
Vy S 7 v
(2.119)
Vi
0 0
_ 3 Q (2.120)
0
Vi Vi
vy Vi
L] 0 - 0
. Q . Q (2.121)
0 0
Vy Vy
(2.122)
(2.123)
(2.124)
v, Vi
.0 .0
B*+B . Q g B*. (2.125)
0 0
Vy Vy
0
V,+V
2Tl (2.126)
A

T
it can be shown that there is an N-vector ¢,

e=(2,4,6,8,..,2K, — 2K, — 2K + 2,..., — 2,0),
(2.129)
and resonances
r=—2K+1,—-2K+3,.,—1135,..2K+ 1. (2.130)

By Ref. 7 the resonances {1,3,...,2K + 1} correspond to the
homogeneous invariants {H,; , ,;j=0,1,...K}.

In a somewhat different direction, the general system
(2.26) (for arbitrary N) has a commutator representation

John Weiss 2654



that is related to the factorization method of Infeld and
Hull.® Define the “raising” and “lowering” operators

L =D+, (2.131)
L7 =D—}V, (2.132)

where D = d /dx and the N by N matrix operators

A L

o A, L; 0
o Tt Li,

L A

4 Ly,

L~ o 0

= Ly .

o ..

'L,;_l ‘o

(2.133)

(2.134)

+L+
a .
LY= LfLs L .
0 L T,
\ CLFLY -
(L&-L;—l"‘Ll—
MY = L Ly Ly

\ 0
From (2.135), or directly using (2.136), the pair of scalar
operators

P=L*L; Ly, Q=LyLy_, L[, (2142)
and other associated pairs, commute:

PQ = QP. (2.143)
Although deg(P) = det(Q) = N (not relatively prime), the

operators (P,Q) will, according to Burchnall and Chaundy,’
satisfy an algebraic identity of degree N, or less, in (P,Q). We
note that

L*= —M, Q*=(—1"P. (2.144)

For N=3,5, we have found that the matrix operators
(L,M) satisfy

L?*—M3=h,(LM) + h,, (2.145)
L3 —M?>=h,(LM)* + hy(LM) + hs, (2.146)

where the 4,, , , are integrals of (2.137), homogeneous of
degree (2j + 1).
The modified KdV sequence is defined to be'

Vi+LyoVy=0,

where n = 0,1,2,... and

(2.147)
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Then
LM, =ML, (2.135)
if and only if
Lt Lo,=L;7 L}, (2.136)
forj = 1,2,3,...,mod (&). Condition (2.136) is
I/j)c'-I'.V,'1+l.x"‘§(17 - +1), (2.137)
which is
Vi
AVX=%B I B (2.138)
Vi

or, Egs. (2.26). When N =2K + 1, (2.138) is the system
(2.114). With

L=L,—A, M=M, —ol,

Ly Ly ,~Lyg

(2.139)
it can be shown that
, (2.140)
(2.141)
-
L,=D(D+ V)D - (D-"). (2.148)

We conjecture that the time dependence of the periodic fixed
points evolves according to the system

V,=Qv, H}, .., (2.149)
for n =0,1,2,3,..., and where
v, =Qv, H,. (2.150)

The H ;, , ; are suitable integrals of (2.150), homogeneous
of degree 2n + 3. With N =2K + 1, we have found pre-
viously (2.105) that

OVy Hy s =QVyp H =MV H. (2.151)

2K+1 — O
or, for the (2K + 3) MKdV flow associated with H, _ ;,
V. =o. (2.152)

Therefore, if the conjecture is verified, the evolution of the
fixed points occurs on a manifold of steady state solutions of
a higher-order equation (a Lax—Novikov equation) and the
theory of periodic fixed points of Bicklund transformation
is, in this sense, equivalent to the theory of the finite-zone
potentials, %!
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On the stable analytic continuation with a condition of uniform boundedness
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It is shown that, if 2(x) is any continuous function defined on some interval

[ —a,b1C ( — 1,1) of the real axis, then, in general, its best L ? approximant, in the class of
functions holomorphic and bounded by unity in the unit disk of the complex plane, is a finite
Blaschke product. An upper bound is placed on the number of factors of the latter and a
method for its construction is given. The paper contains a discussion of the use of these results
in performing a stable analytic continuation of a set of data points under a condition of
uniform boundedness, as well as some numerical examples.

I. INTRODUCTION

In this paper, we consider the following problem: (A)
let A(x) be a continuous function defined on the segment
[ —ab]lC(—1,1), and p(x) an increasing function with
normalized bounded variation defined on the same interval.
The distance from A(x) to another continuous function
f(x)on | —a,b} is measured by

b
X (ph—f) =f (A(x) —f (x))P dp(x) .

Let further H g (D) be the set of functions real holomorphic
in the open unit disk D: |z| <1 (z =x + ip) and uniformly
bounded there, with the norm

llfllngluglf(z)l-

The question is to show the existence and to describe that
element of H 3 (D) which realizes

Yain (o) =inf{y(psh — f): fEHZ (D), || fll. <13,
(1.3)

i.e., the best L ?( p)-approximant of 4(x) in terms of func-
tions of H g (D), bounded by unity inside D.

In Sec. I, we shall argue that the situation yZ,, >0Oisin
a certain sense the usual one. Then, if a number of y} exists
so that 2. > y? >0, we show that (i) the unique function
on which the infimum is attained is a finite Blaschke product
and (ii) an upper bound may be placed on the number of its
factors, dependent on 4 (x) and y?. An estimate of y; may be
obtained from the solution of the related H % problem: (A")
find

Xoin2 (psB)=inf{y*(psh — f): feH% (D), || fl.<1},
(1.4)
where H % (D) is the analog of H g (D) with the norm

(1.1)

(1.2)

||f||25-21;3€|f(e"’)|2d0. (1.5)

The problem (A’) is explicitly solvable (see Sec. IV for a
reminder) and, since the infimum in (1.4) is taken on a
larger set, it is true that

Xouinz (P31 <Youin (034) - (1.6)
Therefore, if yZ,,, ( p;h) >0 (which is the usual situa-
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tion), we do obtain an upper bound on the number of factors
of the Blaschke product in the solution of problem (A), de-
pending only on the “data function™ A(x). In Sec. II1 we
shall show, however, even more, i.e., there exists a nice con-
nection between, roughly speaking, the dual extremal prob-
lem that arises in relation to (A') and the dual problem relat-
ed to (A). This allows us to set up an algorithm for the
determination of the extremal element of (A ), which avoids
resorting to an opaque and cumbersome minimization in a
space of Blaschke parameters with dimension equal to the
bound mentioned above. We reduce, namely, the problem to
that of solving a certain nonlinear equation for which the
convergence of an algorithm related to the Newton-Kan-
torowich procedure may be completely analyzed (see Secs.
IIT and VI and Appendix C).

The fact that the function realizing the extremum (1.4)
is a finite Blaschke product if y2, >0 was derived by differ-
ent means (using the Schur-Pick-Nevanlinna interpolation
theory) in Ref. 1, for the case of a piecewise constant weight
function p(x) with N jumps. It was shown there that the
extremal product consists of at most NV Blaschke factors. The
present paper provides a refinement in that, for large W, it
turns out that the number of factors does not increase indefi-
nitely, as long as yZ,, ( p;) stays larger than any given y?
>0.

The argument we present concerning the existence and
uniqueness of the finite Blaschke product that realizes (1.3)
rests upon (a slight generalization of) a theorem of Rogo-
sinski and Shapiro (Ref. 2), concerning the extrema of linear
functionals defined over H* (D) (see also Ref. 3 for a relat-
ed treatment). In Sec. II we repeat the reasoning of Ref. 2 in
the present setting, both for the convenience of the reader
and because several of its intermediate steps are of further
relevance to this paper.

The interest in the solution of problem (A) is in the first
place of a mathematical nature; it provides an example of a
rather complicated looking extremal problem (of a mixed
H?-H~> type) whose solution always lies in a finite-dimen-
sional class of functions. In fact, the results stated above may
presumably look more surprising if they are formulated as
follows: Consider any real analytic function f,(z), holomor-
phic and bounded by unity in the unit disk and let it be affect-
ed by errors on some interval [ — a,5] of the real diameter of
the disk, in such a way that one obtains a (continuous) func-
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tion A (x), which admits of no analytic extension to |z| < 1.
Then, look for the best fit to #(x) in the class || f|| , < 1:one
always obtains a Blaschke product as a result and never the
original £, regardless of the manner in which the errors have
been distributed.

There are also other reasons for studying question (A):
its solution allows an answer to the following problem (B):
let S(yo;h) be the set of functions f in H g (D) obeying

¥ (psh—)<xs (1.7)
for some y3 > 0. One is required to show the existence and
describe that element of H § (D) which realizes

M,(yo:h)=inf|| f||, =inf Is'upl|f(z)| (1.8)

over all f inS(ygh).

The solution f,(z) of problem (B) provides a stable
analytic continuation of the data /4 (x) to the whole interior
of the unit disk (see Refs. 4-6 and also Sec.. VI of this paper).
Usually, for such applications, p(x) is a piecewise constant
function, with jumps equal to 1/Ne? at the points
x,€[ — a,b], where €, is the estimated error of the measure-
ment A(x; ) atx; of a certain function f;(z), holomorphicin
D. The most well-known instance in high energy physics
where such an extrapolation is required is presumably the
Chew-Low—-Goebel extrapolation of the 7N — 7N differen-
tial cross section to the (second-order) pion pole.”® To be
sure, there exist other, simpler, methods to achieve the same
end: one of them is to map the unit disk onto the natural
domain of convergence of a series of polynomials (Refs. 9
and 10), orthogonal on the image of [ — a,b] and truncate
the series suitably (see also Ref. 11). Also, methods that are
numerically very successful have been developed for the situ-
ation when the stabilizing condition || f|| ., <11is replaced by
the condition || f||,<1, or variants of it (Refs. 12~14).

It is of interest to consider also modifications (A_),
(B, ) of problems (A) and (B): one looks for the extrema
(1.3) and (1.8) under the n. supplementary conditions

S (x0,;) =ﬂ);i s (1.9)

for some points {x,;}/<,, lying (in general) outside
[ —a,b], and fixed, given values f,; .

The solutions of problems (A.) and (B,), forn, =1
may be used to give a numerical answer to the following
question (C): given a point x outside [ — a,5], find all possi-
ble values assumed at x by functions f (z) in S(y:h) N{ f:
JeH (D), || f]l. <1}. This problem [with p(x) piecewise
constant] has received attention over the past decade in rela-
tion to the interpolation of the spacelike data on the pion
form factor F, (¢)."'>!®* Measurements in the timelike re-
gion provide a bound M(¢) to F,(¢) and the problem of
finding the allowed values of F, (¢) at some point ¢, <0 out-
side the (spacelike) data region may be reduced to (C), after
dividing off an outer function

ei9+z

- (1.10)
e —z

E(2) =exp?11;§ In M (6(2))dO,

where z = z(r) is a well-known conformal mapping.” In fact,
the form factor is constrained by F, (r =0) = 1 and then
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problem (C) may be reduced to (A ) and (B.), with
n, =2.

A problem similar to (A) and (B) above was consid-
ered in Ref. 17. There, the set of functions F(z) was consid-
ered, with F(z) represented as

£
F(z) =_1_J ﬂﬂ_dt,
T Ja

t—z
where f (2) is real, and we looked for the smallest possible
value of y*( p;h — F), defined over a data region outside
[a,B], among all F(x) satisfying (1.11) with

753
I|f||1=f | A |de <A,

for a given 4. It turned out that, if Y2, ( p;#) >3 >0, then
the extremal function is made up of a finite number of §-
functions and a bound, depending on A(x) and y?, was de-
rived for the number of the latter. The proofs in Sec. IV of
this paper bear some similarity to those of Ref. 17 but are
more involved.

A recent study exists'® concerning problem (C) above,
with the distance (1.1) between functions on [ — a,b] re-
placed by the uniform norm. For arbitrary #(x), this form of
the problem is considerably harder than the one of this pa-
per. The authors solve it completely in the special case
h(x)=0 and show that, as in problem (C) of this paper,
Blaschke products realize the extreme allowed values at a
given x outside [ — a,b]. They are also able to make definite
statements concerning the location of the zeros of these par-
ticular Blaschke products, which turn out to be a natural
(and surprising) generalization of the Chebyshev polynomi-
als.

The present paper is organized as follows. In Sec. II,
after a short geometrical discussion, we derive the an-
nounced result concerning problem (A): the extremal func-
tion is a finite Blaschke product. In Sec. III, we discuss the
determination of the sets || ||, <1 and || f]|.<1 in terms of
their supporting hyperplanes and obtain, essentially, a de-
scription of the former set by means of the latter. This allows
us to reduce the solution of (A) to that of a nonlinear inte-
gral equation. Further, using geometrical and function theo-
retical arguments, we show that the operators appearing in
this equation have pleasant differential properties (in parti-
cular, their Fréchet derivative is, in general, invertible). In
Sec. IV, we derive the bound announced above concerning
the number of zeros of the extremal Blaschke product. Sec-
tion V extends the results of Secs. II-1V to the case when the
values of the extremal function are prescribed at some points
[problems (A, ) and (B, )]. In Sec. VI, we discuss the basis
of the numerical solution of problems (B) and (C) and,
finally, in Sec. VII, we present some numerical examples and
conclusions.

Appendix A extends the geometrical discussion of Sec.
IT and establishes a relation between a solution of problem
(C) with y2;, = 0and the methods of this paper where y2,,
> 0. Appendices B and C are complements to Sec. IIl and V
and Appendix D discusses the convergence of the algorithms
used for the solution of the integral equations of Secs. III and
V. Appendix E removes an assumption made for simplicity
throughout the text.

(1.11)

(1.12)
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il. THE DESCRIPTION OF THE EXTREMAL FUNCTIONS

We shall describe the functions realizing the extremum
(1.3) in the family

Fau={LLHED), | f].<a}(=F,) 2.1)

with @ = 1. The generalization to arbitrary a is obvious and
will be used in Sec. VI. It is advantageous to distinguish
between .7, . and Z,  (=%,), the image of &,  in
L2( p) by the inclusion Hg (D) CL %( p). If p(x) is of finite
type (i.e., has only N points of increase), two distinct ele-
ments of %, need not be distinct in & ,. We suppose that

Xmin (P31 #0 . (2.2)
This condition requires some comments.

Assume first that p(x) has on some interval (da’',
b')C ( — a,b) astrictly positive derivative. Then, condition
(2.2) means that no extension of #(x) outside the points of
increase of p(x) leads to a function in .# . The question is
how likely is this situation. To this end, we notice that every
f(x) in & | may be approximated arbitrarily well in the
sense of the norm (1.1) by functions continuous on [ — a,b]
and lying outside .7 , e.g., by modifying f (x) and (a’,6") to
broken lines joining points (x;,f (x;)), (% .,/ (X4 1))s
a' <x; <b'. Thus, &, does not contain any ball Sye:f)
centered at £, no matter how small y,,. On the other hand,
we shall show below that 7, is closed with respect to the
convergence generated by (1.1); therefore, any point outside
it has a neighborhood disjoint from .7 ,. It is in this sense that
we state that condition (2.2) is fulfilled with a large chance
(generically). Intuitively, we may state that the noise in the
data, although it respects the continuity of the measured
function in our case, destroys the fine correlations implied by
analyticity and boundedness.

If (2.2) is violated, i.e., yZ., (p;#) =0, then, by the
uniqueness of analytic continuation, the minimal value of
x*( p;h — f) is attained on one function in .% |, about which,
of course, nothing more may be said.

If p(x) is of finite type, let 7y be the set of continuous
g(x), xe[ —a,b], such that y2, (g) =0. We shall argue
that condition (2.2), i.e., h(x)&#y is, in some sense, in-
creasingly likely as & increases. We show, namely, the fol-
lowing (which is a more detailed form of the argument used
in Ref. 17).

Let [)(x) have an infinite number of points of increase
on [ —a,b], and let py (x) be a sequence of approximants of
finite type to p(x), such that (a) the points of increase
X1,X5,..s%y Of py (x) are included in those of py | | (x); (b)
pn(x; +0) =p(x; +0),i=12,.,N; and (c) as N—co,

sup | p(x) —py(x)|—0. 2.3)

x€[ —ab]

Further, define, for any f&.% |,

b
rf’NEsup[r:f g(x) —f(x)) de(x)<r:>g(x)e}/N] .

(2.4)
Then, as N— o, 7  —0, uniformly with respect to fe.% ,.
To understand the meaning of this statement, consider

the set
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Fn ={weR ™, w= (w,w,,....wy):
- f(x;) =w, i=1,.,N, for some fe%,}, (2.5)

i.e., the set of possible values assumed at x,,x,,...,x by func-
tions f£.% ;. We may identify ¥y with %, if we use the
isomorphismof L *(p,, ) with RV . Equation (2.4) is the radi-
us of the largest ball contained in %, and centered at the
point { £ (x;)}"_,.

To prove the statement, we shall show that, for any
€> 0, we can find Ny(e€) such that, for V>N, (€) and for any
feZ , the ball of radius € centered at f contains points lying
outside % . Indeed, we choose first N, (€) so that the left-
hand side of (2.3) is less than €/16 for N>N,(€). Assume
thenthatpy ., , (x) has a point of increase X between x;, and
X 4 1- Let then Ny(€) = N,(€) + 1 and define

g(x) =f(x), for x<x; or x>x,_,
=1 (x) + (f(X) +3)(x —x)/ (X —x;.), X <x <X,
=f(x) + (f(x) + 3)(x -xk+1)/(i —xk+1),

X<X <Xy y1- (2.6)

Clearly, by the maximum modulus theorem, | f (¥)| <1, so
that g(X)>1 and, consequently, g(x)é#°y, for all
N>N,y(€). On the other hand, for any N>Ny(e),

b
f 8(x) —f (X)) dpy(x)

<16{py (X441 —0) — py (X, +0))
<16(p(x4 11 —0) — py, (x, +0))

<16 sup b(f)(x) —pn, (X))<e 2.7

—a<x<
and this proves our point.

Thus, we can state that the body . gets increasingly
flattened as N grows and, for high N, the effect of the noise is
that the experimental values {4, } yield in general a point in
RY lying outside .y, so that condition (2.2) is fulfilled.
This remark was made for the first time in Ref. 19 and, in the
present setting, in Ref. 15; it was used in the work of Refs. 1,
16, and 20 and was further discussed in Ref. 21 and in Ref.
17.

One should mention that the improbable situation
{h(x;)}*_,e% allows, under special circumstances, an
elegant treatment of problem (C) of the Introduction. As a
consequence of Theorem 2.2 of Sec. VI, Ref. 22, if both
points Q,I_teRN , with coordinates

b =h(x;) + (= D'e;, b =h(x) +(—1D'*'e, (2.8)
belong to .#, and X;>Xx,>Xx,>* * * >Xy, then one may

obtain exact upper and lower bounds for the values assumed
at a point x #x; by all functions in % | obeying

hix)) —€ <f(x)<h(x;)+¢€, i=12,...N (29)
(€; >0). Namely, if x < x,, the upper bound is obtained by
performing a Pick-Nevanlinna interpolation (explained,
e.g., in Ref. 15 and 23) of the points 4, and letting the final
free function beequal to + 1if Nisevenand — 1if Nis odd.
The lower bound is obtained from 4, with the free function
equal to F 1 if ¥ is even/odd. Similar statements are possi-
ble if x is situated in a different manner [staying in
( — L,1)]. Apart from the statements of Ref. 22, the only
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information one needs in order to derive these results is the
positivity of the determinant

Ay (x;;0, )=det|P(x;;0,) N _ 1 » (2.10)

where P(x,0) is the Poisson kernel
}

2
1-—x~

Y, (cos 8, — cos Oy )TV 1 (x; — x 3 )T (1 — x;xy)

—y2
) P k. S—
27 1 —~2xcosf +x
and 1>x,>%x,>->xy> — 1,0<0, <0, < - <Oy <.
Imitating the method of Ref. 24, one obtains the recurrence
relation

(2.11)

AN(x,;ak) = 2N_ 1

Ay (x0,)

which makes positivity explicit.?

In a recent paper (Ref. 26), under the assumptions that

the point with coordinates {/#(x;)}?"_, belongs to %y, and

that both points &€, with coordinates {( —1)'¢;}\_,,
{(=1)*1¢} | in turn, also belong to .¥ y, the author
derives upper bounds for the departure of a linear extrapola-
tion formula
N
fx) =3 Ci(xx;e)h(x,), (2.13)
i=1
where the coefficients C; are specified functions of x,x;,€;,
from the set of values assumed at x by those functions of % ,,
which obey (2.9) (see Ref. 27).

Unfortunately, the arguments of Refs. 1,15-17 and 19-
21 as well as the foregoing one show that the “chance” (un-
derstood as above) for the conditions of validity of these
results [i.e., (Z,Q)GYN or he’ y, (€,€)€.% y ] to be met is
vanishingly small, as soon as JV assumes realistic values (e.g.,

% 5 in the example of Ref. 17). It may be, however, of inter-
est to understand the transition between these results and
those obtained in Ref. 1, when the experimental point
{h(x;Y}'_, lies outside .¥ . We give a discussion of this
point in Appendix A.

Clearly, the arguments for the generality of the condi-
tion y2,., >0 are not restricted to the special type of norm
(1.2) used to define .% |. In fact, such a question arises in
connection with the construction of a function C(x), which
reduces the errors €; of the data points #; to a constant value,
as proposed in Ref. 28. For two data sets at points {x; }}*/3,
{x}Y7%, such that x]_, <x; <x] <x;, ,, with errors € and
2¢ in turn, the minimal L 2 norm of Re In C(¢“ ) is a rather
large number [of the order of 10 for a total of 15 points
distributed equidistantly on ( — 0.5,0.5)].

Before proceeding, we note that, if p(x) has an infinite
number of points of increase, then .7, is convex and closed
with respect to the distance (1.1). Indeed, if a sequence
fa (X)E‘g‘;l converges in the sense of (1.1) to f,(x)eL *( p),
it contains a subsequence f,,k (x) that converges pointwise,
a.e.p to fo(x). By a form of the principle of uniform boun-
dedness (due to Vitali), the sequence f, (x) converges even
uniformly on compact subsets of D. The limit function
fo(x) is thus real holomorphic in D and bounded on any
compact subset of D by unity. Thus, it is in 7 ,.

If p(x) has only a finite number of points of increase,
then the set .*yeR”, defined by Eq. (2.5), is convex and
closed (see Ref. 1).

In order to have easy reference to results available in
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27 Y, (1 — 2x; cos By + x5 (1 — 2xy cos 6, + x%)

AIEP(xl;el) )

(2.12)

r
textbooks of analysis, we take the completion of the space of
continuous functions with the form (1.1) and obtain thus
the Hilbert space L *( p). Then, using, e.g., Theorem 4.10 of
Ref. 29 (p. 83), we conclude that there exists a unique
fo(x)e¥ | [aunique point Pe.”  if P(x) is of finite type]
on which y2,. ( p;h) is actually attained.

The characterization of the extremal elements of prob-
lem (A) is obtained by transforming it to a problem of maxi-
mization in the space dual to L *( p), which, by a well-known
result (Ref. 29, p. 89, Theorem 4.17) may be identified with
L?( p) itself. We shall use the notation || - |, and (-, -),, for
the norm and scalar products obtained from (1.1). The re-
sult we need is a corollary of the Hahn—-Banach theorem (see
Ref. 30, p. 58, Theorem 3.4 and Ref. 31, p. 136, Theorem 1)
and states for our problem

Xmin ( p3h) = sup ((n,h), —sup(n, f),), (2.14)

Il <1 £z,

where the supremum on the right is attained by some n, in

L% p). The essential element in (2.14) is the convexity of
7 1. Further, we have seen that y,.., ( p;#) is realized by a
unique f &% ;; then, Eq. (2.14) implies

Xmin = ”h —f0||p<(n0’h)p - (nO’fO)p<“h ——fO”p ’
(2.15)

where we have used Schwarz’s inequality in the last step. We
conclude that

sup(ng, /), = (10, f0), (2.16)
feF,

and
no(x) = (h(x) — f o/ —Foll, - (2.17)

This shows that the extremal ny(x)eL *( p) on the right-
hand side of (2.14) is also unique.

We are now able to sketch the main direction of our
argument (presented in Sec. IV) concerning the bound on
the number of parameters of the solution of problem (A). In
the rest of this section, we shall show that, independently of
the special form of p(x) and for any n(x) in L 2( p), the
functions f (n;x) realizing the supremum in (2.16) are
uniquely determined in % , and are finite Blaschke products.
Consequently, so is f,(z), which realizes yZ,,. In Sec. IV,
we prove essentially that, if a sequence {n, (x)}g_, issuch
that the corresponding extremals { f,(x;n, )} have a num-
ber of zeros that increases indefinitely, then n, (x) tends
weakly to zero. Consequently, if y ... ( p;#) is realized on a
function that has a too large number of zeros, Eq. (2.14)
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implies that it may be unable to stay larger than some num-
ber y,, given in advance. This will set an upper bound on the
number of zeros of f,(x), depending on A(x) and y,, as
announced. Now, following (to some extent) Ref. 2, we
state the following theorem.

Theorem 2.1: Let n(x)eL *( p). There exists a unique
f(m;z) in & | such that sup{(n, f),: fe# ,} is attained on
f(n;x) and f(n;z) is a finite Blaschke product.

Proof: We rewrite, using Cauchy’s theorem

i0
(n’f)p = (n’._l_ .:{#. & de)
€ P

27 —x
- ——l-—ffk(n;e)f(é’)e"e do, (2.18)
21
with
: b n(x)
k(n;9)=k(n;z=e"’)=f ———dp(x). (2.19)
—a € — X

Notice, k£(n;z) is holomorphic in the whole z plane, except
for theline [ — a,b]. The problem is to find the supremum of
the right-hand side of (2.18), for fixed k(n;6) among all
£ (6), which are boundary values of /&% ,. (These are de-
fined almost everywhere, see Ref. 32, p. 6, Theorem 1.3.)

We derive the existence and properties of the extremal
f(m;z) using again duality relations (see, e.g., Ref. 32,
Chaps. 7 and 8 and Ref. 31, Sec. 5.8). To this end, we recall
we can identify isometrically the space L= (T') of measura-
ble complex functions absolutely bounded on the unit circle
T: |z| = 1 with the space of continuous linear functionals
defined on L 1(T) (Ref. 29, p. 136, Theorem 6.16). The ac-
tion of such a functional, denoted by 4, on L *(T) is then
given by

(hg) = 35 h(6)g(6)do,

with #(8)eL= (T), g()eL (T).

Consider now the real subspace L §(T) of L= (T) con-
sisting of functions f (6) with the symmetry property (a.e.
on — <O <)

fO) =r*(-06). (2.21)
One can verify that L 3(7) is isomorphic (isometrically)
with the real vector space of real continuous linear function-
als defined on the subspace L } (T) of L '(T), of functions
£2(8) obeying the symmetry (2.21). Further, it follows from
Cauchy’s theorem that the subspace H §(D) of L g(T)
made up of functions f (8), which admit of a bounded holo-
morphic extension to D: |z| < 1, generates linear functionals
that vanish on the subspace H § (D) of L § (T), of functions
g(z), holomorphic in D and such that §|g(re )|d@ is uni-
formly bounded in » < 1. It can also be shown (e.g., using
Ref. 32, Theorem 3.7, p. 40) that H } (D) represents in fact
the whole annihilator of H 3 (D).

With this the following (duality) relation holds (Refs.
30and 31):

(2.20)

sup —— k(n:0) f (6)e? do
fHZ (D) 21
Iflle<t

= inf - lkn6) —g8)]db.

2.22
sl h(Dy 27 ¢ )
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The supremum on the left is achieved by some
S (mz)eH (D). Thus, the existence of the extremal ele-
ment of Theorem 2.1 is guaranteed. Further, using the argu-
ment of Ref. 32, p. 132, one can show that, since k(n;0) is
continuous on T, the infimum on the right is also realized by
a function g(n;z)eH } (D). With this, we may obtain part of
the statement of Theorem 2.1 from the conditions under
which the following chain of inequalities is saturated:

L § k(n:0) f (m;6)e® d6
27

-L §(k(n;e> —g(mO))f (m0)e® db
2
(a)
=i 3§;k(n;e) —e(m)| | F (n:6)|d6,
21
(b)

L ff|k(n;e) —g(n;6)|d6 . (2.23)
2T

In step (b), equality can occur only if | f (#;0)| = 1 al-
most everywhere on T, where k(n;0) — g(n;0) #0. How-
ever, k(n;0) — g(n;6) cannot vanish on a set of positive
measure, without vanishing completely [Ref. 32, p. 17;
k(n;0) is holomorphic in a domain around 7’]. Thus, almost
everywhere on |z| = 1,

|f(m6)| =1. (2.24)

We next show that f (#;z) contains only a finite number of
zeros in |z| < 1. The condition for equality in step (a) of
(2.23) is that the function

L(n;6) = (k(n;0) — g(n;0)) f (n;0)e” (2.25)

be of constant phase on the unit circle. From the symmetry
condition (2.21), we conclude that, in fact, a.e. on { — 7,7),

L(n;8)>0. (2.26)

Equation (2.26) suggests an application of Schwarz’s
reflection principle to L (#;z) across the unit circle, and thus
the conclusion that L(n;z) is in fact holomorphic in the
whole z plane, except for the segments [ —a,b]Ju[1/
b, 0 JUl — w0, — 1/a] (a>0). A repetition of the reasoning
on which Schwarz’s principle is based (see, e.g., Ref. 33, p.
309) shows that the only requirement for its validity is that,
for any arc (6,,6,),

6,

lim | (rL(m;re®) — L(n;e?))d6=0.

r—1 Jg,

(2.27)

This is, however, guaranteed by the fact that g(n;z) belongs

to H (D) through Theorem 2.6 of Ref. 32 (p. 21). It fol-

lows that L(»n;z) and, therefore, f (n;z) can vanish only a

finite number of times inside a crown 1/r<iz|<r, 1>1/

r>max [a,b]. Further, f(n;z) may vanish only a finite

number of times in |z{ < 1 and may be written as (|a;]| < 1)
z—a,

Fmn =1 -4,

i=1 1 —a¥

(2.28)

with #(z) nonvanishing in |z| <1, |¢(e’)| =1 ae. on

lz| = 1, geH 2 (D).

We now show that, in fact, ¥(z)= + 1. To this end, we
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write, for any r < 1 and |z| <7,z = |z|e",

7|z

1
i =—
ay @) 27 Sgrz — 2r|z|cos(8 — ¥) + |z)?
X In|¢(re®)|da . (2.29)
If we show that the positive quantities
I(r) = —§ln|¢(re"") ldo (2.30)

tend to zero as ¥—1, we conclude that |In|#(z)| | is bounded
by arbitrarily small quantities, for any z in |z| <1, and it
follows that |/(z)|=1. To show that I(r)—0 as r—1, we
notice first that a number 0<a<} exists so that both
|L(n;e®)| ~%* and |g(n;e®)|* |L(n;e®® )| ~* areintegrable
on — <0< . This follows from the fact that L(n:¢° ) has
only zeros of finite multiplicity (isolated) on |z| =1 and
from Schwarz’s inequality

5B|g<n;ew> @ |L(nse®)| = dB

172 172
<[§|g(n;e"")|2"d0] [§|L(n;e"")|‘2“d9] ,

(2.31)

if we take into account that |g(n;e” )|eL '(T). Using the
inequality

1 1—x"

—Inxg— ~ OD<x<1), (2.32)
a x
we write
1 [ 1—|¢re®)|”
I(’K——Ef)————.——dﬁ
a |¢(rexa)|a
<5 ff(l — $(re®) [
+ X fﬁw(re“") — B8, (2.33)
a
with
B(e®) = (|g(me®)|® + |k(me®)|%)/|L(me®)|*.  (2.34)
In (2.33) we have used the inequality
(x+y)<x”+y“, (2.35)

valid for x,y > 0, 0 <@ < 1. The first term on the right-hand
side of (2.33) goes to zero as »—1, by the dominated conver-
gence theorem. The second term also vanishes as »—1, as a
consequence of the fact that g(n;z) belongs to H '(D) (see
Ref. 32, Theorem 2.6, p. 21).

From this argument and knowing the holomorphy do-
main of L(n;z) it follows that g(#;z) is in fact holomorphic
in the whole z plane, except for a cut along [ — e, — 1/
alull/b,].

The uniqueness of the extremal functions f (n;0) and
g(n;0) is a consequence of the positivity condition (2.26).
The latter is true for L(n;8) constructed with any combina-
tion of an extremal g(#;0) and an extremal f (n;6). We pick
then out a definite g(n;8) and infer from (2.26) that all
extremal f (n;z) must have the same phase (mod 27) along
|z| = 1. Since | f (1;60)| = 1, this implies that they must be
identical. However, if f(n;0) is given, the combination
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zg(n;z) f (n;z) [and thus g(n;z) ] is completely determined
from its boundary values by means of the (complexified)
Poisson formula:

Im k(n;0) f (n;0)e”® = Im g(n;0) f (n;0)e .

This ends the proof of Theorem 2.1.

Returning now to problem (A), we see that, with the
remarks surrounding Eq. (2.14), we have proved the follow-
ing theorem.

Theorem 2.2: There exists a unique f;(z)e# , on which
Ymin ( p;h) is attained. The function f,(z) is a finite
Blaschke product.

Notice, in both Theorems 2.1 and 2.2 we assert the
uniqueness of the extremal element in %, rather than % .
This reproduces the results of Ref. 1 where, using Schur—
Pick-Nevanlinna interpolation theory, the authors show
that the unique point P, in .5 on which y,... ( p;h) is at-
tained is indeed generated by a unique Blaschke product. In
the next section, we turn to the problem of actually con-
structing f,(z).

(2.36)

lll. AN INTEGRAL EQUATION FOR PROBLEM (A)

The theorems of the preceding sections provide no
means of computing the extremal f,(x). In fact, given
n(x)eL *( p), the argument of Theorem 2.1 does not show
how to find the Blaschke product f (7;x), which maximizes
(n,f), over F . If such a method (expected to be nonlin-
ear) were known, Eqs. (2.16) and (2.17) would provide an
equation for the unique extremal function #y(x)
= ||h — foll,no(x) associated to fo(x). Since f(m;x) is
unaffected by a change from n(x) to An(x) for any positive
A, this equation reads simply

Ro(x) = h(x) — f (Agx) . (3.1)

Equation (3.1) has no other solutions in L ?( p) apart from
ny(x). Indeed, any n,(x) obeying (3.1) leads, when normal-
ized, to equalities in (2.15) and is thus identical to 7, (x).

Although it does not give the explicit dependence on
n(x) of f(n;x),theargument of Theorem 2.1 does provide a
characterization of f (n;x), for given n(x), by means of the
special properties of the function L (n;z), Eq. (2.25). To see
how this is done, we recall the function L (n;z) is made up of
n(x), the extremal g(n;x) and the extremal f (n;x), is posi-
tive along |z| = 1 [Eq. (2.26)] and is holomorphic in the z
plane cut along ( — w0, — 1/a]u[ —a,b]u[1/b,0]. The
latter property is expressed more accurately through the fol-
lowing lemma.

Lemma 3.1: L(n;z) obeys the representation

b
L(nz) = 27Tf n(x) f (n;x)P(x;2)d p(x) , (3.2)

where P(x;z) is the Poisson kernel [generalizing (2.11) to
|z]#1]. _

To prove this lemma, we denote by L(z) the right-hand
side of (3.2) and verify first that it has the correct analyticity
properties of L (#;z). This is evident from the decomposition

_ 2
——I—P(X;Z)=— 1 1—x
x 27x x> —x(z+ 1/2) + 1
=__1_ ! 1 ___1_] (3.3)
2rlx—z x—1/z x
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Further, z(z) is clearly real on the unit circle. As a conse-
quence, the difference

A(z)=L(n;z) — L(z) (3.4)
obeys the same reflection symmetry as L(#n;z) and L(z):
A(z) = A*(1/z*) . (3.5)

Now, using Eq. (2.25) and the expression (2.19) for
k(n;z) we verify easily that, in fact, A(z) is holomorphic in
the unit disk. It follows then from (3.5) that it is everywhere
holomorphic and thus a constant. To show that the constant
vanishes, we compute lim,_,, A(z). On one hand, from the
definition of L(n;z), Eq. (2.25), we see that the possible
nonzero term of L(nz) near z=0 comes from
zk(n;z) f (n;z). On the other hand, from (3.2), we verify
that, nearz =0,

b .
Z(z) =zf Mdp(X)

Z—X

+ 0(2) =2zk(z) f (n;2) + O(2) . (3.6)

Thus, A(z)—0 as z—0, and this proves Lemma 1.

Notice that the right-hand side of Eq. (3.2) contains
only n(x) and f (n;x), whereas g(#;x) has dropped out. We
may now imagine that we are given a function n(x) and a
Blaschke product B(x;x), with zeros at the points «;,
i=12,..,p, and that we construct with them a function
L(z;n;B) by means of the right-hand side of Eq. (3.2) [with
S (n;x) replaced by B(x;a)]. The question is to decide
whether L (z;n;B) is indeed the function L (n;z) associated to
n(x) [and the extremal f(n;x)]. From Eq. (2.25) we ex-
pect this to be so only if

Liz=a;mB)=0, i=12,.,p, (3.7)

whereas from Eq. (2.26) we obtain the (necessary) condi-
tion

L(z=¢%nB)>0, 0<O<27. (3.8)

A more precise inspection shows, however, that Eq. (3.7) is
not necessary if one of the a/s happens to coincide with a
point of discontinuity of p(x). Nevertheless, it turns out that
conditions that are both necessary and sufficient and are re-
lated to (3.7) and (3.8) may be formulated, essentially from
geometrical considerations. For simplicity, we shall confine
ourselves in the following to the situation when the extremal
Blaschke product has no multiple factors. The changes that
have to be made to allow for this are described in Appendix
E. With this, we formulate the following lemma.

Lemma 3.2: The Blaschke product B(x;a) is the extre-
mal function f (n;x) associated to n(x) by Theorem 2.1 if
and only if both

(n(x),B(x;a)P(x;ai)/a,-)p =0, i=1.2,..p,
and
(n(x),B(x;a)P(x;¢)),>0, 0<f<27. (3.10)

Notice, Eq. (3.10) is, by (3.2), identical with (3.8);
however, (3.9) reduces to (3.7) ifa¢[ — a,b], but not neces-
sarily otherwise.

Proof: We show first the “only if ”” part. Let B(x;a) be
the extremal Blaschke product associated to #(x); then it is
true that, for any change Aa; of the positions of the zeros,

(3.9)
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(n(x),B(x;a;) — B(x;a; + Aa,-))p >0. (3.11)

Consider then first only a change Aq, = A€,
Aa, ., =Ae~ % = (Aa,)* in the positions of a pair of
complex conjugate zeros a;, a, ., = af, with a fixed angle
@. We may apply Taylor’s first-order formula with respect to
A to write, using (3.11),

(’l(x), B (@, (x)) 1™ + 98 (x;dt(x))/ie"‘”) <0,
day da¥ .

(3.12)
with 0<(@, (x) — a; )/Ae”® <1. In writing (3.12) we have
allowed formally a Blaschke factor (x — a)/(1 — a*x) to
depend upon two variables, a and a*. We divide now Eq.
(3.12) by A and let A tend to zero. Using the dominated
convergence theorem, we obtain the condition that, for all g,

Re[(n(x), JB (x;a)) e"¢]<o. (3.13)
da, o

Letting in turn @ =0 and ¢ = 7 in Eq. (3.13), and then
@ =n/2and ¢ = — 7/2, we see that (3.13) implies that, as
a complex quantity

(n(x), JB (x;a)) =0. (3.14)
da, o
A simple calculation verifies that
27B(x;a) P(x;
dB ) = 2 (x;a) (x,ak), (3.15)
da, a

so that we obtain Eq. (3.9) for a; complex.

If a; is a real zero, we need only consider real variations
Aa;, repeat the reasoning above, and allow Aq; to have both
signs. Taking limits Aa; —~0 with Aa; >0 and Ae; <0, we
obtain immediately (3.9) also for real @;. Notice the expres-
sion P(x;a)/a is well behaved even if @ = 0, except atx = 0,
where it diverges like 1/x. However, in this case, B(x;a)
contains a factor x, so that (3.9) is always meaningful.

Finally, consider the variations of B(x;a) obtained by
the addition of two complex conjugate zeros @, , ;,&, ., »
near the points z=exp( +i6). Let Aa,, , = —Ae®,
Aa,,, = —Ae~", 1>0. We obtain an equation analo-
gous to (3.13), however, with an opposite sign. We can now
let A tend to zero only with a positive sign, so that we can
only conclude that [using Eq. (3.15)],

Re(n(x),B(x;a) P(x;¢)),>0. (3.16)
The brackets in Eq. (3.16) are manifestly real [P(x;e ) is
real] so that we have obtained (3.10). Thus, conditions

(3.9) and (3.10) are indeed necessary.
To show that they are sufficient, we write (z complex)

L(zn;B) = (n(x),B(x;a)P(x;2)), (3.17)
and construct, by analogy with (2.25),
g(z) = k(n;z) — L(z;n;B)/zB(z;) . (3.18)

We claim that g(z) is holomorphic in the whole z plane mi-
nus the intervals ( — o0, — 1/@)U(1/b,0). It is in fact
enough to show that it has no singularities on [ — a,b], since
Eqgs. (3.9) show that it has no singularities if z lies outside
[ —a,bl, |z| < 1. Using Eq. (3.3) and (3.9), we see further
that it is enough to show that the function
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1 y(@2)

D(z) = Wz = , 3.19
(@) =n(),9(z2)), B(z;a) B(za) (19
with
Ylzx) = BED —BED)  pyy X (320
zZ—X 1—xz

is holomorphic at all points of [ — a,b]. It follows from
(3.19) and (3.20) that ®(z) has in fact at most poles on
[ —a,b] at the possible zeros of B(z;a). Let x, be such a
zero; we compute the residuum at such a point (apart from a
factor) by letting z approach x, in (z), Eq. (3.19). If x #x,,
we obtain, using B(x,a) =0,

Y(xg;x) = — 27B(x;a)P(x;x0) /%0 . (3.21)

If x = x,, the last term in (3.20) vanishes, but the first term
gives [using (3.15)]

Y(xg;xy) = — 27 lim B(x;a) P(x;x5) /%, (3.22)
Then (using the dominated convergence theorem),
Y(x0) = — 2m(n(x),B(x;a) P(x;x0) /%), (3.23)

and it vanishes, by virtue of (3.9). Thus, g(z) is indeed holo-
morphic at all points of [ — a,b] and thus in the z plane
minus (— o0,—1/a]U[1/b,0). In particular,
2(z)eH i (D). Notice, we could have used the analyticity of
g(n;2) in |z| < 1 to show directly, using Eq. (3.18), that con-
ditions (3.9) are necessary. Our proof has the advantage of
giving some meaning to the function L(n;z).

We shall now show that, choosing f (8) = B(e%a) and
g(8) =2g(e?) in Eq. (2.22), we obtain equality of the quan-
tities under the sup and inf signs on the left- and right-hand
sides; this will imply that B(z;) and g(z) are indeed extre-
mal functions associated to k(n;z) and, thus, to #(x). Using
Eq.(3.18), (3.17), and (3.10) in turn, we verify

§k(n;9)3(e"9;a)e"9 do
= §(k(n;9) — 8(e))B(e%a)e® do
= §Z(e"g;n;B)d9

= 3€|k(n;0) — g(e)|db. (3.24)

This ends the proof of Lemma 3.2.

It may appear that the characterization of the extremal
Blaschke product by means of Egs. (3.9) and (3.10) falls
short of providing the explicit dependence f(n;x) needed in
Eq. (3.1) in order to compute the extremal function f5(x) of
problem (A). However, we shall now show that, by solving a
problem analogous to the one of Theorem 2.1 in the Hardy
space H% (D), we are able to obtain a large supply of pairs
(n(x),B(x;a)), which satisfy identically Eqgs. (3.9)
and(3.10).

Thus, we consider the problem of determining, for a
given N(x)eL *( p),

|knll=sup{(N, £),: feHZ (D), || fI3<1},  (3.25)
and of describing those functions on which ||k ||, is attained.
The solution is a straightforward generalization of the ex-
pansion in reproducing kernels of Refs. 12, 19, 34, and 35
and is expressed in the following lemma.
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Lemma 3.3: The function F(N;z) on which ||ky||, is
attained may be written as

* N(x)dp(x)

F(N;z) = const
—a 1 —xz

(3.26)

The (positive) constant is determined from the condition
IF(N:2)|153 =1 (= 1/|lky]l2)-

Proof: We write as in(2.18) [explaining also the nota-
tion ||ky||, in Eq. (3.25)]

(N,f), = -21; 3@ Ky (¢°) £ (8)e® df

1 [~
=— i}(kN(z))*f (2)z|dz|, (3.27)
27
where we have denoted by k,(z) the function equal to
(kx(2))* on |z| = 1 and holomorphic in |z| < 1,

b
EN(z)zzJ‘ Nx)dp(x) | (3.28)
—a 1l—xz

The last expression in (3.27) is the scalar product of EN (2)
with z f (z) in the Hilbert space H% (D). Its maximum is
attained if f(z) is proportional to ky(z)/z. This proves
Lemma 3.3. The analyticity domain of F(V;z) contains the z
plane without the interval ( — oo, — 1/a) U(1/b, ).

We next prove identities similar to Eqgs. (3.9) and
(3.10) in the following lemma.

Lemma 3.4:Ifa;, i =1,2,..., p, p + 1,...,q are the zeros
of F(N;z) in the z plane minus ( — w0, — 1/a]u[1/b,»),
then

(N(x),F(N;x)P(x;a,.)/a,.)p =0, i=12,.49 (3.29)
Also, for 0<0<27,
(N(x),F(N;x)P(x;eie))p >0. (3.30)

Proof: We write the canonical factorization (Ref. 32, p.
24, Theorem 2.8)

F(N;x) =B(Nx;a)E(Nx), (3.31)

where B(N;x;a) is a finite Blaschke product containing the
zeros a;, i = 1,2,..., pof F(N;x), lying in |z| < 1 and E(N;x)
is the corresponding outer function [cf. Eq. (1.10)]. [Since
F(N;z) is holomorphic in |z} <7, r> 1, the singular part of
the factorization (3.31) is absent.] We may now repeat the
proof of Lemma 3.2 and consider variations of F(N;x) ob-
tained by displacing the zeros ;, i = 1,2,..., p, i.e., replacing
B(N;x;a) by B(N;x;a + Aa). This leaves the condition
|l /13 <1 unchanged. With the argument of Lemma 3.2, we
obtain Eq. (3.29) for the p zeros lying in |z| < 1. Further, the
same reasoning as in Lemma 3.1 shows that the function

L (Nz)=F(N;2)ky (2) = F(N;z)(F(N;1/2%))*,
(3.32)

which is clearly holomorphic in the z plane minus
(— w0, — 1/a)U( —a,b)U(1/b, ), obeys the representa-
tion

L (N;z) = 27T(N(x),F(N;x)P(x;z))p/“kN||2. (3.33)
The positivity of .%°(N;z) on |z| =1 [manifest in (3.32)]
leads to Eq. (3.30). Also, from Eq. (3.32), we see that, if a
zero a;&[ — a,b ], then .¥" (N;a;) = 0, which is Eq. (3.29).
This ends the proof of Lemma 3.4.
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We now notice that we may rewrite Eq. (3.29) by means
of the factorization (3.31) as

(N(x)E(Nx),B(N;x;) P(x;e;) /@), =0, i=12,...9.
(3.34)

Since the same can be done with Eq. (3.30), a comparison
with Egs. (3.9) and (3.10) yields by Lemma 3.2 the follow-
ing statement, which is essential for the construction of the
extremal f,(x) of problem (A).

Theorem 3.1: For any n(x)€eL *( p), the Blaschke prod-
uct B(N;x;a) of Eq. (3.31) realizes sup{(n, /), : feH g (D),
1 flle <1} if

n(x) = N(xX)E(Nx) lkyll,=N(x)E;(N;x). (3.35)

In Eq. (3.35), we have introduced a factor ||ky||,, to
remove the normalization constant in Eq.(3.26). We are
clearly free to do this, since Egs. {3.9) and (3.10) and Egs.
(3.29 and 3.30) are invariant if n(x), or N(x) are muitiplied
by positive, x-independent, quantities. Therefore, in Eq.
(3.35) E,(N;x) is the outer function obtained from

* N(x)dp(x)
—a 1=—xz

‘We may now regard Eq. (3.35) as a nonlinear mapping
&: L% p)—L?( p) (the left-hand side is always in L*( p)
since F,{ N;x) is continuous on [ — a,b]}. Theorem 3.1 may
then be understood as follows: suppose n(x) is given and we
are required to find the associated extremal f (n;x) in the set
I fll. <1,feH g (D); we may regard then Eq. (3.35) as a
nonlinear integral equation for the function N(x). If we can
solve this equation (compute & ~'n), the solution to the
original question is given by B(N;x;ar). Let us show that this
is, in principle at least, always possible.

Lemma 3.5; The mapping &: L 2( p)—L *( p) given by
Eq. (3.35) is onto and has an inverse & ~'.

Proof: We show first that & is one-to-one on its domain
of values. Assume to this end that two functions N;(x) and
N,(x) exist, both satisfying (3.35) for a given n{x). Since
there exists a unique Blaschke product B(#n;x) realizing the
extremum of (n,f), over || f||, <1, the two functions

b
Fo(N;5x) =f ——(x)

must lead to the same Blaschke factor B(n;x). Thus
Fo(Nyx) = B(mx)E,,(x), =12, (3.38)

and we have to show that the two functions E;, (x) are in
fact identical. It is enough to show that they have the same
modulus on |z| = 1. But

|E.o (€)|? = Fo(N;;2)F 3 (N;;1/2%) Lo
= Lo(N;;2)|, _ o (3.39)

with & (N;2)==|lky |} £ (N;;2), Eq. (3.32). However, by
the representation (3.33), both functions . ,(V,;z) may be
written as

ZLo(N;;z) = 2m(N, (x),B(n;x)E, (x)P(x;2)),

= 2m(n(x),B(n;x)P(x;2)), = L(n;2),
(3.40)

with L{n;z) the function associated to n{x) by (2.25), and

Fy(N;z)= =B(N;z;a)Ey(N;z). (3.36)

dp(x), i=12, (3.37)
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use was made of Lemma 3.1. Therefore, the two functions
Zo{N;z) are identical and it follows that
Fy(Nyz) = Fy(Nyz), ie, Ni(x) = Ny(x) (a.ep).

To show that & is onto, we pick out an neL *(p) and let
B(n;x) be its associated Blaschke product by Theorem 2.1.
We define then, using property (2.26) of L(n;e)

e(@)=[L(ne® ]"? (3.41)

[we take e(8)>0] and construct the function E(z), holo-
morphic and free of zeros in |z| < 1, with modulus ¢(6) on
|z} = 1. Clearly, for |z] = 1,

L(nz) = E(2)E*(1/2*), (3.42)
where E *(1/2*) is holomorphic and nonvanishing in |z| > 1.
Since L(m;z) is holomorphic in the z plane minus
{— w0, — }v/a}U{ —a,b}Ul1/b, ), Eq. (3.42) can serve
to extend E(z) to a holomorphic function in the z plane
minus ( — o, — 1/a]U[1/b,»); namely, we declare for
lZ |>1,

E(z) = L(n;z)/E*(1/z%). (3.43)

Notice that E(z) vanishes at all points in |z| > 1, where
L(n;z) vanishes. A reasoning sigxilar to that of Lemma 3.1
and use of Eq. (3.2) show that £(z) may be represented as

b
Flz) = n(xlB(n;x} 1 d ) 3.44
@ f_a oo 1o P 44
Consider now the function
F(z) =B(nz)E(2). (3.45)

Use of Eq. (3.44), of the identity B(n;z)B *(m;1/2*%) = 1,
and again a reasoning similar to that of Lemma 3.1 show
that, in fact, F(z) is obtained through the formula

= > n(x) 1

F&O= ) o 1om P
In Eq. (3.46) we see that, denoting N(x) = n(x)/E(x), it
follows that F(z)*FQ(N,x) and, from (3.45), E(z)
= E(N;x). Thus, an N(x) obeying {3.35) has been found.
This ends the proof of Lemma 3.5.

Next follow some comments.

(a) If B(n;x) is the extremal Blaschke product associat-
ed to n{x), we see from Eq. (3.35) that it is in fact the extre-
mal function for many other n(x), namely, all those ob-
tained by varying N(x) in such a manner that the zeros of
Fy(N:x), Eq. (3.36), in |z| <1, stay unchanged; only
E(N;x) varies. Thus, we may regard the Blaschke products
as “corners” of the set & , in L *( p).

(b) With the help of Eq. (3.35) we may now cast Eq.
(3.1} in the form of a nonlinear integral equation for the
unknown function Ny(x),

no{x) = Ny(x)Ey(Ngx) = h(x) — B(Nyx). (3.47)

This is a considerable improvement over (3.1). In fact, it is
easy to see that the integral equation (3.47) has a unique
solution. Indeed, we have seen that there exists a unique
no{x) satisfying (3.1) and the statement follows from
Lemma 3.5. The problem is, of course, whether the solution
of (3.47) is or is not an awful task. It turns out that the
solution is not completely out of reach, in view of the follow-
ing lemma.

Lemma 3.6: If N(x) is such that F,(N;z) does not van-

(3.46)
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ish anywhere on |z| = 1, the Fréchet derivative of the non-
linear operator &: L *( p)—L *( p) givenby (3.35) exists, is
continuous, and has a bounded inverse.

Thus, under the conditions of Lemma 3.6, the operator
# (N) is a local diffeomorphism of L ( p); the inverse map-
ping & ~!(n) also has a continuous Fréchet derivative (see
Ref. 36, p. 56, Theorem 4.2.1). Also, as a consequence of
Lemma 3.6, we shall show in Sec. VII that we can give a
systematic method of solving Eq. (3.47).

Proof: The fact that & has a continuous Fréchet deriva-
tive follows immediately from the known representation of
Ey(Nx):

i6
Ey(Nx) = exp[—l-§ € % 1n Fy(N;e)F,(N;e9)d8 |.
4r J & —x

(3.48)

Straightforward calculations show that the action of the Fré-
chetderivative 3% /dN on a vector SN(x)eL *( p) is given by

555(1\’))
22N \sN
( N (6N)(x)
=O0N(x)Ey(N;x) + N(x)Ey(N;x)
e —i0
xiﬁp(x;e"")(”"(e.) + OFole _))de, (3.49)
FO(N;eIB) FO(N;e_le)
with
b
5Fy(z) = M”(—x)z(%) (6N)(2). (3.50)
—a 1 —xz oN

The integrand of Eq. (3.49) indicates why we needed the
restrictions on N(x) in the statement of the Lemma. The
situation when F,(N;e®) vanishes for some @ is discussed
after the end of the proof. Equation (3.49) may be trans-
formed by means of the residuum theorem to yield

(‘9 i;;’v ) )<6N> (x) = BN(x) Eg(Nix) + N(x) Eo(N;x)
SFy(x) _ SB(x) ) Gs1)
(Nx)  B(Nx)
where
p 1 6Fy(a;)
OB(x) = — 2wB(N; Pxa;) — —,
o BN ,.;1 (xa)a.- Fi(Ne;)
(3.52)

and a;, i = 1,2,..., p are the zeros of B(N;z) in |z| < 1.

For any given left-hand side 6n(x), Eq. (3.51) is a Fred-
holm equation of the second kind for SN (x). It can be solved
for any &n(x) if the equation

N
does not admit of nonzero solutions. To show this, we see
that Eq. (3.2) defines [via (3.35)] a mapping from L *( p)
into the set of holomorphic functions representable in the
form (y(x),P(x;z)), with ¥(x)eL?(p) and the norm of
L?( p). The action of its Fréchet derivative on SN (x) is giv-
en [using the notation (3.53)]

5L(z)E("L(N )
aN

(3.53)

)(SN) (2)

= (6n(x),B(x)P(x;2)), + (n(x),6B(x)P(x;2)),.
(3.54)
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Now, if 6rn(x) =0 [from (3.53)] and SN (x) is such that
6B(x) =0 [notice that the image of the action of (dB/
dN)(N) on L ?*( p) is a p-dimensional subspace of L *( p) ],
then §L(z) = 0. Further, from Eq. (3.41) we see that

0 = SL(N;e®) = 2|Ey(N;e®)|6| Eo(N;e™) |, (3.55)

so that 8|Ey(N;e®)| =0. This leads, however, to
(xe[ —a,b])

SEZ(Nix) =0 (3.56)
[from (3.48)]. Since E,(N;x) #0, it follows from
6n(x) = Eo(N:x)ON(x) + N(x)6Ey(N;x) (3.57)

that SN(x) = 0. Thus, if there are nontrivial solutions to
(3.53), they are such that §B(x) #0.

To handle this situation, we consider the mapping
L2( p)—0eR * given by Egs. (3.9). Writting (3.9) in the
form (3.14), we conclude that, if Sn{x) =0,

5(L(a,.))=(n(x), $ 9B 6ak) =0,
k=1 aa,.aak p
i=12,..,p, (3.58)
with
é
sa, = — 2Fol@) (3.59)
Fi(Na,)

Multiplying equation ““#”’ in (3.58) by da; and adding them
together, we obtain that (3.53) implies the vanishing of the
quadratic form

2
Q(«Sa)sz(nm, P

Lk a; oa,

(3.60)

) Saba, =0.
P

If there are nontrivial solutions SN(x) to (3.53), then
ba; #0, for at least some /, and (3.60) shows that Q(6a) is
not definite. However, we shall show that Q(8a) is in fact
strictly negative definite, if 6B(x) #0. This shows that, in
fact, we must have 6B(x) =0, if &n(x) = 0. This leads in
turn to SN (x) =0 and proves Lemma 3.6.

To show that (3.60) is negative definite, we resort for
simplicity to the function F(¥;z) of Lemmas 3.3 and 3.4,
which realizes the extremum of (N, f) , under the condition
Il £ll.<1. [F(N;z) differs from F,(N;z) by a constant fac-
tor).] We notice first that, at a change

F(N;z)—F(Nz) + AF(N;z)=B(z;a + Aa)E(N;z),

the functional (¥, f), decreases strictly. Indeed, using the
fact that (from Lemma 3.3)

F(N;e) = (ky (e))*/|lky |l (3.61)
we see that the constraint ||[F(N;z) + AF(N;z)|3 =1 im-
plies

2k 3, (), AF )/ Ik |l + |AF |2 = 0. (3.62)

[The index 2 on (-,-) shows the scalar product in H 2(D)
leading to the norm (1.5).] Then, as claimed,

(N9AF)p = (k§AF), = — ||AF||§||kN||z/2 <0.
(3.63)

On the other hand, we write this change by means of a Taylor
expansion as in Lemmas 3.2 and 3.4 and conclude that, using

Egs. (3.29)
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2
Z(N(x),E(N;x) —m-a-’—B——{x;a,- + G(x)Aa,-)) Aa;Aq;
da, da;

¥ I3

= — llewlls 5= flER
2

2

x |3 2B0:a, + (A2 A, | <o, (3.64)
da;

i

with 0<8(x)<1, 0<¢(8)< 1. Letting A; = AB,, AR, and
allowing A to approach zero, we obtain, for arbitrary direc-
tions A, [and using Eq. (3.35)},

3*B
Z(ﬂ (X%W (x;a; )) pﬁi B

7
= — |lky[227P|E(N;e®)|*

2

7 P 9, ~ y2
Plea)” 17 (3.65)

> B

F== ai

The right-hand side of (3.65) is, however, strictly negative
definite, if 5B(x) #0, Indeed, a comparison with (3.52) and
(3.59) with 8a; = B; shows that the last factor in (3.65) is
the analytic continuation of §B(z) to |z| = 1, and it cannot
vanish identically there. This ends the proof of Lemma 3.6.

We now discuss the situation when F(;z) vanishes on
|z| = 1. We restrict ourselves to elements N(x)eL *( p) for
which the following property holds.

(H) The function F(N:z) has either one simple zero or
two complex conjugate zeros on |z] = 1.

This restriction is made only partly for simplicity; it is
discussed at the end of Appendix E. It is enough to study the
case when F(Ne,,;)=0la, |=Lla,,,=a,,,
a, ., #a, . ; thesituation of one real zero is analogous. We
consider two types of approximants {N, (x)}"_, to N(x):
the “exterior” ones, for which F{N{;x) vanishes at two
points @ , 14, (@), 1 x)* With |ap 4| > 1 ap 10—, 41
as k— oo, and “interior” ones, F(N i ;x) vanishingata, , , s,
(@ 1 10)* @ 4 14] < 1. From Eq. (3.51) it is easy to see
that

9  ~ . 0% ...

(aN(N))e—iﬁ av VP

. 8€ ... [0F
7 m on W )”(aN (N)),"
although both limits exist (strongly). In fact, Eq. (3.52)
gives the difference of the limits [its action on
SN(x)eL*( )]

|G ®), - Gz®) Joveo

(3.66)

P2 SFy(ay)
= — 2oN(x)E;(Nix) Pixa,) ——— .
7N ol N k,—.§+1 * a, Fi{Na,)
(3.67)

In Appendix B we shall show that, in fact, both
((3€/3N)(N)), and ((9€/AN)(N)), have bounded in-
verses. _

Atsuch a point N(x)eL 2( p), we may clearly define the
Gateaux differentials 5% (N;6N) in all directions SN (x); if
ON(x) is such that Re(de,  ,/a,, ;) <0 [ba,, , is given
in Eq.(3.59) ], then
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~ 9F -

5% (N:6N) (azv (N))i &M,
whereas, for the other half-space 6% (N:6N) is obtained
from (J%/dN),. The two definitions coincide if
Re(ba, . /a,, ;) =0, since the Poisson kernel is real for
la, | = 1and real analytic. This implies the following gener-
alization of Lemma 3.6 to include the boundary points
N(x), which is of relevance for the algorithm described in
Sec. VII and amusing by itself.

Lemma 3.7: If condition (H) is satisfied, the mapping
L?( py-L?*(p) givenby % (N;5N) is onto and invertible.

Proof: The image of the hyperplane Re(8a, .,/
a,, ;) =0, which is the same under ((3% /dN)(N)); and
((8€ /3N)(N)), is a hyperplane containing the origin, since,
say, ((8% /0N)(N)), is invertible. There exists then an ele-
ment k(x)eL?( p), determined up to multiplication by a
scalar, so that this hyperplane is given by

(3.68)

(k(x),6n(x))=0. (3.69)

If we denote by p(x) the vector determining the linear func-
tional of 8N given by Re(da, . ,/a, . ,) [obtainable from
(3.59) ], then the solutions k;(x), k,(x) of the two equa-
tions
~ \t ~ \t
(& ®) o =(2 @) () =p(x)
(3.70)

are parallel to k(x) and differ among themselves by a scalar
factor 2. Now, the sets of vectors SN(x) given by (a)
Re(ba, . 1/a,,,) <0 and (b) Re(de, . /a,,,)>0 are
mapped in turn by ((9% /9N) (N)),, ((3% /ON)(N)), one-
to-one onto the half-spaces of elements 8n(x) satisfying

(k1 (x),6n(x)), <0, (ky(x),6n(x)), >0. 3.71)

The two half-spaces are distinct if 4 > 0. We show in Appen-
dix B that this is indeed the case. This ends the proof of
Lemma 3.7.

We are now able to formulate a statement concerning
Eq.(3.47) that determines the extremal function B(Ng;x) of
problem (A). We denote by ./ the operator from L *( p)
into L ( p) whose action is given by

A (N(x))=N(x)E(Nx) + B(N;x).

Then we obtain the following theorem.

Theorem 3.2: For any h(x) outside . |, the equation
o (N{x)} = h(x) has aunique solution. The operator »/ has
acontinuous Fréchet derivative with a bounded inverse at all
points N{x) such that F,(N;z), Eq. (3.36), does not vanish
on |z| = 1. At those remaining points, for which (H) is true,
the operator whose action on SN(x)eL ?( p) is given by the
Gateaux differential .o/ (N;8N) alsc has a bounded inverse.

Proof: The first part of the theorem has been already
proved in comment (b) following Lemma 3.5. The only
statement to be settled in the second part is the existence of a
bounded inverse of the Fréchet derivative of o/ (N(x)) at
points N(x) such that F,(N;z), Eq. (3.36), does not vanish
onlz]=1.

To this end, consider the action of (37 /IN)(N) on
SN(x),

(3.72)
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%(N)(M(x)) — n(x) + 8B(x). (3.73)

We shall show that a constant ¢ > 0 exists so that, for any
SN(x) with ||5N(x)||p =1,

) () ave)
(6N(x),(aN ) BNe0)) e

Since, by Lemma 3.6, ((3%/dN)(N)) has a bounded in-
verse, Eq. (3.74) implies that ((.« /dN) (N)) also has one.
Equation (3.74) is obtained from (3.73) by p-scalar multi-
plication with én(x). It is clearly enough to show that

(6n(x),8B(x)), >0. (3.75)
This is, however, a consequence of the convexity of . ;. In-
deed, consider two functions n(x), n(x) + An(x) inL?( p)
[corresponding by (3.35) to N(x), N(x) + AN(x)] and
their associated extremal Blaschke products in % ;: B(x),
(B + AB)(x) Then, the convexity of .# | implies both

(3.74)

(n(x),B(x)), >(n(x),B + AB) (x)),, (3.76)
(r(x) + An(x),B(x)),<(n(x) + An(x),(B + AB)(x)),.

(3.77)
We subtract them, use the definition of the Fréchet deriva-
tive, and divide through by ||AN(x)||,,% we obtain that, for
any SN(x)eL*(p), |I6N(x)|, =1, SN(x)=AN(x)/
AN (x) ||, :

on JdB )
—_— ON(x), — (N)SN
(aN (N)6N(x) aN( )ON(x)

P

p

IAN]|, " oN aN " |AN|, /,
(K,.(AN), KB(AN)) ’ (3.78)
AN, " AN, /,

with ||« (AN)|,.llkz (AN)||, = o(||AN||,). By letting
|AN ||, =0, (3.75) follows.

To prove the last statement of the theorem, we have to
show first that ((//dN)(N));,((d«/IN)(N)), are in-
vertible operators. To this end, we consider again sequences

i, Nt —N, and notice that, for any fixed SN(x)eL *( p),
and for all N, N¢, the quadratic form in SN(x) given by
(3.75) is positive. Consequently, this will be so also for
k- . With the reasoning above, we conclude then that
((0 /AN) (N)), (8 /ON)(N)), are invertible. Further,
the latter operators coincide in L *( p) on the hyperplane
Re(éa,, /a, ) =0 (ifa,,,#ay ), as one explicitly
verifies. Consequently, the statement of Lemma 3.7 holds
also for & (N) [see also comment (b) of Appendix B] and
this proves the last part of Theorem 3.2.

In Sec. VII, we shall use Theorem 3.2 to set up an algo-
rithm for finding the solution N,(x) of Eq. (3.49) and thus
the extremal element of problem (A).

{v. BOUNDS ON THE NUMBER OF ZEROS OF THE
SOLUTION OF PROBLEM (A)

In the previous section, we have shown how the extre-
mal element of problem (A) may be obtained by solving a
certain nonlinear integral equation. The equation has some
properties that make it amenable to numerical treatment.
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However, the methods that have been used so far fail to show
how we may estimate, or find an upper bound on the number
of zeros of the extremal Blaschke product f,(x) [=B(Ny;x)
of Eq. (3.49)], in an a priori manner. They do give a hint,
however; the analyticity of the function F,, (¥;z), Eq. (3.35),
in a domain that strictly includes the unit disk makes it intu-
itively difficult for too many of its zeros to accumulate in
|z| < 1. In this section, we make this argument precise and
derive an upper bound on the number of zeros of f,(x) as a
functionof 4 (x) and of a lower bound 3 to yZ,, ( p;#). The
main idea of the argument is sketched in Sec. II, following
Eq. (2.17).

We shall use for our purposes a function related to
L(n;z) of Eq. (2.25), namely,

R(nz)y=L(n;z)/(z f (m;2))=k(n;z) —g(n;z). (4.1)
One can show easily that R (#;z) satisfies the representation

b
Ry = [ 202p)

+ J“’ xn(x)(f(n;x))? dp(x)

1 —xz

4.2)

which is analogous to that of Lemma 2.1 for L(n;z). As a
consequence of Eq. (2.26), one notices that the total vari-
ation of the phase of the function R (n;z) along the unit circle
is —27(p+ 1), where p is the number of factors of the
Blaschke product f(n;x). [ The counting is done by setting
equal to zero the phase variation at those, possibly existing,
pointson |z| = 1 where L(#n;z), and thus R (n;z) have double

Zeros. |
Therefore, each of the functions Ry (m;6)
=ReR(n;¢®), R,(m;0)=ImR(me”) must vanish

2( p + 1) times at least on 0<8< 2. These functions read
R R (n;0)

_ Jb n(x)[cos 8 (1 — x*f (n;x)?%) — x(1 — f (n;x)})]
—a x> —2xcos @+ 1

Xdp(x), (4.3)
b .
6 (1 — x%f (n;x)?)
R,(n6) = f n(x) sin do(x). (4.4
1 —a x?~2xcos @+ 1 p(x) %4
Instead of R, (n;0), it is of more interest to consider
R, (n;0) = R, (n;0)/sin 6, (4.5)

which vanishes at least 2p times in 0<8<27. We now prove
the following lemma.

Lemma 4.1: There exist constants Ci >0, C,
>0, 0 <¥ <1, independent of n(x), such that, if f (n;z) con-
sists of p Blaschke factors,

|Rg (m;0)| < Cr¥?, |R;(n;0)| < Cpy” (4.6)

Proof: We consider Ry (n;0) only, since the inequality
for R,(n;0) is obtained in a clearly similar manner. Let
Ry (n;z) be the analytic extension of Ry (#;6) to the com-
plex z plane, through cos 8 = (z + 1/z)/2. It is a holomor-
phic function in the whole z plane except for the “cuts”
(— o, — 1/a]ul —a,bJu[1/b, x ). Consider now a simple
closed curve % surrounding [ — a,b] and strictly contained
in |z| < 1 and its image €', obtained by reflection across the
unit circle (thus lying strictly in |z| >1). We can bound
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|Rg (n;2)| along €, independently of #(x) [and of f (n;x) ],
using the Schwarz inequality, the condition [[n||, <1, and the
fact that | £ (n;x)|<1, for xe[ — a,b]:

b 2 172
(|22 + 1] + 2|2 [x]) ]
Ry (m; d,
| R(n,z|<[f_a [(* 4+ Dz —x(Z + 1)? P
=Cr(2), ze¥. (4.7

Since Ry (n;z) is real along |z| =1, (4.7) holds also for
ze%'. Let C,x (2) be that function, harmonic in the domain
2 bounded by the curves ¥ and %', which assumes the
values In Z‘R (2), for zon € and ¥ '. Further, we introduce
the Green’s function ¥ (z;z,) of the domain & with a pole at
2y 9 (2;2,) =0, forzon € and €’ and (2,6Z )

G (z;2o) =log(1/|z — zo|) + @, (2), (4.8)

with @, (z) harmonic in &. With this, we construct the
difference (the following few lines are actually a derivation
of “Lindel6f’s principle””)

2p+2
D(z) =In|Rg (n;z)| — Cip (2) + Z G (z;z,). (4.9)

i=1

Writing (z, = ¢'*)
42 B\ T
Rp(nz) = [] (z—e€™)Re(2) (4.10)
K=1

and using the definition (4.8) of ¥ (z;2,), we can write
2p+2

D(2) =In|Rx(2)| = Cir(2) + > @, (2)

k=1

(4.11)

and see explicitly that D(z) is subharmonic in &, since
ln|§ r (2)| is so. Now, on the boundary € U¥ ' of &, using
the definition of & (2;z,), D(z) <0. Thus D(z) <Oin all of &
and we conclude that

2p+2

Rx (n2)|<exp[Cix ()] [] expl— F(z2)).  (4.12)
k=1

Now, Y (z;z;) >0 for ze % ; in particular

y,=min ¥ (¢%,e*) > 0. (4.13)
6.9

Then, Eq. (4.12) implies the first inequality in (4.6), if
z=¢" C=max C i (), y=e 2", and Cx = e“y*. This
ends the proof of Lemma 4.1.

Defining now

5,(nx) = n(x)(1 — x*f (n;x)?), (4.14)

s,(nsx) = n(x)(1 —f (n;x)3), (4.15)
we conclude from the inequalities (4.6) that

(s: (m;x), P(x;0)0,(x)), <C;7?, i= 12, (4.16)

with C, =C,/(27), C,=(Cgr +C;)/(27), o(x) =1/
(1 —x?%), 0,(x) =x/(1 —x?), and P(x;0) given in Eq.
(2.11). It is important that we can recover n(x) linearly
from the s; (n;x) and independently of f (n;x):

n(x) = [s;(m;x) — x%s,(n;x)1/(1 — x?). (4.17)
Clearly, s;(n;x)el?( p), i= 1,2, and, since | f(n;x)|<]1,
xe[ —a,b],

lls: () |, <1, |ls2(m5x)]|, <1. (4.18)
We shall now show that the inequalities (4.16) and (4.18)
imply an upper bound on the scalar product of the s; (n;x)
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with any function g(x)eL %( p); this upper bound tends to
zero as p increases. Then, with

hi(x) =h(x)/(1 —x%), hy(x)=x*h(x)/(1 —x?),
(4.19)

and using
|(n’h)p|<l(s1,h1)p, + I(sz,hz)pl, (4.20)

we conclude from Eq. (2.14) that y2,. ( p;4) may become
arbitrarily small if p is large. A comparison with the lower
bound ¥? to xZ:. (o:h) will yield then the desired upper
bound on the number of zeros.

The derivation of the bound on (s;(#;-),g), for some
geL *( p) runs analogously to Ref. 17, but we give here more
accurate estimates. We regard the scalar product in (4.16)
as a compact operator 4; mapping L *( p) into L 2(T’) [with
the norm (1.5) ] and denote by B, the compact positive oper-
ator 4 JA;. We can then write a weaker form of (4.16) as

(5:,B;5;), = || A;s: () |3<CEYP=k], i=1,2.

(4.21)
In the following, we drop the subscript / on the various quan-
tities, as the consideration of one index is obviously suffi-
cient. With this, the subset of L *( p) delimited by (4.18) and
(4.21) is weakly compact and the linear functional
®(s)=(g,5),, determined by the given g(x), attains its
maximum on it. Then, application of a known statement
about Lagrange multipliers (Theorem 1 of Ref. 31, p. 217,
Sec. 8.4) shows that, as a consequence of the convexity of the
function to be minimized and of the constraints (4.18) and
(4.21), there exist positive numbers A, z so that the con-
strained minimum of — ®(s) is equal to the unconstrained
minimum of

ZL(spv) = — ®(s) + p((s5), — 1)

+ v((s,Bs), — k7). (4.22)

The minimum of .7 (s;u;v) is achieved at the same point as
the unconstrained minimum s, and the Lagrange multipliers
are such that

#((50:50),, — 1) + {(50,B50), — k?) = 0. (4.23)

With this, the following is verified by straightforward calcu-
lations.
Lemma 4.2: Assume k * < (g,Bg),,/(8.8) - Define

a(g) = 1i_1>n0 o(x;g) (4.24)
);>0

with

olrg) = BB+ B 7). (4.25)

(g, (x+B) %),
then
= —1
o, (k) = kBT B) 2 (4.26)

(&.B(X+B) %g),"*
where X = 0 if k2 <a(g) and is the unique positive root of
the equation
o(xg) =k?,
ifk?>a(g).

(4.27)
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The possibly unclear points in this lemma concern the
existence of the limit in Eq. (4.24) and the uniqueness of the
root in Eq. (4.27). Both points are settled by verifying di-
rectly that o(x;g) is a strictly monotonically increasing
function of x. The relation with Egs. (4.22) and (4.23) is
established through x = u/v. For most situations, a(g) in
Eq. (4.24) vanishes. However, if p(x) is of finite type and B
does not have the eigenvalue zero, then a(g) >0, although it
is, in general, very small.

We make now a statement concerning the behavior of
¢, .. (k), Eq. (4.26), for small £ [i.e., as we increase the
number p of zeros of the extremal function, cf. Eq. (4.21)].

Lemma 4.3: For any € > 0, there exists k,(g;€) such that
P,.. (k) <¢, forany k <k, (k> 0).

Proof: If a(g) >0, this is obvious from (4.26). If
a(g) =0, this is not evident, since x depends on k& through
Eq. (4.27). Let P(N,) be the projector in L *( p) onto the
subspace spanned by the eigenfunctions {y,};2 ., of B,
for some N, to be specified (BP(N,) #0). Using Eq. (4.25) in
(4.26) and applying Schwarz’s inequality, we get

(1 — P(Np))g, (X + B)_l(l - P(NO))g)p
(8.(x +B) %),
+ [|P(No)gll, - (4.28)

Now, if 1/(Ny;x;g) denotes the first expression in (4.27) for
variable x > 0, one verifies that for all x> 0,

0 < PP (Nyxig) <o(x:g)||B ~'*(1 — P(Ny))gll3-

Therefore, ¥(Ny;x;g)—0, as x—0. Let x,(€/2) be the small-
est value of x for which ¢/ (Ny;x;g) = €/2 and let ky(g;€) be
computed from Eq. (4.27),

k(g:€)=0(x,(€/2):8). (4.29)

The statement of the lemma follows then from the strict
monotonicity of o(x;g) and choosing N, so that
|P(Ny)gll, <€/2.

It is worth noticing that, even if 2 (g) #0 [as is generally
the case if p (x) is of finite type], the estimate obtained by the
method used for a(g) = 0 yields usually a larger value of
ky(g;€) than the one obtained directly from (4.26).

We can now state the main result of this section and
reinstate to this end the index 7 [e.g., in Eq. (4.16)].

Theorem 4.1: Assume Y., { p;#) >y,>0. Then the
Blaschke product, which is the solution of problem (A),
cannot contain more than

D0 (K)<

No(xih)=max [ (In(ko/C,)/In )] (4.30)

factors, where k,, = ky(h;5x1/2), i = 1,2, is obtained from
Lemma4.3, C, is given following Eq. (4.16), and 7 following
Eq. (4.13).

Proof: We choose in Lemma 4.3, g(x) = A,(x), Eq.
(4.19) and € = y,/2, and obtain in this way a number
kio=kolhy,x,/2), such  that, if Ciy¥<ky,
|(s1,11) |, < x1/2. The reasoning can be repeated for i = 2 to
yield &,,. [ Notice that the expression ky(g;€) depends itself
on the index 7/ through the operator B.] Since the second
term in Eq. (2.14) is positive, y .. (p;h) < |(n,h)p |. With
Eq. (4.20), this ends the proof.

As announced in the Introduction, we now recall short-
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ly the computation of yZ;., ( p;#),Eq. (1.4), which gives
immediately a possible value of y7 in Theorem 4.1. Namely,
from the duality relation (2.14) and Lemma 3.3 it is clear
that the extremal functign must be of the form (3.36) for
some N(x)eL %( p). Let A be the compact operator mapping
L*(p) into L?( p) given by the integral in (3.36), with z
restricted to [ — @,b]. One has then the problem of deter-
mining

Xminz (p3h) = inf{||h — AN |]3; NeL>(p)}  (4.31)
under the additional constraint (meaning ||F(N;z)||3<1)

(NAN),<1. (4.32)
With the same discussion concerning Lagrange multipliers
as the one preceding Lemma 4.2, one verifies easily that the
following is true.

Lemma 4.4: Let u be the unique positive root of the
equation

(hA +p)"%h), =1, (4.33)
then

Yo (p3) =T — A +p) "'k |2 (4.34)
and is attained on

FP(h) =AA +p) " h(x). (4.35)

Numerical estimates (see Sec. VII) show, however, that
the bound (4.30) is usually rather weak, when compared to
the observed number of zeros of the extremal function f;, (x).
Its virtue is mainly that it has a weak p dependence, so that it
stays finite when the number N of jumps of p(x) increases
indefinitely [with the total variation of p(x) staying finite].

V. MINIMIZATION OF x2 WiTH A FINITE NUMBER OF
LINEAR CONSTRAINTS

In this section, we consider a subset .7 . (§;w) of ¥,
[Eq. (2.1)] consisting of those function that assume preas-
signed values at m given points £, &,,....&,., &;€R, |&:| <1,

fE) =w, (5.1)

The set of points {w, }_ ,€R ™ for which there exist interpo-
lating functions in .% |, satisfying (5.1), is denoted by %,
[cf. Eq. (2.5), with N = m]. We wish to discuss problem
(A.): find the minimal value of y*(ph—f) over
F ... (&;w) and describe the extremal function. This discus-
sion is a prerequisite to the (numerical) solution of problem
(C) of the Introduction.

We start with two preparatory steps. The first step is a
more accurate description of the set ., , obtained from the
Schur-Pick—Nevanlinna interpolation theory. We state this
as the following lemma.

Lemma 5.1: Consider for every {w,}7 ,€.%,, the qua-
dratic form in o,

i=12,.m.

O (5.2)

e

1 —ww;
Fay=N —La
@ =27¢g ™
Then F(a) is strictly positive definite if weint ., =%,
and vanishes for some set of values {a }7™ [ #0 if
wed.%, (= .7, \S,.). If wed.#,, there exists just one
function fe.% |, obeying (5.1). This function is a Blaschke
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product with at most m — 1 zeros. If we.%,,, there exists an
infinite set of functions in .7 , satisfying (5.1).

We do not give a proof of this statement, since it may be
easily abstracted from Ref. 22, in conjunction with the algor-
ithms of Refs. 1, 15, and 23. As a consequence of it, we see
that, if {w,}™ ,€d.%,,, the problem of minimization is tri-
vial and f,(m;x) is uniquely determined by the set
(&;;w,)™ | with the interpolation method of Refs. 1, 15, and
23.

The second preparation is formal and necessary for an
easy application of the results of Sec. II-1V. The first step is
to enlarge the function p(x) defined on [ — 4,8] to a new
function p_(x) of bounded variation over an interval
[ —a,B]C(— 1,1), containing [ —a,b]u{£,}7., by de-
claring all the points £; to have unit measure and the set of
points in [ — &, B] outside [ — a,b]U{£,}™ , to have zero
measure. [We assume that, if some of the £;’s lie inside
[ — a,b], they are of measure zero with respect top(x).] We
define further a new data function 4, (x) by 2, (£;) = w, and
h.(x) = h(x),forallxe|[ — a,b],x#E,;. Naturally, L *( p, )
is the Hilbert space of p,-measurable functions g(x) for
which

B
Y (p.g)=|gl? =f

—

g(x)%dp, (x). (5.3)
Weidentify L *( p) with that subspace of L *( p, ) made up of
functions g(x) with g(£;) =0. We may clearly identify
L?(p.) with L*(p)®R™ and write, e.g., h,=(hw),
reLl?*( p), w={w;}7 ,. Further, we denote by o, (x) the
characteristic functions of the points &,{w,(£;) = L, (x)
= 0,x#&;). Clearly, w,eL*( p,) and, if feL *( p, ),

(a)i!f)c =f(§,)’ (5.4)
and (@;,g). =0, if geL *( p). In fact, one reason for intro-
ducing L *( p.) is that the value of f at &, is a continuous
linear functional in this space. With this, we rewrite the dual-
ity relation (2.14) in a form valid in L *( p.); in the rest of
this section we suppress the explicit £ and w dependence of
F 1..; the symbol 7 is clear from Sec. II [following
(2.1)],

inf ||h — = inf A, —fl.
inf =71, = jnf . =

= sup [(nyhc)c —fgl;ll)p (n’f)c .

(wpn), =0
linllZ<1

(5.5)

Now, as in Sec. I1, one sees that, since F 1;c is convex and

closed, there exists a unique f;,. (X)€% |, on which the infi-

mum in Eq. (5.5) is attained; also from general arguments

(see Ref. 31,p. 136, Theorem 1), an extremal n,,. (x) on the

right-hand side exists and is in fact unique, in view of the
equalities [cf. Egs. (2.16) and (2.17)}

sup{ (7., /),: feﬁ,;c}
h(x) — fo. (x)
la(x) —fo. O,

(5.6)

One of the important difference with respect to Secs. II-
IVis that the set % . is not symmetrical with respect to the
origin [it does not contain f (x) and — f(x)]. As a conse-

= (nO;c’f;);c )p’

nO;c (X) =
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quence, the second term on the right-hand side of (5.5) isnot
necessarily positive. However, Theorems 2.1 and 2.2 can be
easily generalized to the set ¥ |, using Lagrange multipli-
ers.

Theorem 5.1: Let n(x)el 2(p). There exists a unique
fo(n2)eF ., such thatsup{(n, f),: e ,, }isattained on
it; f.(n;z) is a finite Blaschke product.

The existence of f, (n;x) follows from general argu-
ments. Theset.Z | in L ?(p) is closed in the norm (2.1) and
convex; hence it is weakly closed and, since it is contained in
theset || f||, <4 for some 4 > 0, it is weakly compact. Thus,
any linear (continuous) functional attains its maximum on
it. If {w}™_,€d.%,,, the statement of the theorem follows
from Lemma 5.1. If {w,}e.%,, it is convenient to switch to
L?(p,) and recall that, as a consequence of a general
theorem concerning Lagrange multipliers (see Ref. 31 and
Appendix C), there exist numbers A; (not necessarily posi-
tive) such that [using Eq. (5.4)]

(n, f. (n;x)), = sup (nf).

= sup (nf)e + 3 Al(@i, f), —w:)]’

(5.7
where the supremum on the right is achieved at the same
J-(n;x). The problem of maximizing the right-hand side of
(5.7) over F,, for any choice of 4,, is the same as the one
solved by Theorem 2.1, with the only replacement
n(x)—n, (x), where

m 1721 -1
ny(x) = KI + >4 ?) ] (n(x) + > A (x))-
i=1 i
(5.8)

We conclude from Theorem 2.1 that f, (n;z) is indeed a fin-
ite Blaschke product. The uniqueness of £, (#;z) is obtained
through the following consideration: if two different
Blaschke products f,,, £, lead to the same extremal value of
(n,f), over F 1., then their convex combination Jou
=ufy + (1 —p)f, foranyu,0<p <1, leads to the same
value. However, for no value of u #0,1 can fm (0) have unit
modulus for all 8, unless f,, = f.,, as is easy to verify. This
contradicts the fact that the extremals are Blaschke products
only and proves Theorem 5.1.

We may now obviously state, using the first of Egs.
(5.6), the following theorem.

Theorem 5.2.: The infimum of y*(p;h — f) over & . _ is
realized by a finite Blaschke product f, (z).

In the following, we shall assume, unless otherwise stat-
ed, that we.¥ - Then, as a consequence of Lemma 5.1, the
extremal Blaschke products in Theorem 5.1 (and thus the
one in Theorem 5.2) contain p>m zeros. Further, Lagrange
multipliers A, exist, so that (5.7) holds. This latter allows a
generalization of Theorems 3.1 and 3.2 of Sec. III to problem
(A,). We notice namely that many arguments of Secs. II-IV
may be used without change, except for the replacements
n(x)—-n;(x), [—abl-[—apBl, ki(nz)-k,(n;z),
L(n;z) »L, (n;z), for example:

- k(nz) + 2, A [V/(&; —2)]
(1+Z7, AHY?
= {n, (x),1/(x — 2)}..

k; (n;z)

5.9
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In particular, L, (n;z) satisfies
L, (n;z) = 2m(n, (x), P(x;2) £, (n;x))... (5.10)

Expressions (5.9) and (5.10) may be written for any set
{4} |; we shall, however, need in the following only the
“correct,” but unknown so far, 4,’s, for which Eq. (5.7)
holds. In fact, we may characterize these 4,’s by the follow-
ing lemma.

Lemma 5.2: If the Blaschke product that maximizes
(ni,f). over F assumes the values w; at the points §;
(we?,,), it also maximizes (n,f), over & .

The proof is given in Appendix C. With this, we see that
the generalization of Lemma 3.2 to the present case reads as
the following lemma.

Lemma 5.3: Assume w = {w,}"_ ,€.#,,. The Blaschke
product B(x;a) is the extremal function £, (n;x) associated
to n(x) by Theorem 5.1 if and only if m real numbers A,
exist, so that

B(é',-;a) = W;, (5.11)
{n, (x),B(x;a)P(x;a;) /). =0, i=12,..,p, (5.12)
(n, (x),B(x;0)P(x;¢)), >0, 0<O<27. (5.13)

Notice, at this stage we do not yet know whether the
Lagrange multlphers associated to a given n(x) and to a set
{&,;w, ¥, we?,,, are unique. This is settled by the follow-
ing lemma.

Lemma 5.4: 1t {w, }1_, e » there exists a unique set of
m Lagrange multipliers A;, for which (5.7) holds.

Proof: Assume the opposite were true and write out con-
ditions (5.12) for two such different sets {4, ™ ,, {4 /}™ ,.
By Theorem 5.1, f, (n;x) = B(x;) is the same in both cases
and thus the p zeros a; are the same. By Lemma 5.1, p>m.
We multiply each of the equations (5.12) by the normaliza-
tion factor (1 + =; 4 2)'/2 and subtract the equations corre-
sponding to the same «; from each other. Using Eq. (5.8)
and Eq. (3.15), we obtain a set of p homogeneous equations
for the m quantities AL, =4, — A }:

2 Mk = (gk,a) 0, i=12,.,p. (5.14)
k=1 a

However, the rank of the matrix || (3B /da; ) (£;a) |[F =) is

precisely m. Indeed, if B(&,;a)#0, for all k, this follows
directly from Eq (3.15) and the identity

. P(Ea)\™
_(é-k’a) _(H ZqTB(é‘l;a)) det( (§k’a1 )) ’
a k=1 a,‘ .

i=1

(5.15)
where the last determinant is nonvanishing, by Eq. (2.12)
evaluated for complex 6. If, however, say, B(£,,;a) =0,
¢, =a,,, one verifies using Eq. (2.12) that the limit
a,, —»£,, of the right-hand side of (5.15) exists and is non-
zero. This shows that A4, = 0, for all £, and ends the proof
of Lemma 5.5.

We summarize next our knowledge in more geometrical
language by Theorem 2.1, for any element (n,4) of L *(p, )
~L? (p) @ R™, there exists a Blaschke product B(n;4;x)
that realizes®® sup{(n,/i )1 feZ 3 (see Ref. 39). It may
happen that B(n;4;z) has p<m — 1 zeros [as it does, e.g., if
(m;A) is of the special form (0;4) } in which case the values

det
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{w;}™_, lieon 3% ,,. The set of elements (#,4) whose asso-
ciated B(n;4;x) have this property make up a closed cone %~
in L%(p,.). If (n,/l) belongs to .#/"'=C.%", the values w,
= B(m;A;£;) liein Y . At fixed n, there is a certain allowed
region for A, such that (n,A)et"; as A moves through this
region, the corresponding B(n;4;§;) moves throughout
., by Lemma 5.4. By Theorem 3.1, we can generate pairs
((n,A);B(n;A;x)) by means of the solutions of an H (D)
problem [ with respect to the scalar productin L ?(p, ) ]. Out
of these pairs, we can pick the solution of our problem, i.e.,
the correct Lagrange set (4,,4,,...,4,, ) by solving for 4 the
equation

w; = B(n;A:€,),
This we can do, by Lemma 5.4.

Following Sec. III, we consider, for given pairs (V;A)
€L *(p, ), the functions

i=12,..m. (5.16)

£ N(x) + 2, A0, (x)
Fy (N;A;z) = J dp,(x)  (5.17)
—a 1 —xz
and their canonical decomposition
Fy. (N;Asz) = B(N;A;Z)Eo(N;A;2). (5.18)

By Theorem 3.1, B(V;A;z) realizes sup{(n,l;f)c:fe?,}
with

n(x) =N(x)E,(N;A;x), (5.19)

A, = NE(NAED, (5.20)
If it happens that the point with coordinates {w;} | given
by (5.16) liesin Y ,then, by Lemma 5.2, B(N;A;z) realizes
even sup{(n, f),: feJ e (Ew)}.

We generalize next the integral equation (3.47) to the
situation of this section. The role of the unknown is played
by a pair (Ny,.;A,) inL *(p, ). From the second of Egs. (5.6)
and from (5.16), we obtain, by means of (5.18)—(5.20) the
set

i=1,..m.

o, (X) = Ny (X)Eg( Ny Agx) = h(x) — B(Ny3Apx),
(5.21)
w; = B(No;Ap€;), i=1,...m. (5.22)

It is easy to show that the set of equations (5.21) and
(5.22) has a unique solution if we.% ,, . Since, given {w; }™_ ,,
there exists a unique n,,. (x) satisfying

Mo (X) = h(x) — f (ng,;%) (5.23)

[cf. Eq. (5.6) ], it is enough to show that the set of equations
given by (5. 19) and (5.22) has a solution for any pair ( nw)
in L*p)e® J’ Now, the mapping &.: LZ%(p.)
—L%(p)® .7, glven by Egs. (5.19) and (5.22) may be
written as

&, =B0F!, (5.24)

with &/ the mapping L *(p.) —L *(p. ) given by (5.19) and
(5.20) and % the mapping R"™—.7,, given, at fixed
neL *(p), by (5.16). But Lemma 3.5 applied to L *(p,)
shows that & is one-to-one and onto and Lemma 5.4 shows
that % is invertible, if we . Clearly, the solution
(No,.3Ap) lies in the set 47, = (&) ~'.#". We conclude that
the set of equations (5.21) and (5.22) has indeed a unique
solution.
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We now state directly the analog of Theorem 3.2. Let
&, (N;A) be the mapping from

N,CL*(p.)-L*(p)® .57,
given by
o (N;A;x) = (N(x)Eo(N;A;x) + B(N;A;x),B(N;A;)).

(5.25)

Recalling the adeﬁnition of h,(x) preceding Eq. (5.3) and
assuming we.¥ ,,, we state the following theorem.
Theorem 5.3: For any 4(x) outside # ,_, the equation

A (N;Ax) = h (x) (5.26)

has a unique solution in.4#",. The operator .« has a contin-
uous Fréchet derivative with a bounded inverse at all points
of 47, such that # _, (V;A;z), Eq. (5.18), does not vanish
on |z| = 1. At those points of .#",, which do not have this
latter property, but for which conditon (H), Sec. I11, is true,
the operator whose action L %(p,) is given by the Gateaux
differential 5.« . (NV;A;6N;6A) also has a bounded inverse.

It may appear unfortunate that we have to restrict the
statement to the set.#",, whose description is complicated. It
turns out, however, that, in a numerical search, at least if m
is small ( = 1 or 2), we never get outside .4#”,. [ That is, the
functions F(N;A;z), Eq. (5.17) have p>m zeros in |z| < 1.]

Proof: Consider first the situation when F, (V;A;z) does
not vanish on |z| = 1. We write &, as the composition
A, =0 R &, with o/ the mapping from L*(p)
® 7, into itself given by n(x) - n(x) + B(nx;w), w-uw;
B(n;x;w) is the Blaschke product realizing the extremum in
Theorem 5.1, with the w dependence explicitly shown. We
shall show that .7 has a continuous Fréchet derivative;
then, by the convexity argument of Theorem 3.2 applied to
F 1 [in L 2(p) ], it follows easily that this derivative has a
bounded inverse. Further, by Lemma 2.6 applied in L *(p, ),
the derivative 3% . /3(N;A) exists, is continuous, and has a
bounded inverse. Thus, we have to show that d% /JA exists
and is invertible at points of .4, i.e., that the Jacobian
(0w, /34, )7 — | is nonvanishing.

To this end, we use Lemma 3.3 in L z(pc ) and consider
the decompositions (5.18) corresponding to two functions
F,o(N;A;z), F o (n+ Am;A + AA;z), where N, A, AN, AA
are so chosen that & _(N;A) = (mAd), &, (N + AN,
A+ AA) = (m;A + A1) for a given n(x) and given sets
{4}, {A4,}7 .. Such a choice is possible by Lemma
3.5 applied in L ?(p, ). We consider now the variation of the
functional (N,A;F). as the Blaschke product B(N;A;z)
=B(nA;z) changes to B(n;A + AA;z); the functional de-
creases, by Lemma 3.3. Equation (3.63) gives a quantitative
expression for this change:

(N AE(N;A)B(nA)),

— (n,A,B(nA)), — Z A A w;

i=1

=%3§ \E2(N:A0)| 1A, B(n;0) 2 4630,

— (N, A;E(N;A)B(nA + AR)),

(5.27)

where the symbols A, B(n;4), A, w; denote finite differ-
ences. On the other hand,
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(N+ AN, A+ ANE(N 4+ ANA + AN)B(n;A + AL)),
— (N4 AN,A + AAE(N + AN:A + AA)B(m;A)),

= (n,A,B(mA)), + f‘, (A + M)A w,

i=1
= % 3§ |[E2(N + AN:A + AA;6)||A, B(nA;0)|* d6>0.
(5.28)
We now add Egs. (5.27) and (5.28), write A1, = B;€
for some fixed nonzero vector {8, }™_ ,, divide through by €,
and let € 0. The finite differences go over into derivatives,

which exist by virtue of the fact that the mapping & has a
bounded inverse Fréchet derivative. We obtain

Z B 2 B, 8B(n,/1 o) |?

Li=1 i=1

B §|E (VA

(5.29)

The last expression is strictly positive, for any choice of
the {B,}™. | #0, if the functions (dB /dA,) (n;A;0) are lin-
early independent. We show briefly that this is the case in-
deed. To this end, we notice that, under the assumption that
the zeros of B(n;A;z) are simple, it follows from (3.52) that
(3/04;)(B(n;A;2)) is a meromorphic function of z; thus if
the functions (dB /dA;) (n;A;0) were linearly dependent,
nonzero f3;’s would exist so that, for all z ( p>m, since
weJ}’ ),

P( za;) da;
: D, B(za =0.
1Zlﬂ /Zl (za a; 6/1,

This implies, by the linear independence of the P(z;;) that,
for all p,

zﬁ

i=1

(5.30)

—0 Jj=12,...p. (5.31)
However, dlﬁ'erentiation of any subset of m identities (5.12)
with respect to A,, multiplication of the results by 3;, and
addition over i yields using (5.31),

2/3

i=1
and this 1mphes, with the reasoning of Lemma 5.4 that all
B; = 0. Thus, the right-hand side of (5.29) is positive for any
choice of the B; and consequently the Jacobian
(Gw; /34, =1 is nonzero. Thus, &, = # o &has an in-
vertible Fréchet derivative. It also follows that we can solve
(5.16) at fixed left-hand side and obtain a function
A = A(n;w;€) with a continuous Fréchet derivative with re-
spect to n(x). Substituting it in B(n;4;x), x€[ — a,b], we
obtain a Fréchet differentiable mapping with respect to n(x)
from L %(p) into L 2(p). It follows that 2 has a continuous
Fréchet derivative at (n;w), which, as argued at the outset,
must be invertible. This disposes of the situation
F_(N;A;z) #0, for |z| = 1.

Now, as in Sec. I, if F, (N;A;z,) =0, for zyon |z| = 1
and the zero is simple [cf. condition (H), Sec. IIL], we may
build distinct “exterior” and “‘interior” limits for 9% ./
J(N;A) and these, by Lemma 3.6, have bounded inverses. It
follows that the derivative 3% /d(n;A4) has two distinct lim-
its at points (RA) =& (N;X). One must show that both
these limits have nonvanishing Jacobians. This is done by

(§ ) - 0 k"‘ 1 2’ M, (5.32)
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taking the “exterior’’ and “interior” limits, in turn, (n,,4,)
—(n,4), at fixed directions f3;, for both sides of the identity
(5.29) and verifying that the right-hand side remains strictly
positive in this process. The limit of the left- and right-hand
sides, as (n,xl)—-»(iz] ) exist in both cases, since the corre-
sponding limits of 8%, (N;A)/8(N;A) as (N,A)—(N,A)
exist. As above, we may then look for consequences of the
hypothesis that, for some {8}/, the right-hand side of
(5.29) would vanish. For the “exterior” limit, there is no
change in the argument and we can derive again Eq. (5.32)
and thus conclude (dw,;/dA;). (7;4) #0. In the “interior”
process, Eq. (5.31) is true only for those zeros staying in
|z| < 1; it has to be modified for those zeros that approach
|z| = 1. However, one can verify that conclusion (5.32) is
still correct, so that (dw,/dA;); (71,4) #0.
Finally, it follows that

9 —(1 + (nw)
on an oA anl

has two distinct limits as (n,w)—(#,) according to the
position of (m,w) with respect to the image through
9% ./3(Nw) of the plane Re(éa, , ,/a, ) = 0. Taking
the limit n,w—#, in Eq. (3.75) [referrmg to F e (Gw) ],
we conclude that, as in Theorem 3.2, both (d.</./dn),,
(3. /dn); are invertible. Now, both (0« . /3(N;A)).;
have the same action on the plane Re(éa, , ,/a,,,) =0
and 7, is one-to-one in a neighborhood of .. The argument
of Lemma 3.7 leads then to the statement of the theorem.
This ends the proof.

Theorem 5.3 justifies the performance of an iteration of
the Newton type for the solution of problem (A, ).

We now present briefly the mechanism that limits the
number of zeros of the extremal function of problem (A ),
leading to a statement similar to Theorem 4.1. With the
change L *(p) - L *(p, ), we may take over many of the argu-
ments of Sec. IV. There are, however, two difficulties, with
one common root.

(a) The argument of Lemma 4.1 provides a bound like
(4.16) [or (4.21)] in terms of the number p of zeros of the
extremal function f (n;x),

(5.0, P(x;0)0,(x)), |<Ci ¥ o=k, i=12, (5.33)

with C,, v, obtained similarly to C;, ¥ of Eq. (4.16) with the
geometry appropriate to the replacement [ — a,b]
—[ —a,B]. InEq. (5.33), 5., (n;x) is related to n, (x), Eq.
(5.8), by Egs. (4.14) and (4.15). On the other hand, as one
sees from Egs. (5.5) and (4.30), one needs to show that, as p
increases, the quantities s; (n;x) related to n(x) by (4.14)
and (4.15) and which do not contain the Lagrange multipli-
ers A; tend weakly to zero, as p increases.

(b) The set & 1, 18 asymmetrical, so that, as observed
following Eqgs. (5.6), we have to place a bound also on the
second term in the duality relation (5.5). With the notation
of Eq.(5.10), it follows from the saturation of inequalities
analogous to (2.23) that

172
(nf(nx))p— L §L,1(n6)d0(1+2/1)

2 c?/l)

+ z Aw,.

i=1

(5.34)
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Theintegral is bounded by the estimates (5.33) and vanishes
exponentially with p. Thus, we have again the task of show-
ing that, for a sequence {n, (x)}_, such that f, (n,;x)
have an increasing number of zeros, the corresponding 4,
tend to zero. Thus we need the following lemma.

Lemma 5.7: For any €, >0, there exists «; (¢.) so that
|| <€, 1=12,. .mifk, <k;(€.),i=12.

Proof: We apply Lemma 4.3 in L *(p, ) choosing in turn
g(x) =w,;(x), I=12,...m [w;(x) is the characteristic
function of &;]. Let the corresponding functional be
®(w;;*). Then, withi =1,

A1 —E7w))

(1+2 . 12)1/2
(5.35)

The statement of the lemma is then obvious, if we choose
Kk, (€,) = min,,; ky,; (w;;€;,), where k,; is the function of
Lemma 4.3 and €, is an appropriate function of €,, obtained
from (5.35) [e.g., ife.<(1/m)"% €, = €.(1 — ERw})/2].
This ends the proof. This lemma shows again the advantages
of introducing L (p, ).

With this, the problem of obtaining a bound on the num-
ber of zeros of £, (n;x) is solved with precisely the same
argument and qualitatively with the same result as in
Theorem 4.1. We skip the details, to be obtained from Ref.
40.

DP(w;;81,) = — (@ps1(n0), =

VI. THE STABLE ANALYTIC CONTINUATION OFF A
CERTAIN SET OF INTERIOR POINTS

In this section, we show how the developments of Secs.
II-V allow us to give a numerical solution to problems (B)
[and (B.)] and (C) of the Introduction.

In relation to problem (B), we recall the definition of
the stable extrapolate: to each € > 0, we associate a data func-
tion A, (x)eL *(p), so that

X (p:h. —f)<xz€, (6.1)
where f,(x) is the true, unknown, analytic function,
f.€H 3 (D), that is being measured. Consider the family
®(e;h, ) of functions feH g (D), for which

X (psh. — f)<yie. (6.2)

Any fe®(e;h,) is a valid extrapolation of A, to |z] <1. A
procedure of analytic continuation is a prescription for
choosing a unique f, out of ®(¢;A, ), given € and h,. The
procedure is called stable (in |z| <1) if, as €0, for any
choice of 4, in (6.1), f.(&h.;2)—f,(2), forallzin |z| < 1.
The function f,(e;h,;z) chosen by a stable procedure is
called a stable extrapolate to |z| < 1.

Consider now the following prescription: for each € and
h,(x), define

My(eh)=inf{|| f||..: ¥*(psh. —f)<xy’e feH 3(D)}

(6.3)

[cf. Eq. (1.8)]. We show below that there exists a unique

f.(€:h.)eH g (D) which realizes the extremum in (6.3).

The claim is that £, (¢;h.) is a stable extrapolate to |z| < 1
(cf. the related problem of Ref. 41).

This is a consequence of Tykhonov’s criterion for stabil-
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ity (Ref. 4, p. 28, §11), which we may state in our case as
follows: If the set of extrapolates f, (¢), for 0 < € < €, is con-
tained within a set ., compact with respect to the uniform
convergence on compact subsets of |z| < 1, then £, (€) pro-
vides a stable extrapolation of the data to |z < 1. Now, the
set of functions uniformly bounded in |z| < 1 makes up such
a compact set (see, e.g., Ref. 29, Theorem 14.6) and one has
to show that all functions defined by (6.3) obey such a
bound, i.e., that the sequence M,(€;;h,, ) is bounded as
€, —0. But f,(2)e®(eh,), for all €, so that M(eh,)
<|| fill o < co, which shows that Tykhonov’s criterion is sat-
isfied. We now prove the following lemma.

Lemma 6.1: There exists a unique f, (€;4,) which real-
izes the infimum in Eq. (6.3). It is of the form MyB,,, (z),
with B, (z) a finite Blaschke product.

Proof: One considers the function of M [recall definition

(2.1)]
Aomin (M) = inf{y (p;h — f), feF 0/ }. (6.4)

It is easy to verify thatfmm (M) isin fact a strictly monotoni-
cally decreasing convex function of M on some interval
[OM, ., ] (M, may be infinite). Strict monotonicity fol-
lows from the uniqueness of the function in .# ,, that realizes
the infimum. From Theorem 2.2, it follows it is of the form
MB,, (z), with B,,(z) a finite Blaschke product. The two
inequalities [p(b) —p( —a) = 1],

Kin (0) — ¥ (M) <M(M + 2||||,)
and

(6.5)

Ymin (M) M(- f 3 )+ 2 _n]
X min < XP)M+5 M+5 M—{—E elip

</{/min (M+ 5)

é
M+6

+ (“hE”p _/{/min (M + 8))’ M>0,

(6.6)

show that )}mm (M) is a Lipschitz continuous function of M.
Therefore,it assumes any value between Kenin (0) = ||, ||,
and Y. (|| £]l..) exactly once. In particular, M, is the
unique root of the equation

Kmin (Mo) = XoE. (6.7)

The function f,(€;h,.) realizes y,., (M,). This ends the
proof of Lemma 6.1.

We now prove a similar statement for problem (C) of
the Introduction. Let

a(M:e) = sup{ f (xy): f&5 (M;e)}, (6.8)
B(Mie) =inf{ f (x,): &5 (M;e)}, (6.9)
where
P (Mie) = F £ x(psh —FI<xo L7 ()}
(6.10)

The functions a (M;e), B(M;e) are, at fixed M, defined only
for y.e> ,{/mm (M). We prove, namely, the following lemma.
Lemma 6.2: There exists a unique function in .% (M;e)
assuming the value @ (M;e€) at x,,. It is of the form MB,,(z),
with B, (z) a finite Blaschke product. The same is true for
B(M;e).
Proof: We consider the function
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Xmin (M) = infly (p3h —F): feF a5 f (x0) = o},
(6.11)
and shall show, similarly to Lemma 6.1, that it is a strictly
monotonically increasing, Lipschitz continuous function of
Jfo» on the interval [ fou (x,),M], where fy,,(2) is the
unique function of % ,, on which y,... (M) is achieved. It is
convenient to introduce

Xoin (SsM) = inf{y (o3 — )2 f6F a3 fx0)> fo}

(6.12)
and show first that it is attained on the same function as
,{/mm ( fo;M) (and thus has the same value). To this end, it is
of advantage to switch to the space L?(p,) (see Sec. V),
where f(x,) = (@o,f ). and recall that (Ref. 31, p. 217,
§8.3, Theorem 1) in view of the convexity of & ,,, of the
functional y(p;h—f) and of the constraint
Jo— (@ f ). <0 (which is fulfilled at least by f=M) a
Lagrange multipler A <0 exists so that
X min (fE)’M )

=infly (psh — ) + A (@0, /). —fo): foF u}-

(6.13)
Further, for the extremal function £, A ((wg, f). —f,) = 0.
If (w0 f).%#f, We conclude that A =0 which means
,{/min(fo;M ) = ¥min (M). This is, however, impossible, by
Theorem 2.2, if f3> fou (X,), since ,{/min (M) isattainedon a
unique function f,,(z).

It is thus evident that y,.., ( fu;M) = )}min (fu;M) and,
in view of Theorem 5.2, that the unique extremal functions
are the same. As in Lemma 6.1, it follows now that
)?min (f5;M) is a strictly monotonically increasing, convex
function of £, on [ fou (X5),M]. [Strict monotonicity fol-
lows from the uniqueness in .% ; of the element achieving
Ymin (f;M).] To show the Lipschitz continuity of
Yomin (fo; M), we consider two values fy,, foz, forr (X6) < for
< foa <M and their corresponding extremal elements in
F we (%03 fo:)» MB(z; fi;), i = 1,2. Then, using the Schur—
Pick—Nevanlinna algebra (Refs. 1 and 23), we may write
(i=12)

foi/M + B(2)B,(2)
1+ f,,B(2)B;(2)/M
with ﬁ(z) = (z —x0)/(1 —zx,) and B,;(z) are Blaschke

products. Then
_ sz/M+E(x)Bl(x) )
_ M h—M =
/Ymm(fOZ’ )<X(p’ 1 +f2)2ﬂ(x)B](x)/M
<x(p;h — MB(x; fo1))
foo/ M + B(x)B,(x)
+M ( ; =
N £ BB, (x)/M
B f(,l/M+/?(x)B1(x))

1 +foB(x)B,(x)/M
<imin (ﬁ)lsM)

+ |for — foul

B(z; fy) = (6.14)

14+ 1/M
[min,g (1= BT
(6.15)
which shows the Lipschitz continuity of ¥, ( /o;M). With

|. Sabba Stefanescu 2675



the same reasoning, we establish that )—(min (fo;M) isastrictly
monotonically decreasing, Lipschitz continuous, convex
function of f, on the interval [ — M, fo,,(x,) ]. It follows
that the equation for f,

Xemin (SsM) = Y€ (6.16)

has, for each €>0, at most two distinct roots u,, u,,
— M<p,< forr (X0) <, <M; we agree to let p, = — M, if
Xoe>x(pih(x) + M) and i, = M, if yoe>x( pih(x) — M),
Now, if fou (x0) < fo1<H,, there exist functions fe5,,,
X(psh — f)<xo€ assuming the value f5, at x, e.g.,
MB(z; fo,), However, if f51 > 12, in view of the equality y ..
(M; £3) = Xmin (M; /), there exist no such functions. Thus,
1, = a(M;e) and, similarly, g, = S(M;e). This ends the
proof of Lemma 6.2.

With this, problems (B) and (C) have been reduced to
the solution of two equations, (6.7) and (6.16), with known
right-hand sides. The evaluation of the left-hand sides for
given M and f; require the numerical solution of problems
(A) and (A.). The Lipschitz continuity of i/mm (M) and
Xomin (M f3), Egs. (6.5) and (6.6) and (6.15), show that we
can achieve any desired precision in the determination of the
roots of (6.7) and (6.16) by solving problem (A) or (A.)
only for a finite set of values of M or of f,. Thus, we have to
describe in detail the numerical computation of y,... (M),
Yomin (M; f3), for given M and f;,.

Before turning to this, we make two remarks.

(a) There is no difficulty to allow for further constraints
in problems (B) and (C), e.g., require their solution under
the conditions f(&;) = w;, for several fixed points &; and
values w;. One can always reduce the problem to a sequence
of numerical solutions of problems (A,).

(b) In a series of papers (see, e.g., Refs. 42-45), an
equivalent method for the solution of problem (C) was used.
One computes, for every fixed e, the value

My(e; fo) = inf{|| | . : feH 3 (D),
xX(psh —FI<yoEs [ (X0) =So}

The set [B(M;e),a(M;e)] of possible values at x, is given by
the set of values f; for which M,(e; f;) <M (see, also Ref.
40). The curves M, (¢; f,) are sometimes quite spectacular,
and may be used to indicate the quality of the extrapolation
even if M is unknown. However, their computation requires
more effort in our case than the solution of Eq. (6.16).

In principle, according to Theorem 4.1 and to the dis-
cussion of Sec. V, following Lemma 5.7, the solutions of
problems (A) and (A, ) are equivalent to minimizations in a
finite-dimensional space of parameters. It is shown in Ref. 40
that the dimension of this space may be chosen independent-
ly of the value of M. However, as shown on examples in Sec.
VII, the bounds on the dimension of this space are consider-
ably larger than the number of factors of the extremal func-
tion, which is observed in actual calculations. The method
based on the solution of the nonlinear integral equation,
Eq.(3.47) [or of the set (5.21) and (5.22) ], turns out, how-
ever, to be quite efficient.

Before considering this, we discuss an apparently
straightforward method of numerical solution, which uses
Lemma 3.5. One tries, namely, to minimize directly the non-

(6.17)
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linear functional of N(x)eL %(p),

x*(p;h — B) = (h(x) — B(N;x),h(x) — B(N;x)),.
(6.18)

This functional is Fréchet differentiable at all N(x)eL *(p),
with the exception of those N(x) for which zeros of F,(N:x),
Eq. (3.36), cross |z| = 1; there is no difficulty to account for
the latter (see Lemma 3.7). One may then attempt to mini-
mize (6.18) by the method of steepest descent (see Ref. 31,
§10.5, Ref. 46). Since the action of (@B(N;x)/dN) on
SNeL *(p) is obtained through the finite set of linear func-
tionals (da;/dN) [Eq. (3.59)1], the procedure is equivalent
to a minimization with respect to the parameters a,, whose
number is varied in a controlled manner, when zeros of
F(N;x) cross |z| = 1. Lemma 3.5 is invoked to make sure
that we scan in fact the whole space of normals n(x)eL *(p).
This is an improvement of principle over the direct minimi-
zation described above. However, it has the drawback that it
is not well defined everywhere in L 2(p). In other words, if
the Fréchet derivative of (6.18), which is the element of
L?(p) given by

oy (aB )f
2 (Nx)= —2 [ (N - ) —B(N: ),
p (N;x) 3 (Nyx) ) (hC ) (N;+))

(6.19)
vanishes at some N(x), it does not follow the corresponding
B(N;x) is the extremal Blaschke product. To understand
this, we return to Egs. (3.9) and (3.10) and remark that,
replacing there n(x) by A(x) — B(N;x), problem (A) may
be regarded as that of finding the unique number p and the
unique set of p values for the @,’s so that (3.9) and (3.10) are
satisfied. There are, in general, may solutions to (3.9) alone;
all of them lead to vanishing dy*/dN(N;x), as is easily veri-
fied. The remarkable fact is that only one of them—the ex-
tremal function—satisfies (3.10), i.e., with the replacement
above:

(#(x) — B(N;x),B(N;x)P(x;¢)),>0. (6.20)

No similar problems of false extrema appear if one at-
tempts a solution of the integral equation (3.47). This may
be achieved by minimizing:

P(N) = || (N)(x) —h(x)||;2,. (6.21)
The functional ® () has only one finite local minimum, at
the solution Ny(x) of Eq. (3.47). Indeed, at any point

N,(x)#N,y(x), the (Gateaux) derivative of (V) in the
direction 6N is given by

g%uvl)azv = AL(N,) —hSL (N:BN)).  (6.22)
By Theorem 3.2, choosing either
o\
8N, = — (2L ) (v — ) (6.23)
or
SN, = —(a—”(zv ))_I(M(N ) — k) (6.24)
2 BN 1 1 ] .

the expression (6.22) is strictly negative. (We have used the
symbol .27 /9N even at points where it is not defined; how-
ever, there is no ambiguity, in view of Lemma 3.7.) Conse-
quently, there exist points N(x) near N,(x), with ®(N)
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< ®(N,), as asserted. The choice (6.23) corresponds to the
method of steepest descent and (6.24) to Newton’s method
(see Ref. 31, Chap. X, Ref. 47, Chap. XV and XVIII, Ref.
48). In an actual calculation, for a given ¥, (x) and a given
choice of 8N;, we locate numerically the minimum of the
function of one variable f(A) = ®(N, + AS6N,), obtain
this way a new point N,(x), and continue in this manner. If
all steps of the minimization lie inside a domain in which a
uniform lower bound on |[(d=//IN)(N)6N|,, for
I6N),>1 or a uniform upper bound on ||((d.2/
dN)(N))™"||, is known, and if the distance of the points N,
from the separating surface F(N;e®®) = 0 can be controlled,
we can show that this procedure converges to the solution of
Eq. (3.47). Indeed (see Ref. 31, p. 289, for similar reason-
ing), if we asume that ||((d.«//dN) (N, ))™'||, <K, indepen-
dently of &, and that Taylor’s second-order formula (see
Ref. 36, p. 77, Theorem 5.6.1) may be applied [which ig-
nores the discontinuities of (d.27 /dN) ] we would have at the
(k + 1)st step for the choice (6.24) the majorization

M —1
<1>(Nk _A [(%F)‘Nk’] (& (V) —h))

<P(N,) —AD(N,) + A’BK*®(N,), (6.25)

where B is an upper bound on the second derivative. Choos-
ing A = 1/2BK ?, Eq. (6.25) implies

D(N,,,) — PN, )< —D(N,)/(2BK?).  (6.26)

Now, the condition ® (N, ) >0, for all k and Eq. (6.26) are
consistent only if lim,_, _ ®(N,) = 0. Further, this fact and
the existence of the inverse Fréchet derivative ((d.«//
JdN)(N))~! show that the corresponding sequence N, (x)
tends to Ny(x) in L *(p) norm, if F(Ny;z) #0, for |z| = 1. In
Appendix B [comments (a) and {b) ], we show that, even if
the latter is not the case, the convergence ® (N, ) —» P (N,)
implies N, (x) » Ny(x) in L 2(p). The calculations we pres-
ent in Sec. VII are based on the algorithm described above.
Unfortunately, as we have pointed out, the reasoning leading
to (6.26) is not complete. We can turn nevertheless the argu-
ments above into rigorous convergence statements provided
we restrict 2(x) to a sufficiently small neighborhood of
& (N,) and we slightly modify the prescription (6.24) for
the minimization step. This is done in Appendix D and suf-
fices in fact to justify the systematic use of the integral equa-
tion (3.47) for the solution of problem (A). Indeed, it is
enough to find solutions, within a sufficiently good approxi-
mation, for functions 4, (x) = (1 —pu,;) (N, (x))

+ p;h(x), for a finite number of y;, lying close enough to
each other. This allows us to formulate the conclusion of this
section in the following theorem.

Theorem 6.1: The algorithm based on the minimization
of & (N) with the choice (6.4) for the direction of minimiza-
tion and the modifications of Appendix D provides a se-
quence of Blaschke factors B(N,;x), uniformly convergent
in |z|<1 to fy(x), the solution of problem (A), provided
d(N,) is sufficiently small.

It is possible, although somewhat laborious, to obtain a
quantitative characterization of this convergence and we
skip this point. In view of Theorem 5.3, a statement analo-
gous to Theorem 6.1 may obviously be formulated for prob-
lem (A.).
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VIi. NUMERICAL EXAMPLES AND CONCLUSIONS

We consider 15 points {x; }!% |, distributed equidistant-

lyon [ — a,a], a>0. Usually, we shall takea = 0.5. At these
points, we prescribe a data function 4 (x) with constant er-
rors, of magnitude o. The data function is obtained by per-
turbing the values f (x;) of a certain f(z)e# , with ran-
dom numbers obeying a Gaussian distribution with standard
deviation o. We wish to obtain a numerical feeling for the
procedures described in Secs. ITI-VL.

The bounds on the numbers of zeros of the best Blaschke
product (Sec. IV) involve quantities Cy, C;, and ¥ (Lemma
4.1) which are purely geometrical (except for the p-depen-
dence in Cy and C,). Their computation requires knowl-
edge of Z’R (2), Eq. (4.7), along a closed curve ¥, surround-
ing the data domain and lying in |z| < 1 and on a closed curve
¢’, situated in |z|>1 and avoiding ( — 0, — 1/a]u[1/
a, ). It is convenient to choose € and %' as level lines
|£(2)| = const of the mapping ¢(z) leading from the plane
cut along ( — o0, — 1/a]u[ — a,a]uf1/a,» ) to an annulus
with radii 1, R in the § plane (as obtained by means of the
incomplete elliptic integral®'®). As is well known, R is a
monotonically decreasing function of q,R(a)—1, as
a—1(a>1). The computation of the Green’s function and
thus of the bounds in Lemma 4.1 for a circular crown with
radii R,R,, 1 <R, <R, <R, is straightforward. On one
hand, the bound 7, Eq. (4.13), decreases quickly towards
zero as R,/R,—1, but on the other hand, the functions
(_ZR (z), _C’, (2),Eq. (4.7),forzon €, €', increase indefinite-
ly as R, approaches unity or R, approaches R. Thus, a ba-
lance has to be achieved and, as a rule, it is profitable to
compute the bounds for R, = 1.1, R, = R /1.1. The con-
stants Cg,C; are then of the order of unity (1<Ckg,
C; <10). The dependence on p(x) (in particular on the
number of points on [ — a,a]) is negligible (a few percent
for N2 10).

From Eq. (4.30), one sees that, if y € 1, thebound on the
number of zeros is likely to be good. From Table I we see that
y is depressingly close to unity if a R 0.5 so that the bound
gets very weak for increasing a. The values of k, depend on
h(x) but are, in general, much smaller than unity (see Table
I). The operators B;, Eq. (4.21), are again determined
(apart from a weak p-dependence) on geometrical grounds;
they have eigenvalues which decrease rapidly to zero; as a
consequence, @(g), Eq. (4.24), is, for “usual” g’s, very small
[ ~10~7for (7.1)] and only the estimate of k,, obtained by
the method used in Lemma 4.2 for a(g) = Ois of relevance.

In Table I, we show the values of the upper bound Eq.
(4.30) on the number of zeros of the best fit to the data
function obtained by perturbing

fi(2) = 1/(Z +2), (7.1)

for ze[ — a,a] with noise. The interesting feature is the rapid
increase of the bound with 4. For small a, the bound (4.30)
turns out to be tight. Its rapid deterioration may be seen as an
expression of the “thickening” of the body ¥, as ¢ in-

-creases; the correlation of the values of f(z)e%, at two

different points becomes weaker as the distance between the
points increases. We recall that the derivation of the bound
(4.30) was done neglecting the second term in the duality
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TABLE 1. Numerical values for the quantities appearing in Sec. IV and the upper bound ¥, for the number of zeros of the best fit; the data function was
obtained by perturbing example (7.1) with 5% errors [of f(0)1. The data are given at 15 points distributed equidistantly on ( — a,a); the constants C, are
defined following Eq. (4.16), ¥ following (4.13), and kg, K, are defined in Lemma 4.3. The bound N,,,, is essentially controlled by 7, which is of purely

geometrical origin.

a X1 o G In kyo/C, In kyo/C, Iny Ninex
0.1 0.0199 0.21 4.74 — 8.47 —8.74 —1.48 6
0.2 0.0192 0.215 1.93 —1791 —7.94 —0.82 10
0.3 0.0180 0.240 1.42 —11.03 —13.42 - 0.51 27
0.5 0.0162 0.302 1.13 — 10.69 —11.73 —0.18 63
0.7 0.0176 0.353 0.70 — 10.60 —11.77 — 0.044 260

relation (2.14); the latter describes the “thickness” of .7
[in the direction n(x)].

Numerical experience shows, however (Refs. 1, 16, and
20), that even for larger @, the number of zeros of the best fit
does not increase, in general, as badly as indicated in Table I.
The method of determining the best fit by means of the non-
linear integral equation (3.47) [or of the minimization of
P (N),Eq. (6.21)] allows a control over the number of zeros
at each step of the iteration. A possible starting point for the
minimization of ®(N), Eq. (6.21), is the function N,(x)
with

No(x) = h(x) — Fy(x) (7.2)

and F,(x) the best fit to A#(x) under the L? condition
I £ll.<1, Eq. (1.5). If the direction of N(x) is fixed, one can
still minimize easily ¢ (V) as a function of the magnitude of
N(x). If (N(x),h(x) — B(N;x)), >0, the minimal value of
®(N) is obtained for N’ = cos 6, X N and is equal to

D(N') = ||h(x) — B(N:x)|]* sin? 6, (7.3)

with 6, the angle between N and A#(x) — B(N;x). We start
the minimization from this value of N (after having verified
that cos 6,>0). If [ N(x)|| , is small and thus also E,(N;x),

— a <x <a, the first term in the Fréchet derivative d.«/ /dN,
Eq. (3.73) is small numerically compared to the second one.
The operator (9B /3N) (N) is from L *( p) into R 7 and has
no inverse. Thus, although (J%7/0N) ™! exists, its condi-
tioning may be not very good (although manageable). We
start from the function f;(z), Eq. (7.1), and generate A(x)
as explained above, choosing o = 0.05 f;(0). It follows that
dp(x)/dx = 1/(156*)2}2. | 8(x — x;). We wish to find the
set of allowed values of the functions fe% , and obeying
¥(ph— f)<1, at the points x, =0.6, x,=0.7, and
x3 = 0.8. The procedure described in Sec. VII was applied
and the results are shown in Fig. 1 as curves y ., (1; fo; ) vs
Jo:- The precision can be made arbitrarily high. The function
/f1(2) has no zeros in |z| < 1; its best approximants in % ,,
with fixed values f;, at x;, are Blaschke products with four to
six factors. The construction of the curves is quickly conver-
gent, once a run has led us from the L ? solution to a solution
of problem (A, ), for a certain f;,.

To sum up, we have presented a systematic method to
solve the problem of determining the best analytic approxi-
mant in the usual least squares sense, within the class of
functions uniformly bounded and holomorphic in the unit
disk. The essential point of the method is the solution of a
certain nonlinear integral equation, which leads itself to an
approximation scheme, related to the Newton-Kan-
torowich procedure.*’
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The geometrical meaning of the integral equation is
clearest in the form (3.1). The equation may be obviously
written for many other problems which require the deter-
mination of the minimal distance to a convex set SeL *( p). It
gives the solution in all cases when the “linear” problem of
finding the element f (n;x) which realizes sup{(n, f), fS}
may be solved for all n(x). In fact, we have shown that, if the
nonlinear dependence on n(x) of f (n;x) is known, and if its
Fréchet derivative with respect to n(x) is a compact opera-
tor, then the operator

A (n(x))=n(x) + f(nx), (7.4)
has a Fréchet derivative with a bounded inverse. Indeed, this
follows from the convexity argument of Theorem 3.2. In

problems of analytic continuation and interpolation, the set
S is also compact in L ( p), so that f (n;x) is a compact

1 T T T T T 1 J I
L 0Xmin (p; B} -
Xo=07 Xo=06 Xo=0.7
L . -
- . -
X,=0.8 XE0.6 Xo=0.8
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00254 ————d~—g——— —— ! s —1———]{——~
®
LR ]
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FIG. 1. Curves Y., (1;/o;) as a function of f;, for the data function ob-
tained from (7.1). The curves are obtained by solving the set of integral
equations (5.24) and (5.25) with the procedure described in Sec. VI. The
set of possible values at x,, = 0.6,0.7, and 0.8 in turn is given by the segment
delimited by these curves on the line y,;, = 0.025(£(0) X 0.05).
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operator and, crudely speaking, we expect also its Fréchet
derivative to be so. As an example, consider the H ? problem,
treated in Lemma 4.4. The analog of Eq. (3.1) is (using
Lemma 3.3)

N(x) + (7.5)

7

X

1 J"’ N(x') ,
dp(x') = h(x).
el ) T—xx ¥

If we assign a certain value A to ||ky ||, Eq. (7.5) is Fred-
holm of the second kind, without positive eigenvalues. The
difficulty is, clearly, that, given N, (x) for a certain choice of
A, we are not sure that ||k ||, = 4. Thus, in principle, we
have to solve the equation for all A > 0 and find that value 4
for which ||ky, ||, = A. This is implicitly done in Lemma 4.4.
On the other hand, the Fréchet derivative of the left-hand
side of Eq. (7.5) is [its action on SN(x)eL *( p)]

b

d 1 dp(x’)
—— (N)6N =6N
oN ™ )+ lewllz J—a 1—x'x
B (5N,F(N;3x))p (1.6)
lenll>

and is obviously the identity plus a compact operator from
L2(p)intoL 2( p). Thus, we can achieve the same ends asin
Lemma 4.4 by solving (7.5) as a nonlinear integral equation
by the Newton method. This is too complicated in this case,
but is of general applicability and may be used in other situa-
tions when f (n;x) is known (see below).

In the problem treated in this paper, the dependence
S (n;x) was, however, not known; most of the work in Sec.
I11 and V was then dedicated to showing that we can indeed
“scan’ the whole space L *( p) of functions #(x) and gener-
ate the corresponding extremal functions f (»n;x) (Blaschke
products) by varying another function N(x), related to
n(x) by Eq. (3.35). The function N(x) gives also rise, via
Eq. (3.36) to the Blaschke product associated to n(x). The
fact that the correspondence n(x)<>N(x) is invertible and
with an invertible Fréchet derivative (with the exceptions of
Lemma 3.6) appeared to the author as remarkable.

Further, the generalization of these results to the case
when several values f (£;) = w; are given in advance—as is
the case in any application—is not obvious; the most intri-
cate part is contained in the proof of Theorem 5.3.

One should also mention that a pleasant feature of the
integral equation (3.47) is the virtual independence of its
method of solution on the number N of experimental points.
Indeed, for continuous data distributions, the only limita-
tion is given by the precision of the solution of a Fredholm
equation of the second kind [i.e., the construction of ((d.«//
IN) (V)™ (' (N) —h)].

Condition (H), Sec. I11, restricts the set of vectors N (x)
through which the iteration may proceed. The set of ex-
cluded points may-be regarded as exceptional; it never oc-
curred in our numerical experiments. Further (see Appen-
dix E), part of (H) may presumably be relaxed, without any
change of the results. It is of interest to understand how the
solution of & (N) = A may be recovered, if F,(V;z) has a
multiple zero on |z| = 1.

Clearly, the interest in the results of this paper lies most-
ly in their exact character. Also, one may presumably state
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that problems (B) and (C) of the Introduction represent
analytic continuation problems in a “pure” form: if a model
for the stabilizing condition is available, then it is likely to
take the form | f (e )| <M(8), which, by means of (1.10), is
the same as the one treated here. Unfortunately, there are
few problems in high energy physics (the one treated in Ref.
1 is an exception) where this stabilizing condition is known
with sufficient confidence.

However, a problem closely related to the present one is
that of the inversion of a large number of moments of a func-
tion f(x), positive definite on some interval (a,b), if the
moments are affected by errors. The usual methods of mo-
ment inversion rely on the assumption that the moments are
consistent with the positivity constraint on f(x). A very
small amount of noise invalidates this assumption, however,
in the same manner as discussed in Sec. II for the body % .
The best fit to error affected moments is then, in analogy to
Sec. I1, given by the moments generated by a function f,(x)
consisting of a few positive §-functions placed on (a,b). The
problem arises to find a systematic method for the determin-
ation of the position of their support. An equation similar to
(3.1) seems to be appropriate. The author hopes to return to
these questions in the future.
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APPENDIX A: ON THE NUMBER OF ZEROS OF THE
EXTREMAL BLASCHKE PRODUCT f(m2)

In this Appendix, we are concerned with a measure
p(x) of finite type, with N jumps at the points
X;,X1>X,>X3> - >X,. The possible values f,, f5,..., f as-
sumed by functionsin & |, atx;,X,,...,xy make up the con-
vex and closed set %, Eq. (2.5), in R ”. By means of the
Cayley transformation

w, =1+ f))/(1 = f), (A1)

the points of ¥, are placed in one-to-one correspondence
with those of the cone K, of points with coordinates given by
the possible values assumed at {x,};"_ ; by the functions ho-
lomorphic and with positive real part in |z| < 1. Using the
results of Ref. 22 (Chap. VI), the positivity of the determi-
nant (2.10) and of its minors and the fact that the transfor-
mation (A1) is monotonical, i.e.,leadsaset f;_ <f <f;,,
i=1,.,N, into a set w,(f;_ ) <w; <w;(f;, ), one verifies
that (a) the boundary of .%, consists of two (N — 1)-di-
mensional manifolds (“surfaces”) in R %, generated by all
Blaschke products with precisely N — 1 zeros and their com-
mon closure, generated by products with less than (¥ — 1)
zeros; (b) if two points with coordinates (fi,...,fx),
(f1sf %) belong to .~ and

(=D *fi<c (=D *f1, k=1,..N,
then the whole set of points with coordinates f;,
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(= D¥* A<= DV L <(— 1DV Ff; also belongs
to # y; and (c) the planes tangent to . y at the points of the
two surfaces are given by

N

z n(fi —fo) =0,
i=1
where the {n,}¥_, have alternating signs (see Ref. 22, §1.5,
Theorem 5.3). There are several planes tangent to ., at the
points of the common closure of the two surfaces (“edges,”

see, also, Ref. 17).
As we have seen in Sec. II, for large N, . gets very

flattened. Consider then a point {#,}"_ €int %y ; we may
construct the largest parallelepiped (@,5) in R " that is con-
tained in £y, so that A (— DY *<h (- 1V 4
<h (= 1DV-K If we wish to extrapolate the “data”
{r }¥_, with “errors” (Qk,}_zk)f=1 to a point xe( — 1,1),
x#x;, i = 1,2,...,N, we may apply the method described in
Sec. 11, in relation to Eq. (2.8). Assume now {4}, is
affected by errors ( — 1)¥ ~A¢,,A,€; >0, with increasing A.
Already for very small A, the point {/,})_, crosses the sur-
face of ¥ and the problem of extrapolation is reduced to
that of finding yZ.., ( p;4), Eq. (1.3). For small A, the latter
is realized by a point on the surface that has been crossed,
i.e., by a Blaschke product with N — 1 zeros. The normal
{n,o}Y_, of the plane tangent to %y at f(nyz) has, as
mentioned above, components with alternating signs. Thus,
S (ng;z) has as many factors as there are sign variations of
{n.o }}_,. Now, if A increases or if we choose a different
direction of displacement, the point {#,})"_, will in general
move outside of . in such a way that its minimal distance
to %y is attained on an “‘edge,” i.e., on a Blaschke product
with less than N — 1 factors. It is amusing that some relation
persists between the number of factors of f (n,;z) and that of
the sign variations of the corresponding {n A
=1{h; — f(ngx,)}_,. Namely, for any normal {n,}"_,.

Theorem Al: The number of zeros of the extremal
Blaschke product f (n;z) is at most equal to the number of
sign variations of the normal {n,}_,.

Proof: We show first a similar statement for the Cayley
transform (A1). We recall (see Ref. 22, Chap. IV) that the
boundary of K, is made up of points with components w?,
given by (k<N, Ref. 22)

(A2)

k
= p<x,.;e-w,.z_cf P(X:¢%)da, (6) (A3)
j=1
with A; > 0; the angles 6,€[0,2) are the zeros of a polyno-
mial
. N .
P (#e®) = ¥ H,P(x;;€9),

i=1

(A4)

which is positive on [0,77]. Such a polynomial is, by reflec-
tion symmetry, in fact positive on [0,27), so that all its zeros
are at least double. In Eq. (A4) the 7,;’s are the components
of the normal of a plane tangent to K at {w?}_ ,. With this,
we claim that the number of distinct zeros of & (#i;¢ ) on
0< 0 < 21 cannot exceed the number of sign variations of the
set {@, }_,.

To see this, we notice that the function & (7;z) /zhas 2N
poles at x; and 1/x;, with residua equal to 7,; it vanishes

2680 J. Math. Phys., Vol. 27, No. 11, November 1986

twice at infinity and has 2V — 2 further zeros either falling in
pairs (z;,1/z¥) or lyingon |z| = 1. If 5,7, | >0, there must
be a zero lying between x; and x,, , and therefore a zero
between 1/x; , | and 1/x;. Consequently, if ¥'(#) is the num-
ber of sign variations of {7, }!_ ,, the number of zeros lying
on [xy,x,;] and its reflection across |z| = 1is 2N — 2 — 2V.
Thus, at most ¥(»n) double zeros lie on |z| = 1, which proves
our claim.

Let the coordinates of a point in RY be ( f;,..., fy ). Then
a plane tangent to .~ at ( f3, f9,..., /%) may be written in
the form (A2). If { £, }_ €%y, fi # f7, then

N

Zn,-ﬁ<'§ n fo.

i=1 i=1
From (A1) it follows that all points of K, with coordinates
{w; }_ | obey [w) =w; (D), w#u’]

N -1 0 __ 1
S(w,wo)EZ n, (w, I w(,) 1)<O.
w; w; +

(A5)

(A6)

i=1
Consider now the plane tangent to S(w,w’) = 0 at uw°,

o N 2n,

T(wuw’)=y ——— (w,
<1 (1 +ud)?
We claim that, in fact, T(w,uw®) = 0 is tangent to K, at w,,.
To this end, consider any point {w,}!"_ €K and join it to
{wf}Y_, by a line segment, which is contained in K. All
points of the line obey

—uw?) =0. (A7)

S(A)y=S(Aw + (1 — Duww’) <0. (A8)
This implies that, for any weK,, [S(0) = 0]
as (A9)

0>E = T(w;u°).

Thus, T(w;u°) = 0 leaves K, on one side and touches it at
least at w°. In fact, considering the ray AweK, A >0, it is
easy to see that
N o N 2ni o

igl njw; igl T w? =0, (A10)
so that T'(w;w,) = O passes through the origin in w-space. It
follows that the polynomial & (n/;z) has at most ¥(n) dou-
ble zeros on |z| = 1 and that the function o (8) generating
wleK by means of (A3) has at most V() positive jumps
on [0,277) and is otherwise constant. The Cayley transform
(A1) shows that the phase variation of the Blaschke product
S (n;z) with f(n;x;) = f7is then at most 27¥(n), and this
ends the proof of Theorem Al. For the extremal f (nyx)
this means the number of its zeros is at most equal to the
number of its oscillations around A (x).

APPENDIX B: COMPLEMENT TO SEC. Ill

In this Appendix, we wish to show that ((9%/
AN)(N)),, ((3% /ON)(N)), Eq. (3.66), have bounded in-
verses. It is easy to see that both (d€ /dN)., (3€ /AN), are
the sum of an operator with bounded inverse [ E (N) Xiden-
tity ] and a compact operator, i.e., they are of Fredholm type.
For our statement, it is thus enough to argue that each of the
equations

9% ~ o5 ~
9% & 0, (W) w6m=0 (BI
(aN( ))e(ﬁN) (8N< ))’_( ) (B1)
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implies SN = 0. We proceed by analogy to the proof of
Lemma 3.6 and show first that (B1) imply, for their possible
solutions SNeL *( p), in turn,

aB ) ( JdB )

— ) (6N)=0, [=——] (6N)=0.
(aN e © aN/; ©M
Equations (B2) are obtained by considering in turn the lim-

its N¢—N, Ni—N of the identities

(B2)

L (& (N30, (N3 (6N) =0, (B3)
IN

valid for every SNeL *( p) [cf. Eq. (3.58)]. If 8N satisfies,
say, the second of the equations (B1), then (B3) implies,
similarly to Lemma 3.5, the vanishing of the quadratic form

N& P+2 N’ aZB (N) ‘S 5 O
Qi( b a) - ; (n( )s (aaiaa )’ )p a; aj i 4]
(B4)

»?
In (B4), we have considered the case of two complex zeros
@, .1, Ay, =af,, approaching |z| = 1, and have used
the fact that the zeros a; have a continuous Fréchet deriva-
tive with respect to N(x). [ This follows from the assumption
that F(V;z) has only simple zeros in |z|<1.]

To evaluate (B4), we consider the limit N, — N, at fixed
directions 3, of the identity (3.65). The left-hand side obvi-
ously has a limit {as in (B4)]. On the right-hand side, we
obtain again the modulus squared of E(N; ;e"‘i) times the ana-
lytic continuation to |z| = 1 of ((3B /N) (N)); (6N) (x). If
8N exists so that ((d%/AN)(N));(6N) =0, but ((dB/
AN (N)); (6N) #0, we obtain a contradiction with (B4).
Thus, the second equation (B2) must be valid, if (Bl1) is
true. The same argument shows that the first equation (B1)
implies the first of (B2).

Now, the condition (6B); (x) = 0 does not imply that,
for all &, 1<k<p+2, da, =0. Indeed, the functions
P(xa,,,), P(xa,.,) are identical if a,,,

=a¥, ,.|a,, | = 1.Since the functions {P(x;a,) }2 2 | are,

however, linearly independent [see Eq. (2.12)], we con-
clude that (8B),(x) =0 means Ja; =0 only for
i=12,..,p but still allows éa, , , #0 if Re(éa}, 12, )
= 0. No such possibility is allowed if @, , , is real.

We consider next the representation (3.39) and (3.40)
for L(n;z), and take at fixed z, the Fréchet derivative with
respect to N(x); it is a continuous function of N(x), even at
points like N(x), with F(N;e® ) vanishing for some 6. Tak-
ing limits N =N, N{ — N, one easily verifies that

oL ~ 9% ~
— (N2Y(SN) =|{|{— (N SN B(x;a)P(x;

L (W) (BN ((aN< ))‘_( ) (x),B(x2) (x,z))p
BB(TV)) 8N) (x)P(x; )

+(n(x),( o), BN P

0%
=((—5 (N))e(‘m (x»B(x)P(x,z))p

+(neo, (j—ﬁ W) M 0)Px2),

(BS)
In view of (B1) and (B2), it follows that the possible solu-
tions SNeL 2( p) of any of the equations (B1) satisfy, for all
z,
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L =

— (N;z)(6N) =0. B6

N ( ,?) ) (B6)
We now show that (B6) implies, however, for all z

dF,

—2 (8N =0, B7

N (6N)(2) (B7)

The latter, in view of the representation (3.50) means
SN(x} =0, a.e.-p and proves our point.

To show (B7), we consider Eq. (3.39) for L(n;z) [cf.
Eq. (3.40)] and write, for z = ¢*(|a, , , (N)| = 1),

L (n(j'v);z)_:,_e—ﬁe(ei@ - ap-}—l )2

X (€ — (1/a, . 1 )PL(n(N);e®).  (BS)

We also write
Fo(Niz) = B(Nz)(z —a, . )z — (1/a, . ))E,(N;2),
(B9)

with E,(Niz) #0in |z|<1. From (B8) and (B9), we deduce
that [ = n(N)]

|E,(N;®)|> = L,(N:e®). (B10)
We now compute the variation of the double zeros at N, if SN
is constrained by (B6). A double zero is generated by the
two coincident zeros a,, . | (N, a, . (N) =1/at, | (N)of
Fo(N;z), F3(N;1/2*), each of which is Fréchet differentia-
ble with respect to N. We obtain a constraint on the individ-
ual variations of these zeros by considering those of their
symmetric combinations, e.g., their sum

sa,,, +ba,, =-—1—_§26 (‘?L /0z (z’v))(z)dz=o,
21ri L

(B11)

where the integration is carried out on a contour enclosing
a, . ; and no other zero of L, and we have used (B6). How-
ever,ba,  , = —ba¥, ,/(a¥, ) andba,, , =B,  is
constrained by Re(de, , ;) ;) = 0. Itis easy to verify that
these two constraints imply 6a,,, =0. If @, ., =aj, ;,
then, we have seen that 6o, , ; = 0 anyway.

Now, using (B6), we conclude that, for all 8,

e~ (e —a,, )(® — (1/a,, | )SL,(n(N);e®) =0,
(B12)

which, in view of the analyticity of 8L,(n(N);z) around
|z| = 1 implies 5L ,(n(N);e’) = 0. Through (B10), we ob-
tain 8| E, (V;e )| = 0 and, using the representation of func-
tions nonvanishing in |z] <1 [cf. Eq. (3.48)], we deduce
that, for those 8V obeying (B1), for all z,

8E,(Niz) = 0. (B13)

Now, taking the variation of (B9) and using also (B2),
we obtain (B7), as announced.

We next give an interpretation of the results of this ap-
pendix and also settle the proof of Lemma 3.7. We assume
condition (H) is true. The position gf the zero a(N), which
tendstoe, , , as N(x) approaches N(x),isa Fréchet giﬁer-
entiable functional in a certain neighborhood % of N; the
critical surface = on which the discontinuity of (3% /
INY(N) occurs is a level surface of the functional
F(N) =a(N)a*(N), namely, Z (N) = 1. The operator
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Z(N) of (3.35) is Fréchet differentiable in
U N (N) <1). We can define now an “analytic continu-
ation” of & to & (N) > 1 by deforming slightly the contour
of integration ({z| = 1) of E,(N;z), Eq. (3.48). We allow,
namely, for two semicircles around «, , ,,ay,, leaving
these points in the interior of the contour. For all N(x) for
which Z (N) <1 (Ne% ) the operator &; defined this way
through (3.35) coincides with & . It does not do so for those
N in a sufficiently small neighborhood % ,C % of N, for
which a(N) still lies inside the modified contour, but
Z (N) > 1. However, &, (N) has a continuous firéchet deri-
vative throughout %, and (3%,/dN)(N)=((d%/
ON)(N ));- By the results of this appendix and the implicit
function theorem, & ; realizes a diffeomorphism of a neigh-
borhood # C%, of N onto a neighborhood #  of
i = &€ (N). Let 3’ be the image of 3 under & ; it is a level
surface of 2, (n) = Z (%, '(n)). It is easy to see that its

tangent plane at £ () is given by

(ky(x),n(x) — A(x)), =0, (B14)

with k,(x) defined in Eq. (3.70). Here &,(N) maps
Z'O(F (N)<1) onto # N(Z,;(n)<1) in a one-to-one
manner.

Similarly, we may define an analytic continuation of
& (N) from & (N) > 1to Z (N) < 1. For this, we take semi-
circles around @, , ;,a), | leaving these points outside the
contour. We obtain this way another diffeomorphism
&, (N) of the neighorhood ¥ of N onto a neighborhood %,
of 7i. Also, we may define Z,(n) = Z (% '(n)). The sets
ZN(Z(N)21) are mapped one-to-one and onto
¥ N(Z.(n)S1). Also, in ¥ ,=% N¥",, the sets
Z.(n)=1and Z,(n) = 1coincide. As a consequence, one
may verify the following: the set #° ;N (Z, (n) > 1) either
coincides with % °,N(Z ; (rn) < 1) oris disjoint from it. In the
latter situation, it coincides with % ,N(Z, (n) > 1).

To settle this ambiguity, we use the fact that the opera-
tor &(N) is one-to-one in L?( p) (Lemma 3.5). Conse-
quently, the images of the sets ¥ N(Z(N)<1) and
7 N(Z (N) > 1) are disjoint. These images contain in turn
the sets 7 °,N(Z;(n) <1) and # ,N(Z.(n)>1); thus,
these latter sets must be disjoint. We conclude that
Y N(Z ., (n)> 1) =% (Z,;(n)>1). The latter set con-
tains points n(x) such that (a) the whole segment
puht+ (1 —p)n, 0 <pu < 1is contained in it [cf. Appendix D,
following Eq. (D3)] and (b) (k,(x),n(x) —(x)), >0.
For such an n(x), it is true that

0<Z,(n) — Z ()
= g(ge— l(n)) - g(ge_l(ﬁ))

- (p(x), (‘;—f, (N))e_l (n— ;,))p +o(lln — ).
(B15)

Dividing by ||n — ||, and letting then ||n — #||, tend to
zero, we obtain that, for 6n = (n — #)/||n — #]|,, both

(k1 (x),6n(x))>0, (ky(x),6n(x))>0, (B16)
where we have used Eq. (3.70). Since k,(x) = Ak,(x),
A #0, (B16) implies A > 0. This ends the proof of Lemma
3.7.
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Next follow some comments.

(a) The reasoning above shows that, in fact, & ~'(n) is
a continuous operator from L ( p) into L *( p). Indeed, giv-
en a neighborhood 7" of N, it is enough to choose
W CE (FINE,(?)tomakesurethat & (¥ ) C >,

(b) The same reasoning may be repeated for the opera-
tor & (N), Eq. (3.72). We may write, by analogy,

& (N) = N(x)E,; (N;x) + F(Nx)/Ey; (N;X),  (B17)

where E ; (N;x) is the outer function defined on the modi-
fied contour described above, and similarly for &, (¥). In
the course of the proof of Theorem 3.2 we have shown that
(8 /3N),, (3.7 /dN),; have bounded inverses. This, to-
gether with the fact that 7 () is one-to-one in neighbor-
hoods of N and /% (see Theorem 3.2) shows that Lemma 3.7
is true also for & (N). Similarly, & ~'(#) is continuous.

(c) The argument of this Appendix concerning the exis-
tence of (3% /dN).” ! may be applied even if several simple
zeros approach |z| = 1, staying away from each other. [ This
goes beyond hypothesis (H).] There are in this case several
relevant approximating sequences {N, } to N, corresponding
to some of the zeros lying outside |z| = 1 and the others
inside. Associated limiting Fréchet derivatives can be de-
fined and they have bounded inverses.

APPENDIX C: SOME STATEMENTS ON LAGRANGE
MULTIPLIERS

We prove two theorems concerning Lagrange multipli-
ers.

Theorem C.1: (See also Problem 7, Chap. 8, Ref, 31.) If
F(a), Eq. (5.2), is strictly positive definite, there exist
numbers A; such that Eq. (5.7) is true.

Proof: By Lemma 5.1, the point with coordinates
{w,} , is contained in the open, convex set .¥,,. We de-
fine, for yef’ = the function

V() =sup{(n,f),: f&F ; f(§) =y
{ym. e} (1)

Let /. ( y) be afunction on which the supremum is attained.
Then, if y,, y,€.% .,

AV(y) + (1 =)W ()
=mALf(y) + (1 =A) (),
<(m, [ (Apy + (1 = )y2)), = WAy, + (1 = A)yp)),
(C2)

so that ¥ ( p) is a concave function. Consider thenin R ™ XR
the convex set %~ given by the points ( y,g), with ye.”,,,
g<W¥(y) and letg + 34, y, = const be a supporting hyper-
plane (Ref. 49, Theorem 11.6) through the point (w,¥ (w)).
The fact that the coefficient of g may be chosen equal to 1 isa
consequence of the condition we.%,,. It is obvious that the
coeflicients A; of this hyperplane are the desired Lagrange
multipliers.

Theorem C.2: Assume sup{(n,f), + Z,4,(f (&)
—w;); f€F,} is attained on a function f,(z) with
Jea(§;) =w;. Then, if n30, sup{(n’f)p; &7,
f(&;) = w, } is attained on the same £, ; (2).

Proof: If the second supremum is attained on a different
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function f,,itis true that (n, £, ), > (n, /.1 ), since we have
seen (Theorem 5.1) that £, is unique. However, if this is so,
[, cannot be the function on which the first supremum is
attained, since f, gives a larger value to the quantity in
brackets. This ends the proof (and gives Lemma 5.2).

APPENDIX D: A CONVERGENT ALGORITHM FOR THE
SOLUTION OF EQ. (3.47)

In this Appendix, we describe an algorithm for the mini-
mization of ®(N), Eq. (6.21), for which convergence can be
proved. More precisely, we show that if ®(N,) is small
enough, we can construct a Cauchy sequence {N, }°_ , con-
verging to the solution N, of ®(N,) = 0 by modifying suit-
ably the Newton-Kantorowich iteration. It is profitable to
make explicit the dependence of ® () on 4 and write in the
following ®(N;A4). If N, does not lie on a separating surface
S: F(N:¢®?) =0, for some 6 on [0,7], then, by Theorem 3.2,
the usual form of the implicit function theorem applies to the
equation & (N(x)) = A(x), and one knows that there exist
neighborhoods % of N, and 7 of .« (V,) and a continuous
differentiable operator .« ~! defined on 7~ with values in %,
so that & Y&/ (N;))=N, and for all x in 7,
& (& ~'(x)) = x. The construction of .o ~! may be done by
the usual Newton iteration (see, e.g., Ref. 36, p. 57ff) so that
our statement requires no further comment. As N, ap-
proaches =, the neighborhoods %,7” of N, (N;) shrink
indefinitely, since the proof of the theorem requires the con-
tinuous differentiability of .7 in a certain neighborhood of
N,. However, we have shown in Appendix B that .o/ (V) still
provides a bicontinuous correspondence between neighbor-
hoods % of N, and 7" of &/ (N,) even if N, lies on . We
shall now describe a slight modification of the Newton pro-
cedure, which allows the explicit construction of ./ ~'(N)
also in this case.

From the outset, we point out that the difficulty in prov-
ing the convergence of the iteration near points of X is that
one cannot apply Taylor’s second-order formula to estimate
the variation of ®(V;4). To circumvent this, we part the step
of Newton’s method into two: one part up to =, the other
following it. However, we need to make sure that we no
longer meet X while performing the second step, after a too
short distance. This is achieved by moving in a direction that
is “sufficiently normal” to X.

In the following, if N,(x)€Z, the symbol ||((d.//
IN)(N))~'||, means max(|| (3= /AN) (N ). ||, I((B=Z /
INY(N))'|I,). Nowif [|((d//ON) (N,))™ ||, = K, then
it is easy to show that, if K > K|, there exists a neighborhood
% (Ny;r) of Ni(x): ||N — N,|| < #(K) such that, for all N in
% (Nyr(K)), (8 /3N) (N)) ™| < K. We skip the proof of
this statement.

We shall use restriction (H), Sec. II1, and assume thus:
(a) F(N,e) = 0 only for two real values of §, — 7 <0 < 7,
6, — 0,, z, = €% ; and (b) F'(N;e® )#0. With this, we
restrict % (Ny;r) even further as follows: (i) given 7,0 >0,
sufficiently small, there exists 7, (7,0) <7(K) such that, for
all N in % (Nr,(7,0)), F(N:z) vanishes only once in
|z—z,| <7 and |F'(Nyz)| >0 if |z—z,| <7; and (ii) we
choose #<7,(7,0) such that for all Ne% (N;#), F(N;z) #0
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forzon |z| = 1, except for points contained in disks of radius
7around z,,z¥.

We now discuss how to control the direction of the step
of minimization as we cross the surface 2. To this end, we
notice that = may be viewed as a level surface of the (nonlin-
ear) functional & (N)=z,(N)z¥(N), with z,(N) the root
of F(N;z) in |z — z,| < 7. Since F§ (N;z) #0, for |z — z,| < 7,
Z (N)isin fact of class C © with respect to Nin % (N;7); its
Fréchet derivative at NV, (x) is determined by the vector in
L*(p),

g(Nx;X)ERe[e“e' " 1 1

—xe'" F'(Nje)

]. (D1)

Let now B be an upper bound on the norm of the Fréchet
derivative of g(N;x) for N in % (N,#). Then, if N’,
N"e% (N;}), it is true that

IZO(N,)Zg(N’) —Zo(N”)Zg(N”) _(g(N"),N” _N,)pl

4BIN"-N'|,2. (D2)

With this, if we confine ourselves to the cone of directions
AN given by, say,

|(g(N1),AN),, |>3BF|AN||,, (D3)

then any line N + AAN, originating at Ne% (N;#) with
zO(]~V )zo*(X’ ) =1 intersects the surface £ only once in
% (N,;#), namely, for A = 0. This follows from (D2) and a
mean value theorem for |[g(N,) — g(N)|,. Condition (D3)
is meaningful only if

,u=3§?/”g(N1)”p<1' (D4)

This may be achieved by simply choosing a smaller #, if nec-
essary.

We next give a prescription for choosing the general step
(the k th) of the algorithm for minimization, AN, . The pre-
scription depends on the magnitude of the component of the
standard Newton step

AN =(2Z ) (W)~ h) (D5)
on the direction of g(N,). Namely, if

'(ANO,k’g(Nl))p|>lu’” g(Nl)”p”ANO,k”p’ (D6)
then we choose

AN, = AN,,. (D7)
However, if (D6) is violated, we let

AN, = ANy, +g(N,) [ak(p”z(Nk;h)

- (g(Nl)’ANOk)p/”g(Nl)||p2]’ (D8)

where g, is a constant, with modulus independent of k, but
sgn a; = sgn(g(N,),ANy), (D9)
and '
|ax| =a>pK/||g(ND)||,. (D10)

This choice of step ensures that the modulus of the compo-
nent of AN, on g(N,) either satisfies (D6) or is equal to
a®* (N «:h). We choose further g in such a manner that,
besides (D10), condition (D3) is fulfilled. If (D6) is false,
then, according to (D8),
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IAN, I, <||ANoc ||, + alig(V )|, @'/ (Nysh)

<(K+a“g(Nl)”p)ch/z(Nk;h) (D11)
and one sees that (D3) is fulfilled if, e.g.,
a=pK/|gWN),(1—p) (D12)

[consistent with (D10)]. It follows that, in case (D6) does
not hold,

|AN, ||, <KD'2(Ny;h) /(1 —p). (D13)

The estimates (D11) and (D13) are meaningful only if the
whole sequence {N,}_, belongs to % (N;#). We shall
show below that, if || (V;) — k(x)||2=®(N;h) is suffi-
ciently small, this will be the case.

Assuming for a while that this is true, if ¥, €2, then the
line N, + AAN,, 0<A<1 no longer intersects %,. However,
for arbitrary N, €% (N;F), it is possible that we meet 2 at
N, =N, +AAN,, 0<A<l. We wish to make sure that
P (N ;h) <P(N,;h). To this end, we apply Taylor’s sec-
ond-order formula along the segment joining N, ,N ;. If 7 is
further chosen so that, for some C,B>0 and any
Ne% (N;#), both

‘ 97 ey || <c,

aN ,

9%es (D14)
— (N B (N¢2),

‘ aNZ( ) ,,< (Ne2)

and assuming first that (D6) is violated, we obtain [using
(D13)]

2
<1>”2(N,;;h)<[1_/1(1—aC)+/12-L-2-
(1—p)
(I)l/2 N, ;h
xB——(z—"l] VAN k). (D15)

The function of A in the brackets is less than unity for all
0 <A < 1ifitis less than unity for A = 1, i.e,, if

K? B DV2(Nh)
(1—p)? 2
where we have used the induction hypothesis
D(Ny;h) < P(N;h). With the expression (D12) for ¢ and
Eq. (D4), we see that, if both # and ®'/2(N,;h) are suffi-
ciently small, we can satisfy (D16). In case (D6) is fulfilled,
then only the second term occurs in (D16), which is thus
automatically obeyed.

If the line ¥, + AAN, meets 2 at N ;, we let NV}, be the
new starting point and continue. We obtain this way a se-
quence of points N,,...,Ni,N ;,N, {,..., where some of the
indices may appear at most twice, and a corresponding de-
creasing sequence P(N;h),...,.®(N;;h),P(N;h),.. such
that (N, ;4)/P(N,;h)<p* < 1. It follows that the se-
quence (N, ;h) tends to zero. Also

Nesr1 = Nell, <INk =N, +IN2 = Nel,
<[2K/(1 — ) 19V2(Ny;h)
<[QK/(1 —pw)1p*®V*(Nh), (DI17)

which shows that {#, }, _, is a Cauchy sequence. All terms
N, N} of the sequence stay in a ball around N, of radius R
given by

aC + =p<1, (D16)
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k—1
”Nk "Nl“p<.21 “Ni+1 _Ni“p

<<£)¢1/2(N,;h)_-1—ER. (D18)
1—pu 1-p

Clearly, R may be made smaller than #if ®'/2(N,;k) is suffi-
ciently small. If this is so, then N, =lim,_, , N, belongs to
% (N;#) and, since ®(N;h) is continuous,

klim D(Nish) =0=DP(Ngh),
it follows that Nj =N, the solution of the equation
D(Nyh) =0.

To sum up, we have shown that, if # is chosen so that
(D4) and (D14) are true, the quantity aC <1 [cf. (D16)]
and the conditions preceding Eq. (D1) are met, then for any
h(x) such that ®(N,;h) satisfies (D16) and gives rise in
(D18) to R<#, the equation ®(N;h) = 0 has a solution in
% (N;P) and this solution may be found by the modified
Newton iteration described above. This solution is unique by
Theorem 3.2. This establishes the claim made in this Appen-
dix.

It is clearly possible to replace the Newton method with
the minimization procedure of Sec. VI, provided we confine
ourselves to a search over a (uniformly with respect to k)
finite number of steps (D8) and choose the constants in
(D18) appropriately. This justifies Theorem 6.1.

APPENDIX E: MULTIPLE ZEROS

The theorems presented in this paper are true regardless
of the multiplicity of the zeros of the extremal Blaschke
product B(N;z) in |z]| < 1. However, several steps of the
proofs [cf, e.g., Egs. (3.52), (3.59), and (3.60)] and even
the statements of some of the lemmas (3.2, 3.4, and 5.3)
make use of the assumption (introduced preceding Lemma
3.2) that the zeros of B(¥;z) are simple. In this appendix, we
describe a general procedure to treat multiple zeros and
complete this way the justification of the theorems of Secs.
IIT and V.

First, expressions (2.25) and (3.2) for L(n;z) suggest
that, if, say, «, is a zero of the 7th order of B(n;z), thenr — 1
of the equations (3.9) must be replaced by

k
B_(Piz;)/_al)) =0, k=12,.r—1

1 P

(n(x),B(x;a))
(E1)

The first part of the proof of Lemma 3.2 under this condition
is obtained from the requirement that the expression on the
right-hand side of Eq. (3.18) is holomorphic in |z| <1 [cf.
comment following Eq. (3.23)]. In particular, all negative
Laurent coefficients in the expansion of (3.19) around
z=a, (possibly a,€[ — a,b]) should vanish. Using (3.2)
this shows that (E1) are necessary conditions. The second
part of the proof stays unchanged.

Similarly, under the conditions above, r — 1 of Eq.
(3.29) of Lemma 3.4 must be replaced by

3*(P(a;)/a;)
&

(N(x),F(N;x)
a,

) =0, k=12,..,r—1

P

(E2)
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The proof that Eqs. (3.2) are necessary conditions for
F(N:x) to be extremal for (3.25) (even if a,€[ —a,b]) is
obtained by differentiating with respect to z the identity
[which uses (3.26)]

(N(x), M) - (N(x),F(x) 1
P

x

) (E3)
p

x—z —
and letting z = «,. The integrands are holomorphic func-
tions of z, for ze[ — a,b], so that differentiation poses no
problems. Thus, Theorem 3.1 isjustified for all N(x)€L *( p)
indeed.

The difficulty that appears in the arguments of Lemma
3.5 if we allow for multiple zeros is that the functionals
a; (N) describing the dependence of the position of a zero of
F(N:z) [and thus of B(N;z) } on N(x), are no longer Fréchet
differentiable. Indeed, the condition for application of the
implicit function theorem (F{ (N;z) #0) fails. However, the
symmetric combinations

nn = — 3 a,m,

i=1

P
1 (N) = S a;(Na;(N),

i<j

¥, = (=7 [[ &

i=1
are always Fréchet differentiable. This is obtained by ex-
pressing them as polynomials in the symmetric sums

(E4)

G M) =3 a,(N)*

i=1
(by means of Newton’s formulas, see Ref. 50) and writing
the latter as

(ES)

1
N) =—
T (V) 2w

§ Z*(OF(N;z) /z)
¢ F(N;z)dz
where ¥ is a contour surrounding the p zeros of F(¥;z) and
no others and F(N;ze€ ) >u > 0. From (E6) it is clear that
all o,’s and thus all y,’s are Fréchet differentiable function-
als of V.

Now, the Blaschke products can be expressed conve-
niently in terms of ¥, (¥):

2oy (NN !
2P o (N2

and, instead of the ;’s, we may take the y;’s as parameters.
Asin Lemma 3.2 we obtain another form of the p conditions
for B(n;z) to be the extremal function associated to n(z),

(n(x), M—) =0, i=12,.,p.
;

The reasoning of Lemma 3.6 following Eq. (3.57) may be
done again with no other change but the replacement of the
Sa; with the 8y;, which are always well-defined quantities.

The changes in Lemma 5.3 are the same as in Lemma
3.2, whereas in Lemma 5.4 it is sufficient to verify that the
determinant (2.10) stays nonvanishing even if P(&;;a;)/a;
is replaced by d(P(&,;a;)/a;)/da;, for some i. The state-
ment of Theorem 5.3 is obtained by taking the ¥;, Eq. (E4),

(E6)

B(N;z) = (Yo(¥) =1), (E7)

(E8)
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as parameters and resorting to (E8) instead of (5.12). The
functions (9B /dy; ) (z) are indeed linearly independent; this
follows from the fact that, if constants z; existed so that

2 JdB(N;z)
; ——r =, E9
k§=jl v (E9)

then they are also such that, for |z] =1 (y,=1),

o($7)($ %)

k=1 2

(E10)

The first factor has only zeros in |z| > 1 and the second factor
cannot produce sufficiently many zeros conjugate to these
with respect to the unit circle, since its degree is less than p.
Thus u; =0, for all /.

We may now inquire whether it is possible by this means
to get rid of the restriction (H) of Sec. III. e.g., to allow for
multiple zeros to cross the circle |z| = 1. In any neighbor-
hood of a point N, so that F (K’;z) has a double zero on
|z| = 1, there exist points ¥, so that F(V;z) has a simple zero
at a(N) in |z| <1 and another simple zero at a,(N) in
|z] > 1. For such points N, we can again write the Fréchet
derivatives of (dB /dN)(N) by means of Eq. (3.52). How-
ever, contrary to the situation of Appendix B, as ¥ ap-
proaches N, the Fréchet derivative of 2 (V) with respectto N
diverges, and the limit of (dB /dN) (V) does not exist for all
SNeL ?( p). This cannot be cured by the method above and a
different treatment of these points is required. The author
has not pursued this item further.

On the other hand, it may be possible to relax that part
of (H) referring to several simple zeros lying on |z| = 1 for
some N. As pointed out in Appendix B, comment (c), the
various inverse Fréchet derivatives exist in this case. How-
ever, it appears difficult to give a proof of Lemma 3.7 for this
situation in sufficient generality. The author presumes its
statement stays nevertheless true.
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An exact method for finding an inhomogeneity for a variable background from the knowledge

of the scattered field on some manifolds is given.

I. INTRODUCTION

Let

[V? + &’n(x) + 0" v(x) Ju(xp,0) = — 8(x —p), xeR’.
(D

Here u is the acoustic field generated by a point source situ-
ated at the point y in an inhomogeneous medium described
by the refraction coefficient n(x) + v(x), where n(x) is the
known variable background and v(x) is a compactly sup-
ported inhomogeneity. We want to find v(x) from the mea-
surements of u(x,y,w) for all x and y running through some
manifold M and 0 <@ <o, where o, is a small fixed fre-
quency. If the manifold is the plane P = {x: x, =0}, the
background n(x) =1, or

X3 >0,
X3 <0,

]

n, = const,

n(x) ={

the inverse problem was solved in Refs. 1 and 2. In Ref. 2 Ehe
cases when M=S, ={x: |x| =R} or M=Cy
={x: x} +x} =R?} were studied, R,>R and suppv
CBjy = {x: |x|<R}, where supp v is the support of v. We
assume (without loss of generality) that v = 0 if x,>0.

There are two basic results in this paper. The first is a
linear integral equation for finding v(x) for a fairly general
background n(x). The second is an analytic exact method of
finding v(x) in the case when v = v(x,x;), and M = [, U/,
where [,={x:x,=a, x,=0}, L={x:x= —gq,
x, =0}, a> R, xel,, yel,. In geophysics this is the well-to-
well exploration scheme.

The method we use was developed in Refs. 1 and 2, but
here some new ideas are added.

In Ref. 3 the exact inversion theory originated in Ref. 1
is presented in a systematic way. Many authors used a refer-
ence background for inversion assuming that the difference
between the reference and actual backgrounds is small in
some sense (e.g., Ref. 4). Here this “smallness’ assumption
is dropped and the inversion problem is treated globally,
without using perturbation theory.

il. BASIC EQUATIONS

Let us assume that the Green’s function

AG + *n(x)G= —8(x —y) 2)
is uniquely defined for 0 < w < w,, and

1in3)G=g0=(41rlx~—-yI)_l- (3)
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Since n(x) is assumed to be known, the function G can be
considered known.
Equation (1) can be written as the integral equation

u(xy,0) = G(x,y0) + o* f G(x.z,0)v(2)u(z,y0)dz,

4)
where the integral is taken over the support of v. As in Ref. 1

one can prove that (4) is solvable by iterations if @ is small
enough, e.g., if

©° max, f [G(x,z,0)v(2)ldz< 1,
and the following limit exists:

v(z)dz
|x —z| |z —y|

flx,)=167"lim (u —G)a)“2=f (5)
w—0

Here we use (3). The left side of (5) can be measured. The

function f(x,y) is our datum. Equation (5) is formally the

same as Eq. (2.9) in Ref. 2. The basic new point is that we

use ¥ — G as the scattered field now while in Ref. 2 the scat-

tered field was

u — exp(iojx — y|) [4m|x — y|]7?,
which corresponds to the constant background n(x) = 1.
Here the scattered field corresponds to the variable back-
ground n(x). The important fact, which makes the method
work, is that for fairly general backgrounds n(x) the limit
(3) does not depend on the background, although for w0
the Green’s function G depends on the background.

In Ref. 2 Eq. (5) was solved analytically for the case
when x,yeP, and, under additional assumptions on v(z), for
the case when x,yel = {x: x, = x, = 0}, which corresponds
to the model logging problem. Here we study the basic equa-
tion (5) in the case when xel, and yel,, which corresponds to
well to well exploration. We assume that

n=n(z;). (6)

The assumption # = n(z;) is convenient in geophysical ap-
plications. Equation (5) is a linear integral equation of the
first kind for v and can be solved numerically by means of a
regularization method.

Hil. INVERSION FOR A VARIABLE BACKGROUND

(1) First, consider the problem when the manifold, on
which one measures the data, is M = P= {x: x; = 0}.

There are two basic steps in solving the inverse well-to-
well problem. First, one computes the data f(x,y). This com-
putation needs the measured field ¥ and the computed (or
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calculated analytically) field G. Second, one solves numeri-
cally Eq. (5) with the data found in the first step. In this
paper we discuss the first step under the assumption that the
background is

n(x) =n(x,)

1, x5 >0,
={1—[(1 =no)/d x5, —d<x,<0, )
Ny, X3 < _d; n0<1'

One can compute G, the solution to (2), for the background
(7), using the Fourier transform in variables x, and x,:

_

h+ (x3)h_ (}’3)
ik,

h + (r, Yh_ (»s)
— 2k,

exp( —id - '), x3>yp5,

G=

wherek, > 0ifw?ny,>A 2%k, =i(A? — w? ny)2ifw*n,<A?,
and h  are the solutions to the equation

k" + [0°n(x;) —A°1h=0,
which are given for x; > 0 by the formula
h, =exp( +ikexs), x>0, ko= (o? — Az,

(12)

(13)
Ifd =0, then
1 k1> . 1( kl)
h, =—1+— k —_f1——
+ 2( + k exp(ikoxs) + > ko
Xexp( — ikox;), X3<0, ko=+w’>—A172,
(14)
1 k .
h_= —2—(1 — é)exp(tkoxﬁ
1 ky .
+ —| 1 4+ — Jexp( — ikox3), x;<0. (15)
2 ko

If d> 0, then expressions for /2 , are more complicated. In
the interval 0> x;> —d, Eq. (12) is

h" +(@* =A%+ [0*(1 —ng)/d 1x;)h =0, (16)

and its two linearly independent solutions can be written by
means of Bessel functions. Indeed, let a=w?—12
B=0*(1 —ny) "', £ = a + Bx,. Then (16) takes the form

hes +B*€h =0. (1n

This equation is solvable in Bessel functions (Ref. 5, formula
8.491.7)

h(g) =A§l/2JU3(_2__3ﬂ_§3/2) +B§1/2J_1/3(%3/2) ,
E=a+ Bx,, (18)

where 4 and B are arbitrary constants and J,, (x) is the Bessel

function. Therefore one can find 4 , (x,) explicitly: # , are
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G=—1 f@exp(:’/l-x’)dxi, di =di,dA,

- @2n)?
x'=(x,,%5,0), (8)
a=fGexp( —iA - xNdx'. 9

Note that G(x,y) = G(x; — y;; X; — ¥; X3, ¥3). Taking this
Fourier transform of Eq. (2) one obtains
2~ o~
‘2 ? + (a)zn(x3) —A 2)G = —8(x; —y,)exp(—il - »,
X3
AT=A2 4+ A%, (10)

Thus, G is the Green’s function of the one-dimensional equa-
tion (10). It can be written as

(1)

exp( —id - ¥"), y3»x;, k = (@’ny — A"

I
given by (13) in the region x; > 0, by

hi =Ai§l/2']l/3(£3@‘§3/2)+Bi§l/2‘,—1/3(23ﬂ 3/2)’

—d<x,<0, £=a+Px;, (19)

and by

h, =C, exp(ikx;) + D, exp( —ikx;), x3< —d.
(20)

Thecoefficients4 , ,B, ,C, ,D, aretobefound from the
requirement that the functions 4, (x;) and
h', (x;) =dh /dx, are continuous at x,=0 and at
x3 = — d. This requirement leads to a linear system of four
equations for each of the sets of four coefficients (4, B,
C.,D,.)and (4_, B_, C_, D_). The coefficients can be
written explicitly. The formulas for the coefficients are com-
plicated and therefore omitted here. Our point is that the
Green’s function G can be written analytically for n (x;) giv-
en by (7). If G is known then G is given explicitly by (8).
One can check that (3) holds. Therefore one can compute
JS(x,p) in (5) and obtain the linear integral equation (5) for
v(z). If x, yeP this equation is solved analytically in Ref. 2.

(ii) Let us now consider the case when v = v(x,, x,).
This means that v is not compactly supported: it is constant
as a function of x,. Nevertheless one can prove that in this
case Eq. (5) is still valid, and the limit on the left side of (5)
exists. Let us assume that xe/, = {x: x,= —a, x,=0,
X, <0} and yel, = {x: x, =a, x, =0, x;<0}. Equation
(5) takes the form

fdzl dzw(z,,2;) T(x,p,2,,25) = f(x,y), xel_, yel,,
(5"

where
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dz,

T(x.,2,,23) =f

- [(x+a)2+z§ +z§]”2[(y—a)2+z§ +Z§]1/2

_ 7 K(J@—aﬁ—4x+af

Jo—a)y?+2 Jo—a)y+2

where formula 3,152 from Ref. 5 is used and K(q)
= F(7/2,q), and where

d
H¢H=f{——jL——
0 1 —¢*sin’g
is the elliptic integral of the first kind. If
(x +a)?> (y — a)?, then the right side of (21) is
T K([ (x+a)>— (y—a)? “2)
[(x+a)+2"7] (x+a)+7

Equation (5') is a linear equation of the first kind for v. The
integral in (5') is taken over the support of v in the plane z,
and z,. This equation can be solved numerically by a regular-
ization method.

IV. INVERSION FOR n(x;) OF THE SEISMIC DATA

Assume that v=0, y =0, and n(x) = n(x;) in (1),
x, =z in what follows. Take the Fourier transform of (1) in
x!to get

d*G  , , o

e + (@*n(z) - 149G 6(z) .
The data are the values u(x',z2 =0,y =0,0), 0 <@ <@y,
where w, is a (small) fixed number. The Fourier transform
A, z=0,y=0,0) = G(A,0,0) is known. Let us assume
that n(z) = 1ifz>0, n(z) = nyif z< — d. We wish to find
n(z) in the region —d<z<0 from the knowledge of
G(A,0,0). It follows from (22) that

(22)

G(z) =T(2) + &* fw I'Gz—2)n(z')Gdz,

_exp(—4 |z]) .
24

Equation (23) is uniquely solvable by iteration if
A %> @?>max n(z). We have

I'(z) (23)

f(z,A)=412lim (G — Mo ™2
w—0

= fw exp( — A |z—2'|)n(2')exp( — A |2'])dZ’ .
o (24)
Set z=01in (24) to get
S0A)=¢(1)

=f exp( — 24 |2'|)dz' + n,
0
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) if (v —a)?*>(x+a)?, (21)
r
—d
X J- exp( — 24 |2'|)dz’
+J.O exp( — 24 |2 n(2')dz’ . (25)
—~d
Denote
1 exp( — 24d) D
F = A) — — — ] A ==y
p) =¢(4) 21 5 5

and n( — t) = f(t). Then (25) can be written as

f exp( —pt)f(t)dt = F(p) .
0

The function F(p) is defined for p>0. We can compute
fn (2), which approximates f(#) with a prescribed accuracy
inL?[0,d ] iffeL ? [in C[0,d] if fC([0,d]) ] using the data
F(p) on the interval 0 <p < b, where b > 0is a fixed number,
by the formulas®¢

b
v = _[) dp F (p)HN(p — %)exmpt) ,

where

Hy(p) = (27r)“f Sy (iy)exp( — iypldy,
Hy(p)=0,if p>b/2 or p< —b/2,

and
e 2y
1+
47d? 443

(sin(yb/2(2N+ q)))”*" g>1
yb/2(2N + q) ’ ’

where g1 is an arbitrarily fixed number. The following esti-
mate holds:

L([od])(C([04d])) if

%@w=(

where the norm is
JEL*([0,d1)(C([0,4])).

'A. G. Ramm, Phys. Lett. A 99, 258 (1983).

2A. G. Ramm, Inverse Problems 1, 133 (1985).

3A. G. Ramm, Scattering by Obstacles (Reidel, Dordrecht, 1986).

4V. H. Weston, J. Math. Phys. 22, 2523 (1981).

5I. Gradshteyn and 1. Ryzhik, Tables of Integrals, Series and Products
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A topological structure on the space of supernumbers is introduced, with which this space
becomes a Fréchet space. The definition of supermanifold and “superprojective space” are
given. The superprojective space is one of paracompact Hausdorff supermanifolds.

I. INTRODUCTION

There are some different ways of defining the topologi-
cal structure on the space of supernumbers.'™ However, it
seems, at least to the authors, that each way has its merits
and demerits. The topological structure of Rogers® is richer
in that it is nontrivial in the soul part of supernumbers. On
the other hand, the coarser topologies used by DeWitt' and
Batchelor? are much easier to study, because there is no ne-
cessity for considering the convergence of norms. In this
article we attempt to define a topology that has both merits
mentioned above.

In Sec. IT we define our topology; Sec. III contains a
discussion of the differentiability of functions of super-
numbers. In Sec. IV, we give the definition of supermanifold
and consider “superprojective space” as an example of a
paracompact Hausdorff supermanifold.

Il. SUPERNUMBERS

Let A_ be an infinite-dimensional Grassmann algebra
over complex number field C. Let £ %, a = 1,2,..., be a set of
generators for A_, which anticommute; £ (%= — £%°
for alla and b. The elements of A are called supernumbers.
Every supernumber can be expressed in the form

o0

u=23% 2

n=0a < <a,

a a,
ualmang ]'"g =Up + Ug (ual---anec) s

o0

where u, is an ordinary complex number and
us= 3 3

a a
Uy, €
Qyay, .
n=1ay < <a,

The numbers u; and ug are called the body and the soul of
the supernumber u, respectively.
If a supernumber u has the form

o0
u= Z 2 ual"'“ugalmg o ’

n=0a < <ay,

then it is called a c-number. If # has the form

a a
u g lé— 2n 41
ayyn 41 ’

o0

=3 s

n=0a < <dyy 4
then it is called an g-number. The set of all c-numbers is a
commutative subalgebra of A _ , which is denoted by C,. The
set of all a-numbers is denoted by C,.
Let N_ denote the set of sequences a = (a,,...,q,)
where the a’s are natural numbers and ¢, < --- <a,,, then the
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elements ¢ “'---£ ™, (a,,...,a, )eN_, form a basis for A _ . For
an element a = (a,,...,a, ) in N, we define £ * by £ “'-. ™.
With this convention every supernumber can be expressed in
the form

u= Y u,l*.
aeN

LetN,, (m =1,2,...) besubsets of N sothat (1) N,, is
a finite set for all m, and (2) ¢isin N,, N,,CN, for m <n,
and

U N, .

m=1
(Here ¢ represents the empty sequence in N_.) Let
Pm: A, =R (m=1.2,..) be defined by

N =

©

Pm(u) = z |ull ’
aeN,,
where
u= > u "
aeN

Then the p’s are seminorms on A_ and we have p,(u)
<P (u)< - forallyin A . Set

V() ={veA_ |p,, (v —u) <1/1}.

Hereuisin A _ and m, /are natural numbers. Then A _ hasa
topology such that {¥,,,(u)},,, is a fandamental neighbor-
hood system of u. As is easily seen, this topology admits the
second countability axiom. Furthermore we can make A
into a metric space by defining a metric

d(up) = 2 (12™)p,, (u —v) .

m=1 1+p,(u—0v)

A sequence {#/};_,,  of supernumbers converges to a su-
pernumber u ifflim, _ _ |#/, — u,| =0forallainN_ . Hence
the metric d is complete. Thus with our topology A be-
comes a Fréchet space.’ It is the purpose of this article to
demonstrate that our topology has desirable properties for
analysis over supernumbers.

I1l. SUPERANALYTIC FUNCTIONS

In this section we discuss an analytic theory of functions
of c-numbers and a-numbers.

Consider first C,. Let U be an open neighborhood of an
element # in C_ and let / be a mapping from Uinto A .
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Then fis said to be superanalytic at u if there exists a function
€(h) (heC,) and an element @ in A  such that

(1) flu+h) —f(u) =ah +e(h)h (heC,),
(2) e(h)>0 (h-0) with respect to our topology .

The supernumber « is called the derivative of f with respect
to u and denoted by (d /du)f(u). If fis superanalytic at
every point # in U then fis said to be superanalytic on U.

Our definition of a superanalytic function may be re-
garded as a mathematically rigorous form of that of
DeWitt.! Actually we can prove exactly the following theo-
rems, which are described by DeWitt without proofs.

Theorem 1: Let f be any ordinary complex holomorphic
function on an open set ¥'in C. Then we can extend funique-
ly to a superanalytic function

Sflu) = 2 —f""(u Yugn (1)

n=01nN
where " denotes the nth derivative of fand the definition is
valid for all c-numbers u such that u#p isin V.
Theorem 2: The general form of a superanalytic func-
tion on a connected open set of C, is

ORPWACI

where the f (u) are functions like (1).

Here we give a proof only of the first theorem.

Proof of Theorem 1: We first note that the right-hand
side of (1) converges with respect to our topology. We have

Slu+h) — f(u)

i f(n)(uB+hB)(us+hs)n _f(n)(uB)us"}

d - U+m)

58, ]| 5 goon]
s

Therefore, f is a superanalytic function on U= {u in C,|
up isin V}. To prove the uniqueness of the extension, weletg
be a superanalytic function on Usuch that g(z) = Oforallz
in V. Expand g in the form

gy =3 g (w)t* (g.: U-C).
achN

For a natural number m, let A ,, be the finite-dimensional
subspace of A , spanned by the set {¢ /b in N, }. Then we

can see that CCA_;CA_,C- - and U A_, is a

dense subset of A Now, for fixed a and m, we restrict the
domain of g, () to UNA_ ,,. Then we can regard the func-
tion g, () as an ordinary holomorphic function of the com-
plex variables u, , beN,, . Since (d /du)g(u) = 0for all ue¥,
the ordinary derivatives of g, (#) at u in ¥ with respect tow,,,
beN,,, are all zero. Hence g, (u) =0 for all u in UNA .
Thus we obtained that g(u)=0 for all # in

Uuni G A_ ,.).Since G A, .isdenseinA_,g(u) =0
m=1 ’ m=1

foralluin U. Q.E.D.
Rogers® uses a /;, norm to define her topology on the
space of supernumbers. Therefore, there are frequent occa-
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sions when it is imperative to verify convergence of norms.
On the other hand we use seminorms {p,, (#)},, to define
our topology, consequently there is no such problem. As a
result we may deal much more easily with an infinite series of
supernumbers. [For example, see (2).]

Using Theorem 2, we can show the following theorem.

Theorem 3: Let / be superanalytic on a connected open
set Uof C,.Set Uy = {zeC|z = u for some u in U}, and
set U= {ueC, |uy is in U,}.Thenf hasthe unique exten-
sion to a superanalytic function on U.

A superanalytic function of a-numbers is defined simi-
larly:
Sflu+h) —flu) =ah+e(h)h =hB + hp(h)
€(h)—0 and p(h)—0 (h—0).
The supernumbers @ and £ are called, respectively, the right
and left derivatives of fand are denoted by f(u) ( d/ du) and
(d /du)f(u).

This definition is also a mathematically rigorous form of
DeWitt’s one. We can show the following theorem.

Theorem 4: The general form of a superanalytic func-
tion on a connected open set Uin C,, is

flu)=a+bu (ucl),

where a and b are arbitrary supernumbers. Therefore, any
superanalytic function on a connected open set in C, is ex-
tensible to a superanalytic function on C,.

Let 3 be a mapping from an open set of C,” X C,” to
C.™ X C,™. This mapping is said to be superanalytic if the
coordinates u” (j = 1,2,...,m’' + n') of the image point ¥/(«)
are superanalytic functions of the coordinates u’
(i=1,2,...m + n) of the point u.

(heC,),

IV. SUPERMANIFOLD AND SUPERPROJECTIVE SPACE

Since DeWitt and Batchelor use a coarser topology on
the space of supernumbers, their supermanifolds are not
even Hausdorff. However our supermanifold may be as-
sumed to be Hausdorff. Our definition of supermanifolds is
as follows.

A superanalytic manifold M of dimension (m,n) is a
Hausdorff topological space with a collection of pairs
(U;, ;), where

(1)each U, is an open set of M and its associated ¢, is a

homeomorphism of U, onto an open set in

C."XC,",
QU U, =M,
(3)9, - ¢ ' is superanalytic on ¢, (U,NT;).

In the rest of this section we will consider a generaliza-
tion of the complex projective space P™(C).
For non-negative integers m and », we set

+Ln __ 3 1
A" = {u el Useesl, ) in CF

Xcanl(ulB7""um+IB)#0} .
Let
C,*={A4 in C,|1,50},

i.e., C_ * is the set of all invertible c-numbers. We define an
equivalence relation on A™* " as follows: (u,0)=(u"v') if
there exists an element A€C_* such that ' = Au and v’ = Av.
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Let P™"(A ) betheset of all equivalence classes of A™ * .
For (u,v) in A™* " let [u,v] be the equivalence class of
(u,v). Give P™"(A _ ) the topology that makes the mapping
m: (u,0) — [4,v] continuous. Then it is seen that # is an open
mapping and P™"(A_ ) is a Hausdorff topological space
that admits the second countability axiom. Let

U = {[u,v] | (u,p) in A™ 1 Up 760}
(i=12,..,m+ 1) and let 3, be the mapping from U, to
C."X C," defined by

u, Uiy Uipy Uy U U,
¢i ( [u’U] ) = ('_""-’ ) gavey 'y —=geeay=—— 1.
i u; u; u; Uu; U

! i l i

Then with the collection {(U,, #,)};, we obtain the super-
manifold P™"(A ) of dimension (m,n).

When we consider integration over P ™" (A _ ) (see Ref.
6), the following theorem is useful for us.

Theorem 5: P™"(A _ ) is paracompact.

Proof: Since P™" (A ) is a Hausdorff space that admits
the second countability axiom, it is enough to show that the
space is regular. Let p, and 4 be a point and a closed subset of
P™"(A_ ), respectively, such that p, is not in 4. Let g, be a

2692 J. Math. Phys., Vol. 27, No. 11, November 1986

point in A™* " such that 7(g,) = p,. Then g, is in the open
set 77 '(4°). On the other hand, A™*'" has a metric p.
There is a positive number & such that
{g in A™*""|p(q, go) <6} does not have the intersection
with 77 (4). Let

U=1{Aq|4 in C.* p(g,q,) <6/2}.
Then
U = {Ag|4eC.*, p(g.g,)<6/2}

and 7~ !(4) C U*. Therefore, we obtain that Doisin the open
set 7(U), A is contained in the open set w(U°), and the open
sets 7(U), and 7(U ©) have no intersection. Thus P ™" (A)
is regular. Q.E.D.

'B. DeWitt, Supermanifolds (Cambridge U.P., Cambridge, 1984).

M. Batchelor, Trans. Am. Math, Soc. 253, 329 (1979); 258, 257 (1980).
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4Y. Manin, in Lecture Note in Mathematics, Vol. 1111 (Springer, New
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6S. Matsumoto and K. Kakazu, in preparation.
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A Killing tensor is one possible way of generalizing the notion of a Killing vector on a
Riemannian or pseudo-Riemannian manifold. It is explained how Killing tensors may be
identified with functions that are homogeneous polynomials in the fibers on the associated
cotangent bundle. As such, Killing tensors may be identified with first integrals of the
Hamiltonian geodesic flow, which are homogeneous polynomials in the momenta. Again using
this identification, it is shown that in flat spaces the dimension of the vector space of Killing
tensors is maximal and that the Killing tensors are generated by the Killing vectors. Finally,
using Riemann’s model for the metric in spaces of constant curvature, a comparison argument
is used to show that similar results are valid in that more general context.

1. INTRODUCTION

A Killing tensor field on a Riemannian or pseudo-Rie-
mannian manifold is one possible way of generalizing the
familiar concept of a Killing vector. Killing tensors have
been studied extensively by relativists, since they are essen-
tially identical with first integrals of the dynamical field that
are polynomial in the momentum variables.'™ More recent-
ly, it has been pointed out that Killing tensors also play a role
in the search for first integrals in the context of classical
mechanics.’ Indeed, many authors have in effect solved Kill-
ing’s equations, without explicitly isolating the notion of a
Killing tensor.*®

In this paper I shall primarily be concerned with the
structure of Killing tensors in spaces of constant curvature.
Specifically, in Sec. IV I shall show that in such a space the
number of independent Killing tensors is maximal and that
every Killing tensor consists of a sum of symmetrized prod-
ucts of Killing vectors. The proof of this result is somewhat
indirect; I establish the result first for flat spaces and then use
a comparison argument based on Riemann’s model for the
metric in spaces of constant curvature, to obtain the general
result. In Secs. IT and III I give some background material on
Killing tensors, some of which is not well known. In particu-
lar, in Sec. I1 I shall describe how S (M), the graded algebra
of symmetric, contravariant tensor fields on a smooth mani-
fold M, carries naturally the structure of a graded Lie alge-
bra that extends the Lie structure of the vector fields on M.
When M is a Riemannian or pseudo-Riemannian manifold,
this Lie structure enables one to give an elegant characteriza-
tion of Killing tensors as those elements of S(M) that com-
mute with the (contravariant) metric tensor G. I shall also
describe how S (M) with its two algebraic structures may be
identified with a subspace of F(T *M), the ring of smooth
functions on the cotangent bundle of M. This isomorphism
gives a very convenient description of Killing tensors as
functions on 7' *M that are homogeneous polynomials in the
fibers, which is used throughout the paper. In Sec. III I ex-
plain the relationship between Killing tensors and first inte-
grals in mechanics, in terms of the machinery developed in
Sec. I1.

Before giving my notational conventions I should like to
mention two points that are potential sources of confusion in
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the paper. First of all, I shall have occasion several times to
deal with Riemannian or pseudo-Riemannian manifolds
(M,g) that are flat; by this I mean that the Riemann tensor
determined by g is zero. It follows that (M.,g) is locally iso-
metric to R” with an inner product whose signature is the
same as that of g.'®'> However, such an isometry need only
be locally defined, the obstruction to extending it to a global
isometry being the fundamental group 7, (M) of M. In the
sequel, several results involving flat spaces are to be inter-
preted as global theorems in case 7, (M) is trivial, or local
theorems otherwise. In particular, it is only in the former
case that it is valid to speak of global, linear coordinates on
M.

The second possible point of confusion concerns the Lie
algebra of Killing tensors on a Riemannian or pseudo-Rie-
mannian manifold (M,g). S(M) with its commutative alge-
bra structure may be considered to be either a graded or
filtered object.”® In terms of the isomorphism mentioned
above with the subspace of F(T *M), this amounts to the
distinction between functions on T'*M that are homogen-
eous or inhomogeneous polynomials in the fibers, respec-
tively. In fact it is only in Sec. III that I shall briefly wish to
allow for inhomogeneous polynomials because there I shall
consider mechanical Hamiltonians in which there is a poten-
tial function in addition to the kinetic energy term. Other-
wise, I shall be concerned with Killing tensors that corre-
spond to first integrals which are homogeneous in the
momentum variables. I shall, however, show in Sec. IV that
the components of a Killing tensor in flat space are polyno-
mial and, moreover, that each homogeneous part is also a
Killing tensor. Thus the term “homogeneous Killing ten-
sor” will be used only in flat space and will correspond to a
function on 7*M that is a homogeneous polynomial in both
the position and momentum variables.

As regards notation, M will denote a smooth, that is
C*, manifold of dimension m. Further .# and V will de-
note, respectively, Lie and covariant differential operators,
V corresponding to the Riemannian or pseudo-Riemannian
metric g. The graded algebra of symmetric and skew-sym-
metric contravariant tensor fields on M will be represented
by S(M) and A (M), respectively. I shall use 77: T *M—M to
denote the cotangent fibration of M and { f,g} for the Pois-
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son bracket of two elements fand g of F(7 *M), the ring of
smooth functions on T *M. In addition, I shall employ the
notation of the classical tensor calculus with range and sum-
mation conventions in operation unless otherwise stated (in
particular in Proposition 4.6) and 4, ., , will denote the
symmetric part of the valence n covariant tensor field 4, .., .

Il. KILLING TENSORS

Let (M,g) be a Riemannian or pseudo-Riemannian
manifold, with M of dimension m. A symmetric, covariant
tensor field K on M of valence 7 is said to be a Killing tensor
if
(Vi K) (X3 X, 1) + (Vi , K) (X55e0X, 10X

+‘"+ (VX"+|K)(X1’~--9X;1) =0’ (2-1)

for any collection of n + 1 vector fields X, X,,....X,, , ; on M.
Equivalently, introducing a local coordinate system (x'), K
satisfies the index condition

K =0. (2.2)

Forn =1, (2.1) or (2.2) reduces to the usual definition of a
(covariant) Killing vector (or one-form) on M.° It is well
known that for n =1, (2.1) is equivalent to the following
condition'"!*

R z8=0, 2.3)
where now X is the contravariant vector field dual to K via
the metric g. For future reference I should also recall that in
Euclidean n-space with the standard metric whose compo-
nents relative to the natural coordinates are §;, the solution
of Killing’s equations [ (2.2) with n = 1 or (2.3) thought of
as a first-order system of partial differential equations for the
unknown functions K’ ] leads to the following basis for the
Lie algebra of Killing vectors:

Gpipiln 1 y)

T,=2 (<i<m), (2.4)
Ix'
R _x,-_é’___x,__ (I<i<j<m) . (2.5)

Y ox' ox’
T, and R;; are the well-known symmetries which correspond
to the conservation laws of linear and angular momentum
via Noether’s theorem.'”

I shall next describe how (2.3) may be generalized and
thereby give an alternative, intrinsic definition of Killing
tensors.* To do this, it is necessary to consider Schouten’s
bracket on the algebra of symmetric contravariant tensor
fields S(M) on M. The collection of {contravariant) vector
fields on M has, of course, the structure of a real Lie algebra
under the Lie bracket of vector fields. This bracket structure
can be extended as a biderivation (of degree zero) to S(M).
Specifically, one extends the bracket to decomposable, sym-
metric contravariant tensor fields and then extends by lin-
earity to the whole of S(M). One easily checks that this
endows S(M) with a well-defined structure of a real Lie
algebra. If 4,BS(M) with valence p and g, respectively, the
bracket of 4 with B, which I denote by [4,B] and which is of
valence p + ¢ — 1, is given in component form by

[A,B ]jl"'jp+t1* 1 =pA Urdp -1 B{g"fp +q—1)

__qBiUAl“'jq—lA{?"Ajp+q~l). (2.6)
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[ The Lie structure on S(M) just described, which is known
as the Schouten bracket, should be distinguished from a
structure on A (M) (the algebra of skew-symmetric contra-
variant tensor fields on M), which goes by the same name.
This structure is also of current geometric interest and is
obtained by extending the Lie product to A (M) as a bideri-
vation of degree 1 (see Ref. 16).] In terms of the Schouten
bracket, a (contravariant) Killing tensor is simply one that
commutes with g.

In addition to its Lie structure, S(M) of course enjoys
another algebraic structure, namely, it is a commutative al-
gebra with respect to the symmetrized tensor product, which
I shall denote by A®B [4,BeS(M)]. These two algebraic
structures are related by

[A®B,C] = [4,C]OB + AO[B,C] , 2.7

where 4,B,C,eS(M); that is to say, the Schouten bracket
acts as a derivation with respect to the commutative algebra-
ic structure on S(M); indeed that is how it is defined.

I shall now consider an apparently very different way of
viewing the algebraic structures on S(M) just described, in
terms of the geometry of the cotangent bundle T *M associat-
ed to M. The starting point for this is the observation that an
element 4 of S(M) defines naturally a real-valued function
on T*M (a homogeneous polynomial in the momenta),
which I shall denote by a. Specifically, if 4 has valence #,

a(p) =A(p,...p), 2.8)

where peT *M and there are n arguments on the right-hand
side of (2.8). If (x';p;) is a coordinate system adapted to
T *M, then (2.8) may be written in component form as

(x"p; -+ p;, - (2.9)

Consider now the various algebraic structures of
F(T *M) (thesetof smooth, real-valued functionson 7 *M).
Then F(T*M) is naturally a commutative algebra, with
multiplication simply the pointwise product of functions.
Moreover F(T *M) is a Lie algebra with respect to the Pois-
son bracket { , } arising from the canonical symplectic
structureon T *M. These two algebraic structures are related
by

{ab,c} ={a,c}b + a{b,c},

where a,b,ceF(T*M).

The similarity between (2.7) and (2.10) is not coinci-
dental: indeed one has the following result.

Theorem 2.1: The map described above from S(M) to
F(T*M) by A—a is an isomorphism (into) of both the Lie
and commutative algebra structures. O

The proof of Theorem 2.1 may be effected either by us-
ing local coordinates, or, more elegantly, by establishing the
result on tensors of valence 0 and 1, respectively, and then
using (2.7) to deduce the general case by induction.*

[y,

a(x'p,)=A

(2.10)

lil. KILLING TENSORS AND FIRST INTEGRALS

In this section I shall explain how Killing tensors figure
into the calculation of first integrals in mechanics. This pro-
vides an application of the formalism developed in Sec. 11
and, in particular, of Theorem 2.1. I shall consider systems
of “standard” mechanical type, that is to say, the dynamics
is that of a particle on a Riemannian or pseudo-Riemannian
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manifold moving under the influence of a force term which is
the gradient of a potential function. As such, the Hamilto-
nian formulation is available.

The Hamiltonian 4 is a function on T *M, say

k=3 G (x")pp; + V(x"), (3.1)

where (x',p, ) isan adapted system on T *M, GY theinverse of
the metric g; and ¥ the potential function. Exploiting the
isomorphism described in Sec. II, I may write

H=1G+mV, (3.2)
where 77: T *M—M is the canonical submersion. The Hamil-
tonian vector field X, associated to 4 is given by
Suppose that now f: T *M—R is a first integral of X, that is
polynomial of degree # in the momentum variables. Then
once again, by the isomorphism of S(M) with the subspace
of F(T *M), I may write

F=Kn+Kn—l+"'+K0! (3.4)

where K,K,,....K,, are symmetric, contravariant tensors of
valence 0,1,2,...,n, respectively. Now by Theorem 2.1, fis a
first integral of X, that is X, /= 0 iff the Schouten bracket
[H,F} vanishes. On equating grades, the latter condition is
clearly equivalent to the following

[GK,] =0,
[GK,_,]=0,
[GK,_,]+2[m*VK,]=0,

[GK,_3]+2[7*VK,_,]=0, (3.5)

[G.K,] +2[7*V,K,] =0,
[m*V.K,] =0.

From (3.1) itis apparent that X, and K, _, are Killing
tensors. Moreover, the equations decouple into two sets in
such a way that it suffices to consider first integrals of purely
odd and purely even degrees. Of course when the function V
is zero and one is considering simply the geodesic flow of g,
every K; is Killing and corresponds to a homogeneous po-
lynomial first integral. The conditions (3.5) have been given
before in local coordinates and used to determine several
new systems with polynomial first integrals.’

IV. KILLING TENSORS IN SPACES OF CONSTANT
CURVATURE

It is immediately apparent from the intrinsic characteri-
zation of Killing tensors given in Sec. II, that the symme-
trized product of two Killing tensors is also Killing. In parti-
cular this also applies to Killing vectors. The principal result
in this section asserts that in a space of constant curvature,
any Killing tensor is generated by Killing vectors; that is to
say, a Killing tensor consists of sums of symmetrized prod-
ucts of Killing vectors. Before dealing with spaces of con-
stant curvature, I shall consider flat spaces and then deduce
the more general result in the shape of Proposition 4.6 and
Theorem 4.7.

Proposition 4.1: Let (M,g) be a flat Riemannian or pseu-
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do-Riemannian manifold. Then a (covariant) Killing tensor
field X of degree n, is a polynomial of degree n relative to any
system of linear coordinates (x') on M.

Proof: Let (x') be a system of global, linear coordinates
on M [this of course is possible, if and only if (M,g) is an
inner-product space, but there is an obvious corresponding
local result]. Also, let differentiation relative to the Levi-
Civita connection of g be denoted by a comma. I shall show
by induction that for 0<k<n,

K,

i Urdn— o dn— ke 1dae1) 0. (4.1
Then (4.1) for k = n yields the required result and for k = 0
the first step in the induction, which is valid because it is
precisely the Killing condition (2.2).
Suppose then (4.1) holds where 0<k<n — 1. Then
0=XK.

iy il Cydn — todn— k+ 19n) 1)
=(n— k/n+ k)Kil"'ik+ V(hdn— k= vdn—kdn+ 1)
+(k+2/n+ Z)Kir"ik(ir"j;.— todn—k+17In 11 ?
(4.2)

since K is totally symmetric and the order in which partial
derivatives are computed is immaterial. But now by the in-
duction hypothesis, the second term on the right-hand side
of (4.2) is zero, whence so is the first and the proof is com-
plete. O

Proposition 4.2: let (M,g) be a flat Riemannian or pseu-
do-Riemannian manifold. Let X be a covariant Killing ten-
sor field of valence n (corresponding to a first integral of the
geodesic flow which is homogeneous in momenta). Let
K=K, +K, + -+ K,, where the components of each X,
relative to a linear coordinate system (x’) are homogeneous
polynomials [in the position variables, such a decomposition
being possible by Proposition (4.1) ]. Then each X, is also a
Killing tensor.

Proof: In a system of linear coordinates, (2.2) assumes
the form

K(il...,'",,'"+ D =0. (4.3)
The result follows immediately by equating coefficients in
4.3). O

Suppose now that (M,g) is a Riemannian or pseudo-
Riemannian manifold that is not necessarily flat. The tech-
nique used in the proof of Proposition 4.1 may be adapted to
show the following: if X is a covariant Killing tensor field of
valence 7 and (x') a local coordinate system on M, all de-
rivatives of K of order greater than n are expressible in terms
of derivatives of X of order less than or equal to n, together
with the metric g and its derivatives. I shall illustrate this
explicitly for the case # = 2, which is perhaps the most inter-
esting case from a physical point of view,'™ and it should
then be clear how one deals with Killing tensors of arbitrary
valence.

Let the components of K be K; in the coordinate system
(x'). Then notice first of all that (2.2) is equivalent to

Ky = 2K, 15, » (4.4)
where I}, are the Christoffel symbols of the Levi-Civita con-
nection associated to g. Next, it is straightforward to check
the following identities:

Ky =3 Ky (4.5)

_K(ij.k)l ’
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Kimiix = Kigi jiomy = 3K jiym - (4.6)

From (4.5) and (4.6) one obtains, with one additional sym-
metrization,

Kim,ijk =5Kam.z:ik) -3 [K(q;knm + K rmy ] + 3K<ij,k>1m .

(4.7)
Hence, from (4.4) and (4.7)
Klm,ijk = {Ka(ir\;;c ],IM) ‘-% [Ka(irﬁc },I)m
"% [Ka(i }‘?Itc ],m)l + 6[Ka(ir;7() ],Im . (48)

Since the T';;’s depend on g and its first-order derivatives,
(4.8) gives K, ;; in terms of derivatives up to second order
of K,,,, and derivatives up to third order of g. In particular, if
gis flat, coordinates can be chosen so that the right-hand side
of (4.8) vanishes, which reiterates Proposition 4.1 in the
case n = 2. To obtain formulas analogous to (4.8) for Kili-
ing tensors of valence #, one would have » identities instead
of just (4.5) and (4.6); these would enable one to obtain a
general formula, for which (4.7) corresponds to the case
n = 2. In conjunction with (4.4), one could then derive a
formulaforX, ., ;.;  intermsof derivativesof Kandgup
through orders # and n + 1, respectively.

The preceding considerations are useful in the proof of
the following theorem. In the theorem there occur two posi-
tive integer parameters: m (the dimension of the ambient
manifold) and n the degree of the Killing tensor being con-
sidered. The case m arbitrary, » = 1 is classical’®'” and the
case m arbitrary, n = 2 has been proved much more recently
by Kalnins and Miller.'®

Theorem 4.3: The collection of analytic (covariant)
Killing tensors of valence # on M is a finite-dimensional vec-
tor space of dimension, say K ;'. Moreover,

Km< (m+n—1Dim+n)l
(m— 1)Yminl(n 4+ 1)!

and equality holds if M is flat.

Proof: Let K be an analytic covariant Killing tensor on
M of valence n. (In terms of the isomorphism given by
Theorem 2.1, K corresponds to a first integral of the Hamil-
tonian geodesic flow which is a homogeneous polynomial of
degree n in the fibers of T*M.) Now consider K together
with its derivatives of all orders evaluated at some point p in
M. I 'have already indicated how the derivatives of K of order
n -+ 1 may be expressed in terms of derivatives of lower order
(together with g and its derivatives which are known). Thus
all derivatives of X of order greater than n may be expressed
in terms of derivatives of order less than or equal to n.

Now (2.2) is equivalent to the following, of which (4.4)
corresponds to the case n = 2,

K

re . 4.9)

n™ Inln 4 1)

= nKa(,'l...,'

Gl 1)

Next consider (4.9) and the totality of equations obtained
from it by differentiating at most » times. This may be
thought of as a homogeneous system of linear equations in
which the unknowns are

K, K

TR R e A I e Y R i

There are
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"'“(m—i—r— 1)(m+n— 1)
ygo r "
such unknowns. On the other hand, it is not difficult to check
that the number of independent linear equations is

"‘“(m +r—2) (m+n)

,;1 r—1 n+1
[one obtains all such independent equations by differentiat-
ing (4.9) first of all with respect to x* (1< j,;<n), then with
respect to x/* and x” (1<j,<j,<n), then with respect to
xhx% and x” (1<j,< j,<n) etc.]. Thus the excess of the
number of unknowns over the number of equations is

n4 1 m+r—1)(m+n—1)
r;()( r n

"+‘(m+r—2)(m+n)
,Z’, r—1 n+1

_(m4+n—1m+n)!

(m— Diminl(n + D!~

The functions K, ., and their derivatives are all being
considered at a fixed point p in M. If one confines one’s atten-
tion to Killing tensors that are real analytic, it should be
clear that the integer appearing on the right-hand side of
(4.10) gives an upper bound on the dimension of the vector
space of Killing tensors; that is to say, it represents the maxi-
mum number of free parameters if one attempts a power
series solution about p of (4.9), considered as a system of
first-order partial differential equations. Thus

K< (m+4n—Dm+n)! '
(m — Diminl(n + 1)!

In general one will have a strict inequality, because there will
be integrability conditions constraining the derivatives of the
K, . of order n + 2 and higher. In a flat space these condi-
tions are satisfied identically, that is to say, the system of
partial differential equations obtained by differentiating
(4.9) no more than n times, is completely integrable in the
sense of the Frobenius theorem. O

The integrability conditions alluded to in Theorem 4.3
can be obtained in the case n = 2 as follows. Consider (4.8)
and differentiate X, ;;, with respecttox,, say. The resulting
expression for K, .., will contain derivatives of the X,,,,’s of
order three which can be eliminated using (4.8). If one in-
sists that two such expressions K, ;z,, and K, ;. are equal,
one obtains conditions relating the K,,,’s and their first and
second derivatives. If M is flat, then (4.8) reduces simply to

Kipi =0 (4.11)

and hence the integrability conditions are satisfied identical-
ly. We shall also see presently, by an indirect argument, that
they are also satisfied identically in spaces of constant curva-
ture.

We have already seen from Propositions 4.1 and 4.2 that
in flat spaces, Killing tensors are polynomials and that each
homogeneous part of such a Killing tensor is also Killing.
We may therefore ask for the dimension of the space of Kill-
ing tensors of valence » whose components are homogen-
eous polynomials of degree r, where 0<r<n; denote this
number by K 7. Such homogeneous Killing tensors are of

(4.10)
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considerable significance if one has in mind applications of
Killing tensors to classical mechanics.>'8
Corollary 4.4:
(m+r—-2)(m+n—1)!
An+ Dl (m — 1)(m —-2)!

wr=(—r—1)

Proof’ Referring to the proof of Theorem 4.3, the num-

ber of unknowns of degree r is (m+:_1) (m+:—1) and the

number of independent linear equations they satisfy is
m+r—2 m+n

(",_, ) (,_)) (where r =0, this latter quantity should be

interpreted as zero). Subtraction of ( " :r_’l_ 2) (':jf ) from
( m+:_ Y +: D) gives the value for K 7}, stated. a

I show next that in a flat space (M,g), the Killing ten-
sors are generated by the Killing vectors. I shall exploit the
isomorphism given by Theorem 2.1 and prove the result by
lifting to T*M. To facilitate the proof, it is convenient to
introduce the following four vector fields on 7' *M. Letting
(x,p;) be an adapted coordinate system on 7 *M induced
from a linear coordinate system (x’ ) on M let I" be the vector
field on T*M induced by the position vector field x'(d /dx’)
on M, in virtue of T*M being (locally) isomorphic with
MoM™*. Let A=p,(d/dp;) be the Liouville vector field,
X = p, (3 /3x") the dynamical field (the Hamiltonian flow
determined by any flat metric on M) and Y = x'(d/dp;).
One may readily check that I',A,X, and Y satisfy the rela-
tions of a four-dimensional algebra, but the only Lie bracket
relations I shall need are

[I'A]l =0, (4.12)
[X,Y]=A-T. (4.13)

Noticealso that a function f: 7 *M—R is homogeneous in the
position or momentum variables of degree n iff I'f = nf or
Af = nf, respectively.

I have shown quite generally in Sec. II that when one
looks for first integrals of a geodesic flow that are polynomial
in the momenta, it suffices to look for homogeneous polyno-
mials. It also follows from Proposition 4.2 that, in a flat
space, it is even sufficient to consider first integrals which are
homogeneous in the position variables.

Theorem 4.5: In a flat Riemannian or pseudo-Rieman-
nian manifold (M,g) the Killing tensors are generated by the
Killing vectors, that is to say, any Killing tensor consists of
sums of symmetrized Killing vectors.

Proof: Again I shall make use of the isomorphism given
by Theorem 2.1 and show that a first integral fof the geodes-
ic flow X, which is a homogeneous polynomial of degree » in
the momenta, consists of sums of products of first integrals
of degree one. I may also assume that fis homogeneous in the
position variables of degree 7, where 0<r<n. Thus fsatisfies

If=rf, (4.14)
Af = nf, (4.15)
Xf=0. (4.16)

The idea of the proof is to apply the second-order differ-
ential operator

(xp, — xp,) (

a2 a’
dx'dp, B 9x'dp, )
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to f. This has the effect of decomposing f into a sum of
terms, each of which has as a factor the angular momentum-
type integral x’p, — x’p,, which corresponds to the Killing
vector R; [see (2.5)]. The result will then follow by induc-
tion. Thus

2 2
(x‘)vj—#p,.)( If _ af)

ox'dp, Ox'dp;

.92
=2I'(Af) — 2x'p; ———
4 7 dx' dp;

=2 (Af) — (X(¥f) + Y(Xf) — If — Af)
=2 (Af) = ([X.Y1f + 2Y(Xf) — If — Af)
=2I(Af) — (Af = Tf + 2Y(Xf) — If — &f)
=2I(Af) - 2Y(Xf) + 2Lf

=2r(n+ 1)f. (4.17)
The penultimate equality here is an identity and the last
equality follows from (4.14)-(4.16).

Now itis straightforward to check that each of the quan-
tities
Y __d¥f

x'dp; Ix' dp,

is a first integral whenever f7is a first integral of X. Moreover,

if f is homogeneous of degree » and r in the p,’s and x'’s,
respectively, each

Y __df

ox'dp;  Ix dp,
will be homogeneous of degree n — 1 and r — 1, respectively,
provided i is different from j. The result now follows by in-
duction on #: it is evidently true when #» = 1 and if true for
n — 1, then (4.17) demonstrates that it is true for n provided
that 7#0; however, if » = 0, then fis a polynomial in the p;’s
alone and thus corresponds to a Killing tensor that consists
of a sum of symmetrized products of the Killing vector 7;.
Thus the result is also valid when » = 0. O

It is important to observe that although Theorem 4.5
shows that in flat space the Killing tensors are generated by
the im(m + 1) Killing vectors T; and R , it is not necessar-
ily true that a basis for, say, the valence n Killing tensors
consists of all n-fold products

]-‘il'"inAern—r+|kn—r+l." Rjrkr (0<r<n) . (4.18)
For example, if m>3 and i <j < k,
TRy, + T R; + T,R;; =0 (4.19)

is a nontrivial relation involving the 7;’s and Ry ’s. Despite
this, one may choose as a basis for the Killing tensors of
valence n whose components are homogeneous polynomials
of degree r, a certain number of products of the form given by
(4.18) (in fact,
(m4r—2)(m+n—1)!

A(n+ D(m — 1)1(m —2)!
such products according to Corollary 4.4).

Itis a well-known classical result that an m-dimensional

Riemannian or pseudo-Riemannian manifold possesses a
full complement, that is to say, im (m + 1) linearly indepen-

(n—r+1)
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dent Killing vectors iff it is a space of constant curvature.'>"”

It is also a well-known result, originally due to Riemann,
that such a space of constant curvature K, say, has a local
coordinate system (x’) such that the metric g;; assumes the
form

gy dx’ dx’
_ e (dx")? + e,(dx?) + - + e, (dx,,)?
[1+ (K/8)(e,(x)? + e,(x*)* + = + €, (x,,) 3]’
(4.20)

where each e; is plus or minus one, and the total number of
negative e;’s determine the signature of g.'>'>!” I shall now
give the explicit local form of the Killing vectors in a space of
constant curvature, relative to which the metric takes the
form given by (4.20); these do not appear to have been stated
in the classical references.'®!’

Proposition 4.6: In a Riemannian or pseudo-Rieman-
nian manifold (M,g) of constant, nonzero curvature K,
there are Im(m + 1) linearly independent Killing vectors.
A basis for the space of Killing vectors is given by

d

1_2,-,-=e"xd'—.——efx"—a— (I<i<j<m), (421)
ax!
T = (Ze,.(x,.)z—- S e )+ K) (91
ji=1 c?
+ 2¢; f‘,x"xji (1<i<m), (4.22)
= ox’/

i
where (x') is a coordinate system in which the metric as-
sumes the form given by (4.20) and it is to be understood in
(4.21) and (4.22) that the summation convention does not
apply.

Proof: Once more it is convenient to identify a Killing
vector with a real-valued function on 7 *M. As such, if the
Killing vector is written locally as X '(d /dx’) , one must
demand that the K'’s satisfy the following condition:

m 2
[(1+§Ee,(x’)2) Ze(pj)2 Z ka] 0,
i=1 ji=1
(4.23)

where again the summation convention is suspended.
When (4.23) is expanded, one finds that the K*’s must
satisfy

K’ IK/
—_———=0 (I, jn), (4.24
ax' Ix! J )
J i
iiK;+ej aK_ =0 (I<igjgn), 4.25)
ax! ax’/
m K m aKl
er“K"——Z(l—i——— e (xk)z)—.
k;1 , 4 kgl , ox'
=0 (Iign), (4.26)

and again the summation convention does not apply in
(4.24)—(4.26). The system of partial-differential equations
consisting of (4.24)-(4.26) is linear in the sense that the
solutions form a linear space. It is straightforward now to
check that the components of the im (m + 1) linearly inde-
pendent Killing vectors in (4.21) and (4.22) constitute a
basis for the solution space. O
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The following and final theorem subsumes all the results
of this section.

Theorem 4.7: Let (M,g) be a Riemannian or pseudo-
Riemannian manifold of constant curvature K. Then the di-
mension of the space of (covariant) Killing tensors K} is
equal to

(m+n-—1)(m+ n)!

(m — Dimnl(n + 1)!
Moreover, any Killing tensor on (M,g) consists of sums of
symmetrized products of Killing vectors.

Proof: The idea of the proof is to show that, roughly
speaking, there are as many linearly independent Killing
tensors in a space of constant curvature, as there are in flat
space; since a flat space admits the maximum number of
linearly independent Killing tensors, then so too must a
space of constant curvature.

Now let (K9,...K0),(K1,.. K e (KT, K ) bE
bases for the Killing tensors in flat space of valence n whose
components are homogeneous polynomials of degree
0,1,...,n, respectively. The set of these (n + 1) bases collec-
tively form a basis for the space of Killing tensors of valence
n, in view of Propositions 4.1 and 4.2. Moreover, as was
explained in the remarks following Theorem 4.5, each of the
tensors K; (0<r<n, 1<i<i,) consists of sums of symme-
trized products of the Killing vectors T} and R,,,. Thus I
shall write K = K7 (Ty,R,,) and remark that each sum-
mand in k/ contains n — r T,’sand r R,,,,’s

The considerations of the previous paragraph con-
cerned a linear space (or at any rate, an open submanifold of
a flat space) and as such did not require the introduction of
local coordinates. Suppose now, however, that coordinates
(x') are introduced on a space of constant curvature relative
to which the metric assumes the form given by (4.20). Ishall
then write K I=KI (T % R im ) O s1gn1fy that K J is the same
polynomial functlon of T, and R, [See (4.21) and
(4.22)] as K is of T, and R,,,. Next, let 4 ,A,,, .
respectlvely, be linear combinations of (K ,K W)

(K1, K1) (KT, K 7) , respectively, suppose that

ApAS +A AL+ + 4,47 =0, (4.27)
where each A;€R. Then it is apparent from (4.21) and
(4.22) that each 4 |, contains no term of degree lower than
in the x*’s; but then (4.27) implies either 4, =0 or 4, =0.
Thus the subspaces spanned, respectively, by (X9,...K IR
(K K ) 5 ,(K K o) intersect mutually in a trivial
fashlon It follows that the dimension of the space of Killing
tensors of valence » in a space of constant curvature is at
least the sum of the dimensions of the subspaces spanned by
(K9,.. ,K0 ), (K1, ,K}‘) ,...,(K',‘,...,K,’.: ), respectively.

Now consider the subspace spanned by (K ,...K[). It
is clear from (4.21) and (4.22) that the lowest-order terms
of this subspace of polynomials, that is, those of degree 7,
agree with those of the subspace spanned by (K71,...K])
considered as homogeneous polynomials in the x'’s of degree
r. It follows from Corollary 4.4 that the dimension of the
subspace spanned by (K /,...,.K ;) is at least

m+r—D!m+m—1)

— 1 .
(n=r+1) Aln+ D)I(m — Di(m —2)!
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All in all, one may conclude that the dimension of the space
of Killing tensors in a space of constant curvature is at least
as great as that in the corresponding flat space. Since this
latter dimension is maximal, these two dimensions are actu-
ally equal. It is clear from the comparison argument just
given that in a space of constant curvature the Killing ten-
sors are generated by the Killing vectors. 0
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A concrete realization of the Milnor-Lichnerowicz spinor bundle by algebraic spinors is
considered in the case when the holonomy group of the Levi-Civita connection is equal to the
Crumeyrolle group. Some relationships between the existence of parallel spinor fields on a
space-time manifold .# and its topological invariants are given.

I. INTRODUCTION

In the physical as well as in the mathematical literature
the most popular approach to the problem of spinor struc-
ture is given by the Milnor-Lichnerowicz one. However,
starting from the Sauter, Edington, and Sommerfeld investi-
gations algebraic spinors are also studied intensely. Algebra-
ic spinors were defined as elements of a minimal left ideal of
an appropriate Clifford algebra.

At the beginning of this paper we show how we can
introduce the structure of the left Clifford modules on the
Milnor-Lichnerowicz (ML for short) bundle £, [C*]. It al-
lows us to consider, for example, the Clifford multiplication
of vectors and ML spinors. But it does not mean that this
bundle can be identified with a bundle of minimal left ideals;
quite the opposite is the case. For example, for a Riemannian
manifold S* we can introduce ML spinors together with
their Clifford left module structure but we cannot construct
any algebraic spinor structure (given by a global field of
primitive idempotents) on it.

In this paper we are interested in a Lorentz space-time
manifold. Fortunately for this case the topological obstruc-
tions for the ML spin structure and for an algebraic spin
structure are exactly the same. However, we restrict our con-
siderations to the case when the holonomy group of the Levi-
Civita connection is equal to the Crumeyrolle group. In this
case the parallel transport of algebraic spinors given by the
Levi-Civita connection lifted to the Clifford bundle is exact-
ly the same as given by the spin connection. Equivalently we
can say that the global field f(x) of primitive idempotents is
parallel as well as a section of the Clifford bundle and also as
a section of the section of the spinor bundle.

We will see that in this case we have a totally geodesic
codimension-1 foliation of .# . However, because the normal
bundle of this foliation is isomorphic to the isotropic tangent
line bundle we meet many difficulties. To avoid them we
construct a concrete Riemannian metric that seems to be
quite natural in our case. Then we prove a lemma that allows
us to know the holonomy group of this Riemannian metric
as well as to see that this is a bundlelike metric compatible
with our foliation. Now we can, using the result of Johnson
and Naveira, relate the existence of parallel spinor fields on a
Lorentz manifold .# with the vanishing of the Pontryagin
ring in the top dimension.

We will denote by R*" and (s + ¢ = n)-dimensional
vector space equipped with a quadratic form of signature
(s,2) and by R, its universal Clifford algebra.
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1l. DIRAC OPERATOR AND ITS SQUARE

Let .# be a semi-Riemannian oriented four-manifoid of
signature (s,¢). Let us suppose that the bundle £, of oriented,
orthonormal frames over .# lifts to give a principle
Spin_ (s,t) bundle ;. Now we can define via the spin repre-
sentation a vector bundle

S = I3 [C4] ,
called the bundle of Dirac spinors.

However, owing to the metric structure g on .# we have
a semidefinite quadratic form on the tangent bundle 7.#.
Thus we can associate to .# a Clifford bundle € (T *.4) in
a natural way. Its fiber at a point xe.# is the complexified
Clifford algebra of the tangent space (T, .#,g(x)). So we can
study bundles of modules over these bundles of algebras.

As a matter of fact the group Spin , (s,¢) can be defined
as a subgroup of the group of units of the Clifford algebra
R ¢, and a complex representation of the Spin , (s,?) can be
given by a minimal left ideal of R <,. This is also a module for
the Clifford algebra R £, and the action of Spin , (s,¢) is in-
duced by the Clifford multiplication.

It is known' that any minimal left ideal A is given by a
primitive idempotent /> = fof R C,,

A=RES f (2.2)

Any global field of primitive idempotents on a spin manifold
A defines a bundle ¥ of left modules over the bundle of
algebras €' “(M,g). We will call ¥ the bundle of algebraic
spinors.

However, we can give to % = £, [C*] also the structure
of a left module bundle.

Let {€, } s belocal trivializations of &, related to some
contractible covering {% ,},., of .# such that

(2.1)

€, (X) = €5(X)8po (X)), VXEU N, (2.3)
and

8up® %oN%pg—8SO . (5,1).
Now we can use the canonical maps®

0,: €,(x)>6(e)>RE,,

Op: €5(x)~>0(')>RE,. 2.4)

Here e = {e, } as well as e’ = {e/} is an orthonormal basis in
R ' related by the transformation 85, (X) given by (2.3),

e=¢gg,(x), 2.5)
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and 6: R*'=>R ¢, is the canonical embedding. Now using
(2.4) we can write

€ =VgliVo's =14 Vpg€RE,. (2.6)
Let {4,}.ca be local trivializations of £, related with
{% ,.€,}.cr- From (2.6) we obtain that £, can be seen as a
principal bundle whose structural group is given by elements
of Spin, CRE, [we will denote the group Spin, (s,#) by
Spin_, for short]

Fa (X) = 55(X)Vpa (X),  ¥po (X)ER,. (2.7)
Now for any element ~€A we can construct the element

[#a(X)se]: = (54 (X),)Spin . = (55 (X)¥g, (X),e)Spin.,

= [55(X)¥pa (¥)]. (2.8)
In other words we can construct the bundle &, [A] of left
modules over the bundle of algebras ¥ ©(M.,g). It is nothing
more than £, (C*) with the identification of C* with A. We
will see later [ (2.17)] thatin a general case £, [ A] cannot be
identified with a bundle of minimal left ideals of the Clifford
bundle. Nevertheless the isomorphism between A and C*
together with (2.4)—(2.8) allows us to consider the Clifford
multiplication of, for example, vectors and spinors.

Let us take any vector ~€R *. We define

[5a (X)se]: = (5, (x),0)8pin, = (55 (X)¥g, (X),)Spin

= [55(*),¥5e (X)e¥ia (%) ] (2.9)
It means that when we understand the structure group of £,

as given by some elements of the Clifford algebra R ¢, ac-
cording to (2.6) and (2.7), then

&R =T (2.10)

Moreover from (2.4), (2.6), and (2.9) we obtain immedi-
ately that

E[RG]=C%A8) (2.11)
and
[5a (X))t = (54 (x),e)Spin
= (35 (X)¥py (x),c0)Spin
= [55(%)¥pa (¥)ee¥ia' (X) ],
VeweR g, (2.12)

Now let us take some section &(x) of the bundle
. =£,[A]

and some section «(x) of the bundle € ©(.#,g). According
to the above formulas we have

$(x) = [5a X)ree] = [55(X)Vpae], «€B,  (2.13)
and
w(x) = [54(X)se0r]
= [45(0),Vpa (X)ee¥pa' (X)], w€RS,  (2.14)

for every xe% ,n% 5. We can define their Clifford multipli-
cation in the following way:

w(X)P(x) = [ 5o (X),e0 ] [0 (X)se]:
= [ga (x),wu]

= [55(%)s¥pa (X)eree] by (2.8). (2.15)
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It is easy to see that by multiplication of
[gﬁ (X),Y 8 (x)wyB;‘(x) ] by [55(%),¥ga (x) ] We obtain
the same result. Thus although in a general case £, [A] can-
not be given as a bundle of minimal left ideals of the Clifford
bundle (2.11) we can always consider ¥ as a bundle of CIif:
ford modules.

But why can we not always consider £, [A] as a subbun-
dle of €C(M.g)?

According to (2.2) A is a minimal left ideal of R f, de-
fined by some primitive idempotent f&R ¢,. Now for every
xe% , elements [ 3, (x), f ] define alocal field, say £, (x) of
primitive idempotents of

C(ME) .

Similarly [35(x),f] defines a field f;(x). However, in a
general case

So ) =[5 f1# [56(X), ] =S (%), x€U YUpg.
(2.16)

If the structural group of £, can be reduced to an appropriate
subgroup we can still have the possibility that

%C(,/[,g)l%an@sfa (x)= (gc(v/,g”%anaﬁfb(x)-
(2.17)

But in a general case this condition is not satisfied (for exam-
ple, for some Riemannian structures on S*).

From now on we will define the bundle W of algebraic
spinors on .# as a concrete realization of the ML bundle
£,[C*] given by some concrete global field f of primitive
idempotents of € ¢(.#,g).

It is known that the necessary and sufficient condition
for the existence of a global field f(x) is the existence of the
reduction of the bundle £, to the subbundle £ . The struc-
tural group Z is given by the following conditions:

%:={yeSpin, CRS; ¥y '=uf=f}

This group was investigated by Crumeyrolle® and for this
reason we will call it the Crumeyrolle group.

The existence of a global field £ of primitive idempotents
is not equivalent, in a general case, to the existence of a bun-
dle £,. For example, the Riemannian spin manifold S * does
not admit a global field / for any metric structure onit. To see
this, let

A=ATaA™ (2.19)
be the decomposition of A into the direct sum of two two-
complex-dimensional irreducible representations of Spin , .
This decomposition implies the decomposition of the mod-
ule bundle £,[A] into subbundles

V=¢£,[A] =0+ 0¥, (2.20)

where ¥ +: = £, [A* ]. The decomposition (2.19) is inter-
changed by the Clifford multiplication with vectors, i.e., we
have to deal with the following homomorphisms:

(2.18)

R & A*—A", (2.21)
R

R¥ @ A™—A™. (2.21)
R
This implies the vector bundle homomorphisms

Krystyna Bugajska 2701



l

T4 @ ¥V ¥, (2.22)
R
T4 @ VT, (2.22")
R
or
w: T4 & V-9, (2.23)
R

In other words any element of A™ determines a real iso-
morhpism of R ** with A~ given by the Clifford multiplica-
tion. Thus any global field of primitive idempotents
JeT(ZC(4.g)) (or isotropic bivectors of AT .#) deter-
mines a real isomorphism

W

i.e., an almost complex structure on .# .

But it is known that S * does not admit any almost com-
plex structure, so we cannot construct any global field f on
S

Fortunately for the most interesting physical case,
namely for a Lorentzian space-time manifold .#, the follow-
ing two conditions are equivalent*: (i) the existence of a
lifting &, of &, and (ii) the existence of a global field of
primitive idempotents /. Nevertheless, the possibility of giv-
ing to &, [A] = :¥ the structure of a module bundle over the
algebras ¥ ©(M,g) allows us to introduce a first-order differ-
ential operator Z: T' (¥)—T'(¥) for any signature of a met-
ric structure of .#. We define this operator &, called the
Dirac operator, by the following composition:

(2.24)

s
v *

L(¥) - T(T*Me¥) 5 T (T4 6 ¥) — T'(¥),
(2.25)

where Vj is the covariant derivative (relative to the connec-
tion on ¥ induced by a metric g), * means the identification
of T*.# with T.# given by a metric g, and u denotes the
Clifford multiplication (2.23).

Locally in the basis {% ,,€,,54 }aen»

4
D =3 1(e)e, Vs,

i=1

(2.26)

where 7(i) = + 1 according to g(e;,e;) = 7(e;)5;. Let us
recall that

4
Ve, = > wyt(ie;, (2.27)
i=1
with
i =g(Ve,-,ej)7'(€,~)7'(ej)
and
v = aj + % S Dy e ¢ . (2.28)
i<i
Now we can write locally
~ 4 -~
Dp="3 [r(e; - e; ¥
i=1
+-é-z T(NT()TK)wpe, - € - e fﬁ]. (229)
J<k
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The square &2 locally has the form

D2 === 3 r(NVLV — T T NTUOR(Y, 660V,

s
4 5 Y
(2.30)
where s is the scalar curvature

s=3 ()7 Ry

i
Using the formula (2.30) Lichnerowicz has shown® that if
the scalar curvature is non-negative but not identically zero
on a compact spin Riemannian manifold, then there are no
harmonic spinors, i.e.,

Ker & =0.
This fact together with the Atiyah—Singer index theorem
gives that the Hirzebruch genu52 of such a manifold must be
zero. In other words one cannot have a metric with non-
negative scalar curvature (except identically zero) on a

compact, spin Riemannian manifold whose 4 genus is not
zero.

This does not mean that there is an analog of Hodge’s
theorem, i.e., that we can express the dimension of the space
of harmonic spinors in terms of topological invariants of the
manifold. On the contrary, Hitchin® has shown that the di-
mension of the null space of the Dirac operator depends on
the metric used to define this operator. Besides, Eliasson’
and Aubin® have shown that every compact manifold of di-
mension >3 possesses a Riemannian metric whose total cur-
vature is negative. Further, using Trudinger’s result® it can
be seen that every compact manifold of dimension >3 admits
a Riemannian metric with constant negative scalar curva-
ture. Moreover, it is known'® that there are no topological
obstructions to scalar curvatures that may change sign as
long as they are negative somewhere.

It appears that such a relation between a positive scalar
curvature and the absence of harmonic spinors is valid only
in the Riemannian case. We cannot obtain a similar result for
a semi-Riemannian space. Quite the opposite, there are
known'! examples of a compact semi-Riemannian manifold
with positive scalar curvature for which the space of har-
monic spinors is nonzero. We can meet such a situation for
SU(2) =S equipped with its natural metric of signature
(—,—,+)orforT> =8'%S"'XS"equipped with a met-
ric of signature ( +, 4, — ). Besides, until now no relation
between the existence of a nontrivial harmonic spinor space
Ker & and some topological invariants of a Lorentzian
manifold .# was known. Later we will show that such a
relationship does exist.

1ll. PENROSE FOLIATION

Let .# be a Lorentzian space-time manifold!? and
S = £,[C*] its Milnor-Lichnerowicz bundle of Dirac spin-
ors. Let us consider the case when the holonomy group of
Levi-Civita connection is equal to

€ =p(%) 3.1)
with the covering map p: Spin_, —.% ;. Then we can realize
% by the bundle ¥ of minimal left ideals of % ©(.#,g) deter-

mined by a parallel field f of primitive idempotents. By
(2.18), and by a vector bundle isomorphism between .# and
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¥, we also have a nonvanishing field of parallel spinors
Y(x)el (). )
A spinor field ¥(x) is parallel iff

V=0, (3.2)
ie., by (2.28) if
dy = _% S (D T(Nerge; - € P (3.3)
i<j

Now from (2.30) we obtain immediately that if a manifold
(.#,g) admits a parallel spinor field then its scalar curvature
has to vanish for any possible signature of g. Moreover, for a
Riemannian manifold (.#,g) it also has to be Ricci flat.!?
For a Lorentzian manifold this condition is replaced’! by the
following: (i) the isotropy of the Ricci tensor, and (ii) the
existence of a parallel nonvanishing light vector field. The
example of the Schwarzschild metric shows that the condi-
tion of the isotropy of the Ricci tensor is not sufficient.

Let us consider an orthonormal frame €, at a point
xe# . Let £, be the holonomy bundle through €, and let
€(x) be some global section of £,

€(x) = (e;(x),e,(x),e5(x),e4(x)),

(3.4)
d=ed=e5=—e;=1.
Now we can see that the structure group of £, can be gener-

ated by

Ai=ey—e3, Ay=ey+ey (3.3)

Now we can ask the following question: given a holonomy
bundle &, through €,, can we find a parallel field of primi-
tive idempotents.

It is known'* that any primitive idempotent of R §, has
a form

f=£(1+w1)(1+w2),

where «w? = 1,i = 1,2, and w5 = ¢+pee,. It is also known
that for any minimal left ideal there are many primitive
idempotents that define it. We will be interested only in such
primitive idempotents that can be written as

Jx)=3(1+¢)(1+ep) (3.6)
in the basis €(x). Here the I; are multi-indices, i = 1,2.

It is obvious that if our field f(x) has a form (3.6) in the
frame e(x) then it has exactly the same form with respect to
any orthonormal basis at the point xe.# that belongsto &, .

A general element f of the form (3.6) can be written in
the following ways:

L €, =ée;, €, =€,
1L €, = €, €r, = € l#]#k #*4, (3.7)
III. e, = ey, e, =eu,
However, only
L) =41 + e, (x))(1 — es4(x)) (3.8)
and
FAx) =11+ e,(X0))(1 — e34(x)) 3.9

have their isotropy group generated by 4, and 4, of (3.5).In
an appropriate basis we have
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_ (o 1) _(0 i)
Al—(o y A= 0 , (3.10)
i.e., Z contains the elements of the form
s=(, ) =c 3.1
=y 1); =C (3.11)

Now we can easily see that € = p(% ) transforms the ele-
ments e(x) as follows:

4
e,—e,+ 2Rez(e; + e4),

¢
e;—e,+2Imz(e;+e,),

¢
e; — i —Reze, —Im ze, (3.12)
+ (1 _ZE)(93 +e,) + (83 - 94))’
¢
e, — 1(Reze, —Imze, + (1 4 2Z) (e; + e4) — (&5 —&,),

and
4
ey +e,—>e3+ ey,
¢ (3.13)

e; —e,— —Reze, —Imze, —zZ(e;+e4) + (e3—ey).

This fact explains the possibility of the construction of two
inequivalent parallel primitive idempotents (3.8) and (3.9)
for a given holonomy bundle £, . The interpretation of this
fact in the Penrose picture is given in Ref. 15,

The transformation laws (3.12) imply that the codi-
mension-1 distribution P spanned by

P={X(x),e,(x)e,(x)},
with
X(x) = (1/42) (es + &), (3.14)

is parallel. Further, from the fact that our connection is tor-
sionless, i.e., for every vector field 4,Bel' (T.#'), we have

[A.B]=V,B—V A, (3.15)
one obtains that the distribution P is involutive. This means
that we have a transversally oriented codimension-1 folia-
tion .# of our space-time manifold (.#.g).

However, it is easy to see that a metric g induces on each
leaf of ¥ a degenerate metric of signature (0, + %, — %), i.e.,
determines a Galilean structure on any leaf of %

Moreover, any leaf is autoparallel by (3.15). Using
again the torsionless property of the connection we see that
this is equivalent to the fact that any leaf of ¥ is a totally
geodesic submanifold of (.#,g).'¢

Let us notice that the situation is considerably different
from that of a Riemannian manifold. First, for a Riemannian
metric to any parallel distribution there always exists a com-
plementary distribution that is also parallel.!” For a semi-
Riemannian manifold this need not be the case. For exam-
ple, a linear bundle complementary to P can be spanned by
the field Y(x) = (1/42){e;(x) — e,(x)), which is not paral-
lel. Thus it is not possible even to try to give a result analo-
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gous to the de Rham decomposition theorem.

Second, in the Riemannian case the integrability of the
complementary distribution implies that the notion of total-
ly geodesic foliation is interchangeable with the notion of a
bundlelike metric.'® In our case a vector bundle complemen-
tary to P has to be integrable (because any one-dimensional
distribution spanned by a nonvanishing vector field is invo-
lutive'®). However, by the isotropy of the field the notion of
a bundlelike metric foliation cannot even be introduced. [ By
definition (.#,g) has a bundlelike metric compatible with a
foliation .# if the local submersions defining .# may be cho-
sen to be metric submersions.] Besides we have also to exa-
mine the Gauss and Weingarten formulas as well as the
Gauss and Codazzi equations.

These remarks suggest that we could try to introduce
some Riemannian metric on .# and investigate our codi-
mension-1 foliation .# by means of it.

IV. BUNDLELIKE METRIC

We have already seen that if the bundle £, can be taken
as the holonomy bundle of a space-time manifold (M,g)
then we have a codimension-1 foliation of .# determined by
the involutive Penrose distribution P.

The following general problem is still open: given a folia-
tion ¥ on a manifold .#, is there a bundlelike Riemannian
metric on .# compatible with .5 ? However, Johnson and
Naveira®® have made significant progress with this question.
Namely, they have shown that if a codimension-1 foliation
admits such a metric then the Pontryagin ring of the mani-
fold has to vanish in the top dimension. In this section we
will construct such a Riemannian metric g. In this way we
obtain a relationship between the existence of parallel spin-
ors on (.#,g) and topological invariants of .#.

Now let us consider the possible Riemannian metrics on
# that can be constructed from our fixed Lorentzian struc-
ture on .#. It is known that for any concrete Lorentzian
metric g any nonvanishing timelike vector field, say V, de-
fines a Riemannian metric § on .# given by the following
formula:

8(4,B) =g(4,B) — 28(4,V)g(B,V)/g(V, V),
VABeT(T.4). (4.1)

(In other words any section of &, mod SO(3) determines a
concrete Riemannian structure.) Let us take the following
vector field V(x)el' (T.# ):

V(x) = (1/2)(X(x) — Y(x)) = e,(x). (4.2)
Now
&(4,B) =g(A,B) + 2g(4,V)g(B,V) (4.3)

and we see immediately that the field of orthonormal (with
respect to g) frames €(x) is also orthonormal with respect to
&. Thus the SO(4,R) principal bundle &5, which is equiva-
lent to g, is given by

&r = &(x)SO(4,R). (4.4)

Here &(x) denotes the same set of vectors as €(x) but with
Euclidean metric properties. For this reason we shall also
distinguish the components {; (x) } of &(x) from the {e; } of
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€(x) although they form the same elements of 7, .#. We see
that

£y =€(x)SO(3,R) =€(x) -SO(3,R) =&nér (4.5)

is a subbundle of the two bundles £, and £z and corresponds
to the isotropy bundle of our vector field ¥(x).

Although we can show which linear frames of .# form
the orthonormal bundle §; we still have no information
about the holonomy group related with g.

Lemma: Let £z be the holonomy bundle of the Rieman-
nian structure (M,g) through &,. Then its structural group
% can be generated by

~ A ~
Ay =4(84—&5),

LT N (4.6)
A, =14(8 + 853), A;=2¢),

Proof: The elements &; = &; - ¢; satisfy the commutation
relations determined by the Clifford multiplication of the
algebra R, , =% (T, . M,2). Hence we obtain

[2122] = _23’ [22,23] = —21,
[A3’A1] = —Az'

Let us denote the Lie group generated by the elements (4.6)
by €. Let us construct the principal bundle

£s:=8(x) € Ckp. (4.7)
Any connection on the bundles &, & , £5, or £ determines
a connection in the bundle of linear frames £5; (4 &), 1.6, 2
linear connection of M (see Ref. 17). On the other side it is
known that a linear connection is a metric one only if it is
induced from a connection in the principal bundie of ortho-
normal frames with respect to this metric. Moreover every
semi-Riemannian or Riemannian manifold admits a unique
metric connection with vanishing torsion.

In our case all bundles &y, £ , £z, and £ are equivalent
to the trivial bundles, and the section €(x) of €5 (4 &, deter-
mines these global trivializations. For this reason it is
enough to define the horizontal subspaces of appropriate
connections only at points given by e(x). Let us consider a
bundle ., . Let

(x,e)=€(x), Vxed,

where e is the unit of &'. Let the horizontal space at (x,e) be
spanned by

H(x,e) = {ei (x) +X, (x)}’ (4.8)

where X,€Lie algebra of € given by (3.5). Now, for every
point (x,a), ae¥,

H,,= {ei (x) +ad a_lXi (x)}. (4.8")

Because £, is the holonomy bundle of our Lorentzian struc-
ture g, the horizontal subspaces of its Levi-Civita connection
are determined also by (4.8) and are given by (4.8'), but
now with ae.? ;. Of course it determines a connection on
£61a.r, Whose horizontal subspaces at any point (x,a) are
given again by formula (4.8') with aeGL(4,R).

Now let us consider a horizontal distribution on £z de-
fined by

He s, ={e(x) +X,(x)}, Vxed. (4.9)
Here é is the unit of ‘2, and X ; has exactly the same form as
X, but with obviously different multiplication law. By the
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formulas analogous to (4.8') we obtain horizontal distribu-
tions on £z and &gy (4 &, » Which satisfy all propertiesof hori-
zontal distributions of g-metric and linear connections, re-
spectively.

Instead of considering the horizontal subspaces we can
introduce the dual notion of the one-form of the connections.
Now, from the global trivializations of the considered princi-
pal bundles it is enough to determine the Lie-algebra-valued
one-forms on .#.

We see immediately that the form

ale;(x)) = — X, (x)€Lie algebra of ¢ (4.10)

defines the one-form of the Levi-Civita connection of our
Lorentzian structure g.
Similarly

&le,(x)) = — X, (x)eLie algebra of (4.11)

defines some g-metric connection on £z. Now we have to
check if this connection is torsionless.

Let us consider the two-jet extension ,# >4 of .4 (see
Ref. 18) and the first-order differential prolongation K.#
(see Ref. 21) of thebundle £5; (4 r, = :L# oflinear frames.
This last bundle can be identified with the one-jet extension
of .# . We have the following diagram:

/‘ﬂ/ <> K4

<1 e

M = L

(4.12)

The fiber of K.# — L # is given by the set of all jets of local
sections of L.#, i.e., by the set

Hom(R *,gl(4))=gl(4) ® (R*)*
=R*®(RY)*® (RH)*.
[Here (R *)* is the dual space to R *.]

The fiber of #2.4 — f M is given by the set of all
equivalence classes of C 2 embeddings of (R *,0) into (.#,x).
Two such embeddings ¢ and ¢ ' are equivalent if the compo-
sition @ ~'o@’ has the same derivatives up to order 2 at 0 as
the identity map. It means that the fiber of £ 2.4 — 7' A is
givenby R *® S2(R *)*, where S ? denotes the symmetrized
tensor power.

Wecan tell that ¢ # isisomorphic to the subbundle of
K. # given by the first-order jets of local holonomic sections
of L#.

Now any linear connection is given by a section «- of the
bundle K.#—L.# . This connection has no torsion iff its
one-form .- factors through 7 (see Ref. 21) [see (4.12)],i.e,
(4.14)
Now let « and / denote a one-form of linear connections on
&aLr) = L4 determined by the horizontal distributions
(4.8) and (4.9) [or equivalently by one-forms (4.10) and
(4.11), respectively]. The difference between «» and 2
treated as maps from L.# to K.# can be determined by
elements p,cHom(R *,gl(4)) such that

Pale (9)) = X,(x) — X, (x) =] #(X, (x) — X, (x)).

(4.15)

(4.13)

» ’
w = 19¢r .

Here j is the local diffeomorphism
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J
R*D% — %'CR?,
which induces a transformation of linear frames of R * [i.e.,
GL(4,R)] in such a way that

joAi =4, i=12.
In other words the horizontal distribution &, (x,2 can be ob-
tained from H, ., by some map of local linear frames. Now
because « factors through i we see immediately that 2 has
the same property. In this way we have obtained that the g-
metric torsionless connection on &g 4z, can be induced
from the connection on £z given by (4.9). By uniqueness of
the torsionless, metric connection we obtain that £z is the
holonomy bundle of g through €, . ]

Now let us return to our problem of Penrose foliation.
Let us recall that a linear bundle complementary to the Pen-
rose distribution can be spanned by the vector field Y(x).
We can see that ¥(x) is parallel with respect to our Rieman-
nian structure g. It implies that the orthogonal distribution is
also parallel. But this is just the distribution P tangent to the
foliation #. From a general theory of Riemannian struc-
tures'” we obtain that .Z is totally geodesic with respect to 2.
Besides we have that ¢ is a bundlelike metric compatible with
& . Thus we can use the Johnson and Naveira result and
relate the existence of parallel spinors on (M,g) with the
topological invariants described by the Pontryagin ring of
M.
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The curvature and Einstein tensor are computed for a metric having one or more kinks
(solitons) present. It is pointed out that the components of the fluid velocity four-vector can be
identified in a natural way with certain parameters present in the metric. Making this
identification, a number of hydrodynamical quantities are computed.

I. INTRODUCTION

Finkelstein and Misner® were the first to draw attention
to the existence of an integral counting number N that could
be used to classify the metrics of general relativity up to a
homotopy. The classification is obtained by considering the
set of homotopy classes of cross sections of the metric tensor
bundle. If space-time is assumed to be R * X R ! then the rel-
evant set of homotopy classes can be shown to be
[R3XRLS 4.1 |, where, in the notation of Steenrod (see Ref.
2), S, denotes the set of 4X4 real symmetric matrices of
signature ( — + 4 + ). At any instant of time, under the
assumption of asymptotic flatness (or equivalently by clos-
ing R * with a one-point compactification), computation of
this set of homotopy classes yields the group of integers Z.
The number NeZ is called the kink number or soliton num-
ber of the metric. Metrics whose kink numbers differ cannot
be continuously deformed into one another.

In what follows, Greek indices run over 0,1,2,3 and Lat-
in indices run over 1,2,3. In particular, {x’} denote spatial
coordinates and x° refers to time. The symbol
7 = ||9,. || = diag( — 1,1,1,1) is used to denote the Min-
kowski metric. Its kink number is N = 0. We shall use
||6,. || = diag(1,1,1,1) to denote the Kronecker delta. The
four-covariant derivative of any tensor S, is denoted by
S, and the usual derivative is denoted by S,,,, ; .

Consider the metric

g;w = 5;“' - 2¢y ¢v' (la)

The functions ¢, are functions of the space-time coordi-
nates and take values on the three-sphere: 24, ¢, = 1. The
¢, hence control the value of V. This metric was introduced
by Williams and Zia,> and was discussed by Shastri, Wil-
liams, and Zvengrowski.* Specific examples of metrics of
this type have been studied by Finkelstein and McCollum,’
Clément,® and Wiliams.” A number of related metrics (with
nonzero time-space terms) have been studied by Harriott.®

The metric 8., of Eq. (1) is its own inverse, so that
g*" =g, . Defining the fields ¢* to be ¢* =g "¢, it fol-
lows that

ghr =8 —-2¢1¢". (1b)

The contravariant and covariant components of ¢ are relat-
ed through a sign change:

= —4,. (2)
The {¢* } also define a mapping into the three-sphere:
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3¢* ¢* = 1, and our preference will be to work with the ¢
rather than the §,,.

In order to understand how the kink metric of Eq. (1)
arises, it is helpful to consider the polar representation of
|84 | |- Any real nonsingular matrix M has a polar represen-
tation in which M can be written uniguely as the product of
an orthogonal matrix Q and a positive definite symmetric
matrix S:

M=QS.

Assume M to be a general relativistic metric so that M is a
4 X 4 real symmetric matrix of signature ( — + + + ). It
follows (according to Steenrod?) that .S is a 4 X4 positive
definite symmetric matrix that commutes with @: S = SQ,
and that Q itself is a 4 X 4 symmetric orthogonal matrix of
signature ( — + + ~+ ). Furthermore, it can be shown that
Q can be decomposed according to Q = P" P, where 7 is
diag( — 1,1,1,1) and P is an orthogonal matrix.

Select any row or column of P. To be specific, suppose
that the first row is selected and that its elements are denoted
by ¢°,6',6%,¢°. By performing this operation, we are project-
ing into the base space of the §,, fiber bundle. Since P is
orthogonal, its rows and columns are normalized to unity so
that S¢#¢* = 1. Thus the {¢*} define a mapping into S°>.
(More correctly, because of the 4- sign ambiguity, we have
amappinginto SO; = RP?>. This space is homeomorphic toa
three-sphere with antipodal points identified.) If the {¢* }
define a nontrivial mapping, kinks will be present in the met-
ric. In this way, any metric M = QS can be split into a “‘kink
part” Q and a “nonkink part” S. Almost all of the common-
ly studied metrics of general relativity have a trivial
Q = diag( — 1,1,1,1) and a nontrivial S. In this paper, we
have taken exactly the opposite viewpoint, namely that the
nonkink part is trivial, S = diag(1,1,1,1), and that the kink
part Q hasinteresting structure. With Q = P79 P, our metric
of Eq. (1) corresponds to

¢0 ¢1 ¢2 ¢3
—-¢' & $ -4
—¢ —¢ ¢° ¢!
-4 ¢ —¢'

It is usual to allow only those {¢* } that map the infinite
boundary of R * into some particular fixed point of S3, say
(1,0,0,0,). Such a restriction leads to asymptotic flatness,

P=

lim g, =7,

Ix| - oo
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and prevents any kinks present from “escaping at infinity.”
However, kink conservation is best considered in terms of
the kink current N* . For the metric of Eq. (1), N* is identi-

cal to the usual skyrmionic current of strong interaction the-
9

ory’:
N# = (1277) 7' €€ 5,56 0,47 3,67 3,6°. 3)

Integrating the N ° component over three-space yields the
kink number N. Its conservation will be demonstrated in
Sec. II where it will be shown that N, =0, in the frame
being considered.

In this paper, we study the metric of Eq. (1) in its gen-
eral form. Since 5** is not a tensor, it is clear from Eq. (1b)
that ¢* cannot be a four-vector. Indeed, since ¢* is obtained
from the metric by a complicated projection procedure, it is
understandable that ¢* should not be as simple an object as a
vector. Consequently , Eq. (3) for N is only valid in the
frame in which we have chosen to work. If we transform to a
different frame, the expression for N* will change and, of
course, we shall lose the simple form of the metric, as given

by Eq. (1).

Il. CURVATURE PROPERTIES

Our convention for the signature of the metric and the
definitions of the Christoffel symbols and the Ricci and Ein-
stein tensors is in agreement with Misner, Thorne, and
Wheeler.'® We shall work with units in which ¢ = 877G = 1.
Since, in the frame being considered, the metric of Eq. (1)
has a constant determinant (equal to — 1), it follows that
T';;, = 0. This has implications for the N* of Eq. (3). It is
clear from the antisymmetric nature of Eq. (3) that ¥*,
= 0. Hence

Nt =N, + T, N*=0,
so that M* is a conserved current.

The Christoffel symbols are given by

Fﬁv = 2~ lg}ﬂl(g,u'q,v + gv17,,u - gyv,'q )'
Using the metric quantities ¢, the I'2, can be written

riv = 2¢(uav) ¢A - 2¢/{ a(u¢v)
+ (8, —24%¢739,)(4,.6.),

where () indicates symmetrization.
Since I'},, = 0, the Ricci tensor simplifies to
—_T4 3
Ruv - Fuwl - rZé‘ Fm"

and hence in terms of the parameters ¢* this becomes
R,, =2[¢":06%,, —¢%.8",, — "¢ .4",
—~20°¢7 %47 1 + 41,8
— ¢'8*18%, 80 — (57 —28°4") 4185}
+ 8%y, — 0¥
+ ¢U(8" — 24787 4, 1.

The curvature scalar is
R = g”VR,uv = 2{¢ﬂ,v¢“,v + ¢u,y ¢v,v
- ¢”¢V¢A,/A¢l,v + 2¢#¢V,,uv}‘
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The Einstein tensor is
G} =R} —5.R,
where R 2 splits conveniently into a symmetric part S, an

antisymmetric part 4 2, and a part V2 that vanishes on con-
traction:

Ri=S.+A4%+V7,

87 =2{¢7, 65 — 8% ,4",, — 67678 0",
+6'8(87 8", + 87,87
+47.87, +¢76%,,},

A ﬁ — 2{¢r,ﬂv¢u + grn¢[v¢/1]m}’

vV, =2"¢"",07 —8'¢",¢", }.

The symbol [ ] denotes antisymmetrization.

Il. FLUID VELOCITY IDENTIFICATION AND
DETERMINATION OF OTHER KINEMATICAL
QUANTITIES

In a fluid model, one assumes the existence of a unique
velocity field #* representing the average velocity of matter.

In terms of general coordinates x*, u* = (dx* /dr)|;,
where (J¥,7) arelocal comoving coordinates. The y’ label the
fluid particles in an arbitrarily chosen space section of space-
time, and 7 labels proper time measured from this space sec-
tion along the fluid flow lines ¥ = const. The following nor-
malization condition is a direct consequence of the definition
of ut:

wtu, = — 1. 4)

Since Eq. (2) implies ¢*¢, =g, ¢¢"= — 1, Eq. (4)
strongly suggests that the velocity be identified with the kink
parameter:

ut = ¢, (5)
This identification will be assumed from now on. Since ¢* is
not a vector, Eq. (5) is not covariant. We are simply choos-
ing to work in a frame in which the relationship between u*
and ¢* is postulated to take a particularly simple form.

Following Ellis,'' we note that the general relativistic
stress-energy tensor T, can be written

T,, =pu,u, +2q,u, +ph,, +m,,.
The projection tensor 4,,, is defined by

hy, =8, +u,u,.

The function p is the energy density, p the kinetic pressure,

q,, the energy flux (due to diffusion, heat conduction, etc.),

and 7, the anisotropic pressure (viscosity) term. Note that
gu'=nh =m, u" =0

These functions occur in or are related to functions that oc-

cur in the following decomposition'! of the covariant deriva-

tive of the velocity,

Uy, =0, +0,, +1 oh,, —u,u,.

The vorticity tensor w,,, is defined by @, = u,; b3,
where [ ] denotes antisymmetrization. The shear tensor
o,, isdefined by o,, = u . b} — 0h{w/ 3. The functif)n .9
denotes the isotropic (volume) expansion 6§ = #, and %, is
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the acceleration vector defined by &* = u!,u” with #*u,
= 0. The vorticity and shear tensors satisfy o, u" = o, 4"
=0.

A scalar vorticity and a scalar shear can be defined ac-
cording to @ = (#**w,,,/2)"*and 0 = (6*0,,,/2)"/>. The
above tensors can be interrelated by phenomenological
equations which are usually'! postulated to take the form

Ty = — A0,

q, = —«h, (T, +Tu,),
where T denotes temperature and A,« are positive constants.
Using the identification of Eq. (5) and the metric of Eq.
(1), the various hydrodynamical quantities simplify as fol-
lows:

w', = —{d,¢4, — ¢"9,(¢"¢6,)},
U, = —139,8, +¢9,(¢"6,)}, 4, =¢"3,4,,
0=4d,¢ o, =90.4, +¢"$.,9,4,

O = — 108y +6"8(,9,8,, +0,4"(5,, — 4,4,)/3},
©*=10,8,0,,$,, 0" =10,6.0..8,,.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied a metric whose form is
sufficiently simple to allow the straightforward computation
of the usual tensors of general relativity and yet whose form
has sufficient structure to allow for the existence of kinks.
The relation ¢#¢, = — 1 justified our equating the kink pa-
rameter ¢* with the fluid velocity. This may allow inhomo-
geneous and anisotropic space-time solutions. The uitimate
justification, of course, must lie with demonstrating the con-
sistency of the Einstein equations G,,, = T,,, using the T,
appropriate for a realistic fluid. This is the next stage of the
work. Since “tumbling” light cones® are a feature of space-

h,, =06, —u,u,,
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times with kink metrics, there will be regions (perhaps the
size of elementary particles or perhaps within black holes)
where causality is violated. Their interpretation is also an
outstanding problem.
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The axioms of a causal structure are reformulated. A natural generalization is suggested for the
case when the subset lattice of space-time events is replaced by a lattice coming from the

quantum theory.

I. INTRODUCTION

One of the most important consequences of the quan-
tum theory is that our basic concepts of the probability the-
ory have drastically changed. The classic Boole-lattice-
based probability theory has been succeeded by a new one
based on a more general lattice structure of physical events.'
In mathematical physics one usually starts to work with the
“natural” Boolean lattice of physical events. Therefore it
was a very important step in the “quantization” of basic
ideas when the subset structure in the definition of topology
had been replaced by the quantum lattice.?

In this paper following this “quantization” program,
axioms are suggested describing the causal structure of phys-
ical events. In this new causal structure the role of the lattice
of space-time subsets is played by the dual of the quantum
lattice of events.

Il. EVENTS IN QUANTUM THEORY AND EVENTS IN
SPACE-TIME

The usual definition of an event in (quantum) physics is
the following: An event means a possible result of a possible
observation performed on a physical object.

At first sight this notion seems to be very far from the
notion of a space-time point. However each space-time
point—being an event as well—can be formulated in the lan-
guage of physical observations. This fact suggests that there
must be some relation between these two notions.

There are physical events that do not correspond to a
single space-time point, but they do correspond to a collec-
tion of space-time points, i.e., to a subset of the space-time.
For example the event “the cloud camera D has detected the
particle ¢ corresponds to the subset 4:

Thus the physical events can be identified with the subsets
(the single points included) of space-time.

A subset in space-time means a complex of events con-
tained is the subset. Therefore the union of subsets 4 and B
corresponds to the conjunction of events identified with 4
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and B. Inversely, the common part of 4 and B means the
disjunction of the corresponding physical events. This
means that the lattice of physical events and the lattice of
space-time subsets are dual to each other. In classical physics
this correspondence can be correct since the lattice of phys-
ical events is Boolean. But it cannot be correct in quantum
theory, because quantum logic is not Boolean, consequently,
the dual lattice is not Boolean either. A possible resolution of
this inadequacy is if the Boolean subset lattice is exchanged
for the dual of the quantum lattice of events, and if the whole
space-time structure is built on this ground up. As an initial
effort one can reformulate the axioms of causality according
to the conception above.

Hl. THE ROLE OF THE SUBSET LATTICE IN THE
CAUSAL STRUCTURE

Let us recall the Kronheimer—Penrose axioms of a caus-
al structure. Let X be the underlying set. Two relations <,
and < are given with the following properties®:

(1) x<.x,

(i) if x<_,y and y<_z, then x <, z,

(iii) from x <,y and y < x follows that x =,
(iv) not x<x, (n
(v) if x<y, then x<_y,

(vi) if x<_y and y<z, then x<z,

(vii) if x<€y and y <.z, then x<z,

where x, y,zeX.
The causal future set and the chronological future set
are defined as

J T (A4) = :{xeX |there exists ae4 such that a < x},
I*4) = {xex |thére exists aed such that a<x}.
The causal and chronological future sets have the following
properties:
(i) J *(4) D4,
(ii) if J " ({x}) D{y} and J * ({y}) D {x}, then x = ,
(iii) if ACJ *(B) and BCJ * (C), then4CJ * (C),
(iv) J*(AUB) =J *(4)UJ * (B),
WM JTUANB)CJ Y (A)NJ *(B), (2)
(vi) ifACJ *(B) and BCI *(C), then4CI *(C),
(vii) if ACI *(B) and BCJ *(C), then ACI *(C),
(viii) not {x}C I *{x},

where A4, B, and C are subsets of X.
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It is obvious that a pair of maps on the subset lattice
JHNUNZ2X)>ZX), I ZX)>ZX),

satisfying (2) define a causal structure in the sense of (1) via
the following definition of causal and chronological rela-
tions:

x<,y iff yeJt({x}), x< iff yel *({x}.
One can introduce many different topologies on X. The

most reasonable of them is the Alexandrov topology, i.e., the
coarsest topology on X in which each 7 ¥ (A4) is open.

IV. QUANTUM CAUSAL STRUCTURES

Let us now replace the subset lattice 77 (X) by the dual
to the quantum lattice. Denote Q@ the quantum lattice of
events and let (S,A,V ) = @* be the dual of Q.

Definition: A causal structure is a pair of maps

JT: 858, I*:55S,
with the following properties:

() J*(4)>4and I *(4) <J " (4),
(i) if A <J T (B) and B<J T (C), then 4 <J ¥ (C),
(iii) for any x,yeoZ (S) from x <J * ()

and y <J *(x) follows that x = y,
(iv)JT(AVB)=J T (4)VJI*(B), (3)
(V)T (AAB)<J " (4)NJ " (B),
(vi) It (AVB)=I*"(A)VI*(B),
(i) IT(AAB) <I Y (A)YANIH(B),
(viil) if 4 <J T (B) and B<I *(C), then 4 <I *(C),
(ix)ifA<I T (B)and B<J T (C), then4 <I*(C),
(x) notx<I*(x), for xex'(S),

where 4, B, CeS and & (S) denotes the set of atoms in S. If S
is a Boolean lattice it can be represented by a suitable subset
lattice and the causality defined above leads to the usual
Kronheimer—Penrose causality.

V. ALEXANDROV 7-STRUCTURE

In case S is not Boolean it cannot be equivalent to any
subset lattice, therefore one cannot define a point set topol-
ogy on an “underlying set of causal structure.” Fortunately
there is a nice generalization of the topology for a non-Boo-
lean lattice.?

Denote .7 (S) the set of filters of S and §2(S) the set of
maximal filters. A T-structure on .S is a map
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T:ACQ(S)—F(S)

such that (i) 7(A4) CA4, and (ii) for any BeT(4) there exists
CeT'(A) such that C < B and

Ce n T(D).

ccD
An element BeS is said to be open if

Be n T(4).

BCA
One can define a T-structure on S (let us call it Alexan-
drov T-structure) associated to the causal structure as the
coarsest 7-structure in which for any A4S the chronological
future I * (4) is open.

V1. CONCLUSIONS

In a quantum causal structure one can define the causal
and chronological relations as

A< B iff B<J*(A), A<B if B<I*(4). (4)

It is reasonable to regard the set of atoms & (S) as the
“space-time set.”” One can restrict the relations (3) for the
atoms. These restricted relations on .« (.S) satisfy the Kron-
heimer-Penrose axioms. However there can be many rela-
tions on &7 (S) satisfying the axioms which are not generat-
ed by any quantum causal structure on the whole S. It means
that we have a possibly strong physical restriction for the
possible causal relations.

A possible relevancy of the quantum causal structures
to the analysis of the “delayed-choice experiments”* will be
discussed later.
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The singular nonlinear Schrodinger equation iu, = — u,, + f(|u|*)u + yh(|u|)h'(|u]*)u,
where f has the form f(s) = as”, n>1, aeR, is investigated. A classification is given of those
nonlinearities fand A that allow the existence of solitary waves and kink solutions. Further, in

several cases the solutions are given in explicit form.

I. INTRODUCTION

In this short paper we consider singular nonlinear
Schrédinger equations of the form
i, = — g +fult + xh (Ul )bt (ul*)u, (1)
where f has the form f(s) = as”, n>1, a € R. For the case
¥ = 0 we have the usual nonlinear Schrodinger equation,
while for the case y#0 this equation appears frequently in
recent physical literature concerning, for example, plasma
physics,' superfluid films,? or the Heisenberg ferromagnetic
spin chain.®> More examples in both cases y = 0 and y #0
can be given.*

For y = 0 much work has been done on the investiga-
tion of special solutions of (1) such as solitary waves or kink
solutions (see, for example, Ablowitz/Segur® or Berestycki/
Lions®). In this paper we classify the nonlinearities
f(s) =a-s" and h that allow special solutions of the de-
scribed form and give explicit solitary waves, kink solutions,
and spatial periodic traveling waves to some equations of the
form (1).

1. SOLITARY WAVES AND KINK SOLUTIONS
Let us consider solutions of (1) of the form
u(x,t) =r(x + ct)e4=+9,

#(x +dt) = — (¢/2)(x + db).

It is possible to show*’ that in the case of solitary waves (for

arbitrary space dimension ») and in the case of traveling

waves—where r changes sign—the phase has to take the

form (2).

Substituting (2) into (1) yields the nonlinear singular
scalar field equation

" =r[A+ A7) +xh(P))h' ()],
A=(c/2)(c/2 —d). 3)

Here the derivative is taken with respect to the argument
X + ct, which we abbreviate in the following by x. Hence (3)
can be rewritten as

r'(1—2¢h (P)r) = r[A + £(P) + 4y " (PR (P)rr]
+ 2yh 2 (P2 (4)

Obviously, the existence and characterization of critical
points of Eq. (4) is decisive in the study of solitary waves and
kink solutions. Putting 7" = ' = 0 in (4) yields

nA +f(r)=0.

(2)

&)
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Hence the critical points of (4) are determined only by the
nonlinearity f(s).

Most applications deal with polynomial nonlinearities
f(s) =a-s", n>1. For that reason and for simplicity we
study only this case. The case of arbitrary f'can be handled by
analogous phase plane arguments in nearly the same way.

Obviously, » = O is a critical point of (4). The others are
given by

ro=2—A7a,

provided 4 /a <0.

Now it is easily seen that a solitary wave type solution
[that means a solution with lim ., 7(x) = 0] corresponds
to a homoclinic orbit of the critical point 0, whereas a kink
solution [that means a solution with lim,_,  7(x) =a#b
=lim,_, __ r(x)] corresponds to a heteroclinic orbit in the
(r,”")-phase plane. Since a homoclinic orbit always includes
acritical point, A /a <0 is necessary to get a solitary wave or
kink solution of (1). We show in the following that this
condition is sufficient in some sense.

Theorem 1: Assume

a>0, A<0, ray=%y—-A4/a.
Then (1) has a kink solution if

(6)

xh*(P) - r#), VYre[0r,] (7a)
holds.

Theorem 2: Assume

a<0, A>0, rp=2—-A(n+1)/a.
Then (1) has a solitary wave type solution if

xh () -r#L, Vre[0r,] (7b)

holds.

Remarks: (a) The conditions (7a) and (7b) are neces-
sary to insure that Eq. (4) does not become singular in the
region of interest.

(b) Since we can change the parameter A = (¢/2)
X (¢/2 — d), we get infinitely many kink solutions for a > 0
and infinitely many solitary waves for a < 0.

Proof of Theorem I: 1t is easy to see that the (r,7') phase
plane of (4) is symmetric with respect to the » and 7' axes.
This implies that a critical point of (4) is either a center or a
hyperbolic saddle point. Further one can prove that between
two saddle points there must be a center and between two
centers there must be a saddle. Because of 4 <0, (0,0) is a
center and hence ( — ry,0), (7,,0) are hyperbolic saddle
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of the periodic traveling wave with a
¥x=—%¢c=—2d=1andc;=0.

(12)

points. Since there are no more critical points, the right part
of the unstable manifold of ( — ,,0) is identical with the left

part of the stable manifold of (7,,0). Hence, a heteroclinic

orbit exists.

In order to get solitary waves we need

Oin (12). Assuming b /6y >0 and

{a) Solitary waves

D=

(a) The proof shows that for the described

Remarks.
kink solution

lim r(x) = lim r(x)

X— o0

holds.

we find by simple integration the solitary wave type solution

r(x+ct) =

(b) Theorem 2 can be proved by phase space arguments

lar to those of the proof of Theorem 1.

Simil

(13)

+ %) (x+ct) + cl),

BN
2y \ 6y

(|

where ¢, is an arbitrary real constant.

We consider in the following the equation

lil. SPECIAL SOLUTIONS

)

8

(

iu, = —u., +alul®u+b|ul*u+ yd,,|ul’u,

Assuming

(b) Kink-type solutions.

and look for solutions of the form (2).

(a/2 + b /6y) <0,

b>0,

¥ <0,

The analogous equation to (3) now reads

and

)

9

(

HA +ar* + br* + 2y (rr" +1'?)).

Multiplying by 27’ and integrating yields

r ”

a

(10)

AP + (a/2)r* + (b /3)r° + 2xr°r* + D,

which can be rewritten as

r?

we find by integration the solution

r(x +ct)

b

D+¢
1—2y”

b a
L)
6)(+2) £+

(
|

1

_b a1
2y
2y

b
6y

r? =

) (x +ct) + cz),

Assume b

h a manner that

(2/a)(A +a/4y) <0

Then integration yields

b
6y

—+

(5

(L
4y

X tanh

with an arbitrary real constant c,.

(11)

0, a/4y >0,

ling waves:

(c) Periodic trave

and choose 4

+/1].

)

where

a

&(abedy) =

2y

3
Now we choose d such that

1n suc

§(ﬂ,b,cyd,X) = - D»
and hence (11) yields

2712
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rix+ct)y=_[— i(/1 + L)
a 4y
Xsin( 4 (x+ct) + c;),
4y

where c; is an arbitrary real constant.
Figure 1 shows the real part (egg crate) of the solution

of the periodic traveling wave with a= —6, y = —},
= —2,d=1,and¢; =0.
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The Green’s function of two models with nonrelativistic separable interaction giving rise to
infinities in the perturbation expansion is studied. These infinities do not arise from the E + i0
limit, but come from the slow falloff behavior of the vertices, modeled after the infinities in
Feynman graphs of field theory. Both models are analytically solvable. It is found that the
Green’s function obtained from summing the renormalized perturbation series is identical to
the direct solution of the Green’s function, which requires only an intermediate regularization.
In the first model the interaction is split in a singular part giving raise to infinities and a regular
part. It is shown that the Green’s function is the same as the Green’s function derived from
only the regular part. This effect is similar to the effect occurring in ¢* field theory in 3 + 1
dimensions, where the ¢* interaction vanishes after renormalization and the S matrix is trivial.
The second model is constructed such that parts of the singular interaction survive in the

Green’s function.

I. INTRODUCTION

It is well known that perturbation theory has been suc-
cessful in describing quantum electrodynamics (QED) and
to a certain extent the short distance behavior of quantum
chromodynamics (QCD). On the other hand nonperturba-
tive effects are essential for describing the confinement re-
gion in QCD. Recently new evidence has been found for the
need of nonperturbative contributions in p—p scattering.’

One approach to overcome the limitations of perturba-
tion theory and extend results to the large coupling regime
relies on the Borel summation technique.” Another very suc-
cessful technique is the lattice approach.® Several other
methods have been discussed in the literature.*~” The auth-
ors have proposed recently another approach,®® which is
similar to the Hamiltonian formulation of lattice theory.

In these nonperturbative methods one is faced with the
question of renormalization. In Ref. 10, Wilson, applying
standard cutoff regularization, has found no need for wave-
function and coupling-constant renormalization, contrary
to standard renormalization of perturbation theory. Hence
one can ask if there is a need for renormalization inherent in
physics or if it is an artifact to overcome difficulties with a
mathematically ill-defined theory.

In order to investigate these questions, we study in this
paper analytically solvable nonrelativistic models. We
choose interactions that generate infinities in the perturba-
tive expansion of the Green’s function, with the intention to
model the infinities of Feynman graphs in relativistic field
theories. However, these infinities do not arise due to the
E + i0 limit, but come from the falloff behavior of the inter-
action. We have chosen the interaction to be separable,
which leads to an analytically solvable Green’s function.
Separable potentials were introduced in nuclear physics as
early as 1954 by Yamaguchi'' and were used by Mitra'? in
1962 to facilitate the solution of the Schrédinger equation.

In this paper we have compared two methods for calcu-
lating the full Green’s function: the standard perturbative
approach and the direct analytical solution. In both methods
we find the same Green’s function. Although both methods

2714 J. Math. Phys. 27 (11), November 1986
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require intermediate regularization, only the perturbative
expansion requires renormalization, which turns out to be
finite.

1. MODEL |

We consider in three dimensions a nonrelativistic Ham-
iltonian H = H°® 4+ H™, with H °being the free Hamiltonian
and H ™ being the interaction. Let G(z) = (z — H) ' and
G°(z) = (z— H°) ™! denote the corresponding full and
free Green’s function, respectively. We consider a separable
interaction

. 3
Him = 2 Ay v ls

Lj=1
because it allows for an analytical solution of the Green’s
function given by

(2.1)

3
G™(2) =G%2) + 3 G°2)|x.)g; (2){x;|G°(2),

Lj=1
(2.2)
where
g2)=A(1-g°=2)4)"", (2.3)
@) = (|G’ |y, (2.4)

This expression for G is only meaningful when the matrix g°
exists and where g has no poles. G can be expanded in a
perturbation series as

G™(z) = G%z) + G2)H™G%(z)
+ GO(Z)HintGO(z)HintGO(z) + o

=G%2) + 3 G|y )y (x;1G°(2)
[

+ ¥ G Ay {16 xi)

ijkl
XAux:1G°%(2) + . (2.5)

We want to have the property that perturbation theory gives
infinite contributions in any order, which happens if some of
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the matrix elements g are infinite. We want to model the
infinities occurring in Feynman graphs of field theories,
which we do by assuming a slow falloff behavior in momen-
tum space of the vertices. At present we take z = E + /e,
€70, while the physical limit e » + O will be discussed later.
In the first model we take

IX,-)=qu1dq2x,~(q1,qz)lq1,q2), i=123 (2.6)
with

X1(61,9:) = 1/vq,9,.

This gives an infinite matrix element g%, .
By introducing a cutoff A in momentum space we regu-
larize it and obtain

&, (ZA) = 417-2[2A2 ln(

2.7)

2
Z“ZAAZ )+zln(z—2A2)

Z -

—2z1In(z — A?%) +zln(z)] R 2.8)
which behaves asymptotically as
& ~ 4r’[2In(2)A? — 2zIn(A)]. (2.9)
A—w

The other vertices y,, y; we choose with a sufficiently fast
falloff behavior such that

(:Goly,) finite if (i, /) # (1,1).

For our purposes there is no need to specify them expli-
citly. We denote by y, (A) the cutoff vertex and by H ™ (A),
G(z,A) the corresponding interaction Hamiltonian and the
full Green’s function, respectively. One has, in analogy to

Egs. (2.2)-(2.4),
3
G(zA)=G°(2)+ Y G°(2)|y:(A))

=1
Xg;(2,A)(x; (A)|G°(2), (2.10)
where g obeys the matrix equation
g(z,A) =A(1 —g°(z,A)A)7}, (2.11)
with
g°%(z,A); = (x: (M) |G°(2) |x; (A)). (2.12)

Now let us consider for simplicity the particular case
Ay = A, (2.13)

and let us calculate the behavior of g for large A. One finds a
stable limit given by

0 0 0
lim g(z,A) =A|0 1—-1g%(2)  Agh(2)
A- o
0 Agh(z) 1—Agh(2)
1—Ag(z) —Ag%(2) !
X {det o o .
— g3, (2) 1 —Ag3;(2)
(2.14)
If we define
22 (2)  £5:(2)
03y (2) =(g ), (2.15)
ga %@ &%)
and
2715 J. Math. Phys., Vol. 27, No. t1, November 1986

8oy (2) =4(1 —ﬂ,g‘(’z_,,) )7}, (2.16)
one can express
lim g(z,A) =01, @8, (2). (2.17)

A—w

Hence G(z,A) has a stable limit, given by

lim G(z,A)

A— o

3
=GO(Z)+ Z GO(Z)IXi)g(zs) (Z).;,-<inGo(z)-
Lj=2
! (2.18)

One can verify that this Green’s function is identical to the
Green’s function obtained from the Hamiltonian

3
H=H’+ % |y)A; ¢ (2.19)
Lj=2

which we call the renormalized Hamiltonian. It differs from
the original H by the absence of the singular vertex part
l¥ )2 (xal-

Now we want to calculate the Green’s function from the
perturbation theory. Because of the infinities arising from
g%, in each order of the perturbation expansion, we consider

the regularized expansion

3
GP(z,A) =G°(2) + ¥ G|y (A)A <x: (A)|G°(2)

i=1

3
+ 3 G°@ Iy (AN {xi (A)]

Lj=1

X G2 y; (ANA {y; (M) |GO2) + -

3
=G°2) + ¥ G°@D)|x(A)NA[1448°%(zA)
Lji=1
+ (A8°%(z, M) + 1, {x; (A)|G°(2).
(2.20)
Renormalization means here to sum up the infinite parts
thus defining a new propagator and a new interaction that

are both finite and independent of A in the limit A-+o0. We
split g° in a singular and a regular part

8°(z,A) =g%(z,A) + g% (z,A), (2.21)
g (zA) 0 0

g%(z,A) = 0 0 0} (2.22)
0 0 0

We define as a new propagator (1 — Ag%(z,A)) ™", obtained
from summing up the singular part g%
(1 —2g%(z,A)) ' =1 + Ag%(z,A) + (Ag%(z,A))* + .
(2.23)
We define as a new interaction the regular part g°(z,A). We
claim that both the propagator and the interaction have a
finite limit when A tends to infinity. From the definition of
g%(z,A) one obtains

0 0 0
lim (1 — Ag%(zA)) " =[0 1 0]=0,, &1,
Ao 0 0 1
(2.24)
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which is also independent of A. The limit of g°" is simply

0 gh@ g
lim g”(z,A) ={ 85, (2) £%(2) &%) (2.25)
A— o
3(3)1 (2) ggz (2) g(s)s (2)

The perturbation series in the square brackets of Eq. (2.20)
can be rewritten in terms of the new propagator and new
interaction:

14+ 4g°(z,A) + (Ag° (2, A)) + -
=(1-4g%zA) " + (1 — Ag®(z,A) ™!
XA (z,A)(1 — Ag™(z,A)) !
+ (1 — Ag%(2,A)) " 'Ag” (2, A)(1 — 4g%(z,A)) ™!
XA (A1 — Ag¥(z,A)) ' + - (2.26)

We call the rhs of Eq. (2.26) the renormalized perturbation
series, which corresponds to summing the skeleton graphs in
field theory. We claim that taking the limit A— o and sum-
ming the renormalized series one obtains the same Green’s
function as given by Eq. (2.18).

One calculates

lim (1 — Ag%(z,A))'Ag%(z,A)(1 — Ag%(z,A))~!

A—co

=0, ®4g%;, (2). (2.27)

Thus the rhs of Eq. (2.26) can be expressed in the limit
A— o0 as

Oty ® 123y + Oy ®AgLs, (2) + (0, ®AgYs, (2)) + -

=0, ®(1 e —/1g(()23) ()"~ (2.28)

One should note that the rhs is a meromorphic function
in A of degree 1 over 2. Its Taylor series has a finite radius of
convergence and allows an unique analytic continuation be-
yond except at the two poles.

Substituting this result in Eq. (2.20) and taking the lim-
it A— oo of the regular vertices y, (A), / = 2,3, the result is

3
lim G™*(z,A) = G°(2) + ¥ G°(2)|y,)

A—co Lj=2

X8 (23) (Z)ij(XjIGO(Z), (2.29)

in agreement with the Green’s function obtained by the di-
rect analytical solution given by Eq. (2.18).

lil. DISCUSSION OF MODEL |

The model is a nonrelativistic model. The interaction
has been chosen such that the perturbation expansion of the
Green’s function gives rise to infinities. The interaction was
also chosen to be separable for the reason to give a closed
analytical solution of the Green’s function for each finite
cutoff and in the cutoff limit. One should note, however, that
the separability property also appears in some self-interact-
ing field theories; e.g., for the nonlinear Schrédinger model
or the ¢* model, the interaction matrix element between two-
particle Fock space states is separable, after the total energy-
momentum delta function is split off. We start from a Hamil-
tonian H given by Egs. (2.1), (2.6), and (2.7). It can be
written in the form
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H=H°+HZ +H%, (3.1)
3 N

Hig =Y Al Hagg=dA b (G2)
i=2

where the last part of the interaction is called singular, be-
cause the matrix element g%, becomes infinite. One of the
main results is

lim G(z,A) = G™"(z),

A- o

(3.3)

where G™(z) = (z—H™)'and H*"=H° + H 3.

Inspection of the derivation shows that this is always
true when lim,_ gj(z,A) is finite for j#11, but
lim, __ g9, (z,A) is infinite. The property of g7, being infi-
nite comes from the large momentum behavior of v, (q,,9,).
The particular choice of y, given by Eq. (2.7) leads to a
quadratic divergence of g3,. A different choice, e.g.,
¥1(41,92) = 1/(q,q,) would lead to a logarithmic diver-
gence. Hence there is a class of examples for y,, which leads
to the same G™" and H ™", The class consists of those func-
tions y,(q,,4,), which are smooth functions of the variables
q,,9, and fall off for large ¢,g, like (g,4,) ~' or slower. The
class may be even larger. We can formulate this in terms of
an invariance property under a transformation group. Let us
consider the following class of functions:

K= {Xll)(l(q“‘lz) = ¥1'""(4q,,4;)
+ (4:9,) ~% a€[0,11}, (3.4)

where y1*?P is a continuous function with compact support.
Let T denote the one-to-one transformations of [0,1] onto
[0,1], which forms a group. Corresponding to the group T
we define a group of transformations .7~ on the class K. Cor-
responding to each teT we define a 7€7 by

1(8%) = X:1(81,93), 41 =G, 91 =4

Ay A ta)/a
q9: = 4>

Ha)/a
1 s

G =" (3.5)

where a is the falloff exponent of y,.

One easily checks that y{*"P(qj,q;) considered as a
function of q,,q, is continuous and has a compact support,
and (¢{,9;) ~ %= (q:9,) "%, B = t(a)€[0,1], which shows
that .7 maps Kon K. Here .7 is a group that follows from 7
being a group. Hence we can consider .7 as a group of sym-
metry transformations that leaves G ™" and the renormal-
ized Hamiltonian A ™" invariant and hence describes the
same physics. The group .7 should be seen in contrast to the
usual renormalization group, which describes transforma-
tions between regularized cutoff dependent Hamiltonians,
giving the same physics.

Another important feature of this model is its parallel
with ¢* theory. It is generally believed'>-' that the renor-
malized 4* theory has in 3 + 1 dimensions a unity .S matrix,
while in one or two space dimensions the .S matrix differs
from unity. This feature is inherent in our model, too. Let us
consider the Hamiltonian

H=H°+ |y)A {xil, (3.6)

where y,(q,,q;) behaves asymptotically for large q,g, like
(¢:192) ', but is regular at the origin. It gives in three dimen-
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sions a logarithmically divergent matrix element g%, . Then
we have

lim G(z,A) = G%(z).

A—xo
Hence the full Green’s function tends towards the free
Green’s function, which leads to a unity .S matrix. If, how-
ever, we consider the Hamiltonian (3.6) only in one or two
dimensions, then g2, is no longer divergent, hence

3.7)

lim G(z,A)#G°(z),

A
and the S matrix is different from unity. Thus this model
might serve to give a better understanding of the mechanism
of triviality of #3 , ; theory.

Finally let us discuss the relation between the analytical
solution and the perturbative solution. By construction of
the model there are infinities in the perturbation series of the
Green’s function. The reason is that the interaction Hamil-
tonian is an ill-defined operator in Hilbert space. Therefore
the perturbation expansion, being a polynomial in H ™, re-
quires renormalization in order to give finite results. Sum-
ming the renormalized perturbation series we find the same
Green’s function as obtained by the direct analytical solu-
tion, It is interesting to note that for the latter no renormal-
ization is needed, but only an intermediate regularization.
Thus we find that (z — H) ~! behaves more regularly than H
or polynomials in H. One expects that also exp (iH), which is
closely related to the S matrix and which can be expressed as
a contour integral of the resolvant, behaves more regularly
than H itself. One reason behind this is that for Im(z) #0,
(z — H) ! and exp(iH) are bounded operators even if H is
unbounded. Hence as a conclusion from our model investi-
gation we suggest for field theories, which cannot be solved
analytically, to search for approximate solutions in the form
of the resolvent (z — H, ) ™! or in the form of the exponent
exp(iH,) (see also Refs. 8 and 9).

(3.8)

IV.MODEL Il

From our investigation of model I we know that the
Hamiltonian

2
H=H°+ Z x4 (il

i=1
with y, being a singular vertex but y, being a regular vertex,
ie., g}, isinfinite, but g} is finite for jj5 11, has the renormal-
ized Hamiltonian

H™=H’+ l¥22A {xal;

i.e., the singular vertex drops out of the renormalized Hamil-
tonian and the Green’s function lim, _ _ G(z,A). From that
one might suspect that if both y, and y, are singular vertices
then the renormalized Hamiltonian should be H ° only. Mod-
el II shall serve as a warning that is not in general the case.
We choose now

2
H™ = z x4 il

i=1

4.1)

We choose the singular vertices identical to the singular ver-
tex of model I given by Eq. (2.7), apart from some overall
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factors. We take y; of the form given by Eq. (2.6). We write

v =) + xi), =12 (4.2)
and put
Xi(Q,8) = ci/Ngig,y =12 (4.3)

From model I we know that (y;|G,|y;) are infinite matrix
elements. The vertices y; are chosen such that the matrix
elements (y7|Go|y;), (xi|Golx7), and {x]|Gy|x;) are finite
for all, j. Asin the first model we introduce a cutoff A in the
vertices. Then the cutoff Green’s function G(z,A) as well as
the matrices g°(z,A) and g(z,A) are given by Egs. (2.10)~
(2.12) (g% and g are now 2 X 2 matrices). As in Eq. (2.21)
we split g° in a singular and a regular part, the singular part
now being defined by

g7 (zA) = (yi (M) [G°(2) [x; (A)). (4.4)

Denoting the rhs of Eq. (2.8) by o(z,A), Eq. (4.4) can be
expressed as

gY(z,A) =c¥e;0(z,A). (4.5)
Let us calculate lim, ., g(z,A). Model I yields for this limit
zeros in the first row and the first column [Eq. (2.14)]. It
occurred for these matrix elements because the denominator
det(l — Ag°(z,A)) was of first order in o(z,A) but the nu-
merator was only of zeroth order in o(z,A). Hence one
would expect for model II the denominator
det(1 — Ag°(z,A)) to be of second order in o(z,A), the nu-
merator to be of first order in ¢(z,A) and hence to obtain
zero for the lim, _ _ g(z,A). However, this is not the case,
because in det{1 — Ag°(z,A)) the leading order cancels. One
obtains

—|e,]? ¥
g(z) = lim g(z,A)=/1< e ! ZZ)D—I,
Ao it — eyl
D= —|c\]* = leo* + A ([es] 822 (2) + |ea] 811 (2)
— cte,851 (2) — ¢yc3gs (2)) (4.6)

and

2
lim G(z,A) =G°2) + Y G°2)|x,)8;(2){x;|G°(2).

Ao =1

(4.7)
In the case ¢, #c, the singular vertices y; are still present in
the limit of the Green’s function. Now let us consider in the
following the special case ¢, = ¢,. Then Egs. (4.6) and (4.7)
simplify to give

lim g(z,A)=/l(:1 II)D_I,

A— oo —_

D= —2+4(8%(2) +8%(2) — g% (2) — &% (2)).
(4.8)

Defining
) =x1) — 3
we can express

(4.9)

lim G(z,A) = G°(2) + G°(2)|y"

Ao

A

X ('1G°%2). (4.10)
2-AYIG° @D
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One can verify that this Green’s function is identical to the
Green’s function obtained from the Hamiltonian

H*=H’+ [y (A /2)x"], (4.11)
which we call a renormalized Hamiltonian. It differs from
the original H in three ways: (i) absence of singular vertices,
(ii) shift of the coupling constant

A—A'=4/2,
and (iii) addition of cross terms of the regular vertices

= DA Gl = A il
Now let us calculate the Green’s function by summing up the
renormalized perturbation series. The regularized perturba-
tion expansion is given by Eq. (2.20) (except that we have
only 2X 2 matrices now). We take the definition of the new

propagator and new interaction from model I, but g%(z,A)
being now given by Eq. (4.4). We calculate the limits

1 -1
lim (1 — Ag%(z,A))~! =—1—( ), (4.12)
A— oo 2 - l 1
which is independent from A too, and
g gh(2)
lim Ag”(z,A) =4 (g . (4.13)
it O (2) g%(2)

We define the renormalized perturbation series by the rhs of
Eq. (2.26). Taking the limit A— o the nth term is

lim (1 — Ag%(z,A)) " 'Ag%(z,A)

A—oo
X(1 —/igos(z,A))_l---(l —ﬂ,g(”(z,A))_1
XA (z,A)(1 — g*(z,A)) ™!
INEIPPRUE ~1)
-+[Eme] (L 7))

with

Y(z) =g% (2) + 8% (2) — g% (2) — 831 (2).
Summing it up yields

(4.14)

(4.15)

o 1)
2 A\ =1 1/’
After multiplying this expression with A, the expression

agrees with lim,_ _ g(z,A) given by Eq. (4.8). Hence sub-
stituting it in Eq. (2.20), one obtains also in this model

lim G™"P*"(z,A) = lim G(z,A). (4.16)
A-oo

A- oo

V. S MATRIX

We have obtained for model I, and model II in the case
¢; = ¢, Green’s functions lim, G(z,A) and Hamilto-
nians H ™", where all singular vertices are absent [Egs.
(2.18), (2.19), (4.10), and (4.11)]. So far we have consid-
ered only a complex energy z = E + i, €#0. In order to
obtain the physical transition amplitude, one has to perform
the limit € > + 0. Also in the coefficient matrix g only regu-
lar vertices appear [ Eqgs. (2.16) and (4.8) ]. Hence the limit
g(E + ie) can be performed in a standard way, provided
that the vertices also have a regular behavior in the vicinity
of E such that lim, _ | , g°(E + ie) exists, which holds, e.g.,
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for the Yamaguchi form factor. Hence one has a well-de-
fined physical transition amplitude T(E + i0) related to the
Green’s function in the standard way by

G(2) =G%2) + G (2)T(2)G°(2). (5.1)

Then the physical S matrix is related to 7(E + {0) alsoin the
standard way.

VI. CONCLUSION

In this paper we have studied nonrelativistic models
with separable interactions, such that the interaction gener-
ates infinities in the perturbation series of the Green’s func-
tion. We have compared the direct analytical solution with
the perturbative solution. Both methods led to the same
Green’s function. However, in the perturbative approach re-
normalization was needed, while in the direct analytical cal-
culation only an intermediate regularization was necessary.
We have chosen the interaction to contain vertices that pro-
duce infinities in the perturbation expansion in order to
model infinities that appear in field theory. In the first model
we have one singular vertex giving rise to one infinite matrix
element g°, . This vertex drops out of the cutoff limit of the
Green’s function and the renormalized Hamiltonian. There
is a class of Hamiltonians differing in the singular vertex but
leading to the same renormalized Hamiltonian, which can be
expressed in terms of a symmetry under a group of transfor-
mations. In the second model we have two singular vertices.
This model shows that in general the renormalized Hamilto-
nian is not simply obtained by subtracting the singular ver-
tex part from the original Hamiltonian, as was the case in the
first model.

Although we have studied nonrelativistic models, we
have a pattern of infinities similar to a field theory. Particu-
larly model I resembles ¢* theory, which, after renormaliza-
tion, is a free theory in 3 4 1 dimensions, but is an interact-
ing theory in one or two space dimensions. Choosing a
suitable vertex yields the same feature in our model and
hence may serve for a better understanding of #* theory.

From the study of both models we find that the resol-
vent (z — H) ! behaves more regularly than H itself. One
expects that also exp(iH) behaves more regularly than H
because first the time evolution exp (iHt) is closely related to
the S matrix, which was found to be well defined, and second
exp(iHt) can be expressed as a contour integral of the resol-
vent (z — H) ~'. Hence we suggest to look for approximate
solutions of not analytically solvable field theories in the
form of (z— H,) ™! or exp(iH,t), where H, is some ap-
proximate Hamiltonian.

One might speculate if the results of this model study,
namely no need for renormalization if the Green’s function
can be calculated directly, have parallels in field theories. In
general for those an analytical solution is not known, but
nonperturbative approximation methods are available.*®
Numerical investigations based on the method of Refs. 8 and
9 are underway.
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Low-energy scattering for medium-range potentials
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The low-energy behavior of the transmission coefficient in one dimension and of the phase
shifts in two and three dimensions is studied for the Schrodinger equation with central
potentials that have finite absolute moments of order between 1 and 2. Resulting modifications

of Levinson’s theorem are also derived.

I. INTRODUCTION

The standard assumption on which most of the known
properties of scattering amplitudes for the Schrodinger
equation in one, two, or three dimensions with a central po-
tential have been proved’” is that VeL)(R) or
V(|xD)eL ; (R, ), respectively, where

LL(R) = [V(x)

fdx|V(x)|(1 + |x|")<oo]
R

and analogously for R, .* In this paper we will investigate
what properties of the scattering amplitude will be changed
if V&L ). We will particularly study the cases when VeL |
and remark only parenthetically on those instances when
Vel ;.

The technique used will generally be based on specific
assumptions such as VeL !, 1<o<2. The modifications that
arise in one dimension when o < 2 have to do primarily with
the way in which the transmission coefficient can approach
zero as the wave number k—0 (see Sec. II). In two and three
dimensions, with central potentials, we examine the behav-
ior of the phase shifts as k—0, and the effect on the differen-
tial scattering length or cross section (see Sec. III for two
dimensions and Sec. IV for three dimensions). In each case
we also determine the changes in Levinsen’s theorem that
arise from modifications in the small-k behavior of the trans-
mission amplitude or the Jost function. Their analyticity and
large-k behavior are, of course, unchanged by our weakened
assumptions, since those require only that VeL 1.

For ease of reading all detailed proofs are given in three
appendices.

1. ONE DIMENSION
We begin by considering solutions of the equation
ST=Vx)f, xVeR. (2.1)

If VeL } one easily proves these well-known facts: (a) con-
tinuous solutions f; and f, exist that satisfy the boundary
conditions

lim fi(x)= lim f(x)=1,
X— + oo X—> —

(2.2)
lim f{(x)= Lm f;(x)=0;

X— -+ o0

(b) in general f; grows linearly as x— — «, and so does f; as

x— 0; (c) for an exceptional set of potentials, the functions
Jf1andf; arelinearly dependent and hence, uniformly bound-
ed; (d) for no potentialin L } is there a solution of (2.1) that

X—+ — o
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tends to zero as x-—»c Or as X— — 0.

If V&L | the situation is radically different, as can be
seen explicitly when V~cx~2 as x— o. Solutions of (1)
may grow more rapidly than linearly, and for some ¥V there
are solutions that tend to zero; in fact, there may be bound
states; solutions that satisfy (2.2) generally do not exist. The
question is, what happens if V&L ! but V&L }?

The answer is given by the following lemma.

Lemma 2.1: If VeL !, 1<o <2, then (2.1) has unique
continuous solutions that satisfy the boundary conditions
(2.2). We have

filx) = [1+o(x‘—”), as x— + oo,

! - —yx 4+ 0(x*"°), asx— — o,
_Jrx+ 037, asx—+ o,

fal¥) = [1+o(x""), as x— — oo,

where
oy —f;fz=f dx Vf1=J dx V.

In the exceptional case when y = 0, we have f,(x) = af5(x)
=a+o(x' " 7)asx— — w0, a#0. There also exists a solu-
tion g(x) that is linearly independent of f; (x) and which is
such that as x— o0, g(x) = x + O(x*>~ ). (For a proof see
Appendix A.)

Corollary: If VeL ! there is no solution of (2.1) that
tends to zeroas x— + o Orasx— — o. Hence (2.1) hasno
L *-solutions.

Thus the situation for VeL !, 1<o <2, is very similar to
that when VeL }, except for the size of the error term. An
explicit example is given by V(x)=0(x— 1)}(x">

— 3x75/2) [where O(x) is the Heaviside function], for
which

_ fexp(—x""?), x>1,
£ = [(X+1)/2e, x<l,
- [1, x<l,
L = [e— fidyexp(2y™'"*)/2e]exp(—x1"?), x>1.

Asx—ow, f, = —x/2e — 3x'2/2e + O(1).

The solutions /] and £, of (2.1) that satisfy the boundary
conditions (2.2) are the unique solutions of the Volterra
equations (see Appendix A)

fix)y=1— J- dy(x — )V fi(») (2.3a)

and
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A =1+ f dy(x — ) VO0). (2.3b)

IfVeL ), =L, (R_)nL} (R, ), wherey,n>1, then Lemma
2.1 holds with o replaced by u for the limits as x— — « and
by 7 for the limits as x— + oo.

We now consider solutions f, (k,x) and f;(k,x) of the
Schrodinger equation

frHEf=Vf

defined by the integral equations

(2.4)

Filkxy = e — j dy k= sinlk(x — ) 1 VOV (k).
(2.5a)

flkx)=e %+ J‘ dyk™!

Xsin[k(x —p) 1V () (k). (2.5b)
When k %0, Im k>0, these Volterra equations can be solved
by iteration if V€L !, and they lead to the well-known analy-
ticity and continuity properties' of the Jost solutions f; and
/- We are now interested in their behavior near k = 0. If
VeL)} it is well known that as k—0, fi(kx)—fi(x),
fo(kx)—f>(x), where f,(x) and f,(x) are the solutions of
(2.3a) and (2.3b), respectively, and the remainders are lin-
ear in k. More generally we have

Lemma 2.2: If VeL !, 1<0<2, then

e~ ®f, (kx) = fi(x) + g, (k.x),
e, (kx) = fo(x) + g, (kx),

where
C’V(k), X>O,
g1 (kx) < c[ k 20k |x ]
— = (1 —-x), 8
v(k) T2k (I-x), x<0
Cv(k), x<0,
g2 (kx)|< C[v(k)+ _2&_] (14+x), x>0.
1+ 2ik|x

Here v(k) is bounded, independent of x, and o( |k |°~ 1) as
|k | =0 if o <2; if o = 2, then v = O(k). (For a proof, see
Appendix A.)

This tells us how £, (k,x) and f;(k,x) approach f,(x)
and f,(x), respectively, as |k |—0. Now, the transmission
and reflection amplitudes are given by’

2ik
Tk)= ——,
(%) 2ik — I,(k)
Rk = 28 gy~ LB
2ik — I,(k) 2ik — I,(k)
where

I (k) = f dx V(x)e ~ *f,(kx)
= J.w dx V(x)e™f,(k.x),
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Lik) = f‘” dx V(x)e™, (k,x),

Ia(k)=f dx V(x)e ™ *®f,(kx).

The behavior of these integrals is as follows.
Lemma 2.3: If VeL !, 1<o <2, then for j=1,2,3 as
k—0

I(k)y=v+o(|k|”~ D,
where 7 is the constant defined in Lemma 2.1. If o = 2 the
remainder is O(k). (For a proof see Appendix A.)

Note that this lemma does not imply that there exists a
p# >0 — 1 such that I, — y goes exactly like k*, i.e., that

lim k ~“[1; (k) — 7]

exists and differs from zero.

For o = 2 one can show that I, (k) =y + ic;k + o(k)
as k—0, where ¢; is real. It then follows that 7, R,, and R,
are real and continuous at k =0 even if y =0. When 0 <2
they may be complex and hence discontinuous as k—0 +- .
[Since® T( — k) = T(k), T will not be continuous unless it
is real in the limit as k—0; similarly for R; and R, .]

As a result of Lemma 2.3 we have the following
theorem.

Theorem 1: If VeL | and y#0 (where ¥ is defined in
Lemma 2.1), then as k—0,

T(k) = — 2ik /y + o(k)

and R,(0) =R, (0) = — 1. In the exceptional case when
7’—_‘0’
ifVeL ], 1<o0<2,then 1/T(k)=o(lk|"~?),

while for o = 2,
1/T(k) = O(1)
and
T(k) =0(1).

Remarks: (1) If VeL,, [defined below Eq. (2.3b)]
where 1,71, then Lemma 2.2 holds with o = % for g, and
o=u for g,, Lemma 2.3 and Theorem 1 hold with
o= min(y,n).

(2) If V(x) =V,(x) + 4, 6(x — x,), then all the re-
sults hold, provided that ¥, satisfies the hypotheses of the
lemmas and the theorem.

The breakdown of these results when V4L | may be ex-
plicitly seen for the potential

V(x) =af(x)(1+x)"2+b0( —x)(1 —x)73,

for which the Schrodinger equation is solvable in terms of
Hankel functions of orders p=(a+})"?* and
o= (b+1)"2 One then finds that as k—0, T(k)
=const k¥**7.Ifa < — land b < — 4, thenp and o become
p =ilp| and o =i|o|, and
k#* 7 =expli(lp| + |o|)logk ],

which has no limit as k—0. If @ or b are large enough, T
vanishes faster than &, which is impossible if Vel |.

Theorem 1 directly leads to the Levinson theorem. If
VeL!, T is known to be the boundary value of an analytic

Roger G. Newton 2721



function meromorphic in C*, with simple poles at k = ix if
k=% is an eigenvalue (bound state), and such that
limy, ., T(k) = LIfT hasnsimple polesin C* and tends
to zero exactly like k* as k—0 then by the “argument princi-

ple” its phase §, continuously defined by

T=|T|é?,
satisfies the relation
8(0) —6(0) =mn — jma.
Since
det(T R') =detS= g = e*®
R, T T

and each pole of Tin C* signifies a bound state, the Levinson
theorem for V€L | has to be modified in the exceptional case.
According to Theorem 1 we have the following.

Theorem 2 (Levinson theorem): If VL | (R), generical-
ly '

6(0) —6(w) =m(n—1),
where 7 is the number of bound states. In the exceptional
case of ¥ = 0 (see Lemma 2.1) if T goes exactly like k? near
k=0 (which is consistent with Theorem 1 if VeL !,
1€o <2, for B <2 — o<1, but not implied by it), then

8(0) —8(w) =m(n—4p).

ill. TWO DIMENSIONS

We now consider the Schrodinger equation in two di-
mensions with a central potential. The equation is separable
and the radial equations are

S 1A =AY/ f+ k=¥, A=012,... (3.1
A “regular solution,” defined by the boundary condition

limr= 2 ~4g. (k) =1
r—0
satisfies the Volterra equation

¢,{ (kyr) =¢,1,0(k;r) - J dr’g;.(k,r,’")V("’)¢;.(k,r’),
0

(3.2)
where
b0 (k) =120, (kr)(k/2) ~*AY, (3.3)
g (k') =L (i) 2 [T, (kr) Y, (k')
— T (k) Y, (k) ], (3.4)

andJ, and Y, are the usual Bessel and Neumann functions.
The Jost solution, defined by

lim e~ *f, (k,r) = 1

r—r oo

is the solution of

Lilkr)y =f0(kr) + J dr' g, (k,r,/YV(¥)f, (kr),
(3.5)

where, in terms of the usual Hankel function
f;w (k,r) — ei(l/?.)rr(/l +1/2) (17'kr/2) 1/2H/(11) (kr)
We define the Jost function by

(3.6)
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9‘/{ (k) —_ (17.1/2/2/1!)(](/2),1—1/2 ei(1/2)1r((1/2)—/1)

XW(d,,f1), 3.7

where W(d, f)=¢f' — ¢'f. From (3.2) and (3.5) we then
find that

A o0
Fik)y=1— iﬁ—(-%/l/zl—)l; drr'?V(r)

XH SV (kr)é, (k,r)
=1 4 /22 - 4) (_7T__)V2 Jw dr 2
2k o
X V() (kr)f, (k). (3.8)
Here % ; is defined so that I}im F,(k)=1and
¢ﬂ. — /{ !7T_l/2(k /2)(1/2) —A ei( 1/2)ym(A + 1/2)
X (‘97&7-/1 _ eifr((l/Z)—).)?'A‘fl),
which implies that the S matrix is given by
S, =F,/F, =" (3.9)

Use of the first form of (3.8) then leads to the representation
(k/2)*
AVF (k)
(3.10)
The scattering amplitude in two dimensions is given by®
£6) = (2—;1,];)1/2 PRACYIIORSS
and the scattering length

27 w0
L=f 9| £ = (_4-) S e sins,  (312)
0 k A=0

wheree;, =2,A=1.2,.,¢,= 1.
(a) The case of A =0.
Lemma 3.1: If VeL | (R ), o> 1, the equation
[+ (/AP f=Vf (3.13)

has a unique solution that satisfies the boundary condition

S, (k)=1+ ifrjw dr r'2V(r)J; (kr)é, (k,r)
0

(3.11)

lim go(r)r— 12 =1.
r—0

This solution is continuous and generally grows as r'/2 log r
when 7—> 0 ; in the exceptional case in which

C= Jw drr'’2V(r)ge(r) =0 (3.14)
(4]

it grows as 7!/2. There is a linearly independent solution
8o(7), which is such that

lim r—%g (r)/log r = 1.
r—0

(For a proof see Appendix B. It will be noted from the proof
that the weaker hypothesis
J- drr|VI|(1+ |logr{)?< (3.15)
(¢]
suffices.)
Corollary: If VeL L (R_ ), o> 1, (3.13) has no solution
inL*(R,).
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For k #0, the solutions ¢, and f; and the Jost function
F , are defined by (3.2), (3.5), and (3.7) setting A = 0.
Lemma 3.2:1f VeL ) (R.), 1 <0 <3, then

Folk)=Alogk + B+ E(k), (3.16)
where
|E(k)|<Ck*1, (3.16")

forall ae(1,0),and 4 = 0if and only if I = O [as defined in
(3.14) 1, i.e., we have the exceptional case. (For a proof see
Appendix B.)

The constants 4 and B are given by

A= — 1r drr’?v(r)g(r), 3.17)
T Jo

B=1+ir dr 2V (R h(r), (3.18)
0

where g and 4 are solutions of (3.13) defined by the equa-
tions

g(r)—r”2+f dr(rr’)”zlog( )V(r)g(r), (3.19)

h(r) = [1+iWy(0)1g(r) + iH(r), (3.20)

H(r)—r”zlogr-f—f dr(rr’)”zlog( )V(r)H(r)

(3.21)

The function W, (x) is defined by the Bessel and Neumann
functions’

W, (x) = Y, (x) — (2/m)log xJ; (x). (3.22)

Lemma 3.2 allows us to conclude by(3.9) how S, be-
haves near k = 0. If 4 #£0, then

Alog k + B + E(k) B—B 1
=1+ +0
Alogk + B + E(k) Alogk (log k)?

and since Re 2 = g implies Im B = — (7/2)A, we have

j 1
Sotk) =14 7 o( )
o) + log k + (log k)2

On the other hand if 4 = 0, then B is real and cannot vanish.
This is because 4 = 0 implies that

0 —

B=1- on dr 2V (ryH(r)
0

and hence as r—0

H(r) =Br'?log r + o(r'"*log r),

g(r) =o(r*logr).
Thus if B = 0, H(r) = cg(r) because both are solutions of
(3.13). But as r—>c, g(r) goes as 7'/2 and H(r) goes as

/2 1og r, so B cannot vanish. Therefore in the exceptional
case

So=14+0k""1),

and we have the following theorem for the phase shift de-
fined in (3.9).

Theorem 3: If VeL | (R_, ), 1 <o <3, in the generic case
when I' 0 [see (3.14)], as k—0,

bo(k) = (7/2)/logk + o(1/logk) (mod 7),
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but whenI" =0,
So(k) =0(k*~1)

foralla<o.

Thus in all cases &, tends to zero (mod 7) at the origin.
However, the approach to zero is faster in the exceptional
case. In fact, if 0> 2 one may expect (though this is not
implied by Theorem 3) that the derivative of 8, at k =0
vanishes in the exceptional case, and tends to — o generi-
cally.

By (3.11) the partial-wave amplitude for A = 0 in two
dimensions is equal to

ay = (¥% — 1)/ (2imk) "%
Thus, by Theorem 3, in the generic case

(mod ),

lim a,(k)k /* log k = (im/2)'?,
O

while in the exceptional case
aO = O(k “- 3/2)’

It also follows from Lemma 3.2 that the form of Levinson’s
theorem does not depend on whether the case is generic or
exceptional.®

Theorem 4 (Levinson theorem):
VeLL(R,),o0>1,

80(0)

where n, is the number of bound states for A = 0.

This follows directly from (3.16), the “argument prin-
ciple,” and the fact that for C a semicircle of radius € in the
upper half-plane,

fdlogfo(k) =
C

(b) The cases of /L>1.
Lemma 3.3: If VeL [ (R..) the equation

T+ G =A/P) f=Vf (3.23)

has a unique solution that satisfies the boundary condition

a<ao.

In all cases for

— 8o(n) = mny,

d¢———>0
gee—»o

limg, (r)r=2-4=1.
r—0

This solution is continuous and bounded by Cr'”2* 4 In the
exceptional case when

FA—1+—J drr'V? =AY (r)g, (r) =0, (3.24)

&, goesas r''’? ~* when r— o rather than as r'/? +%, (For
a proof, see Appendix B.)

Corollary: If A = 1, there are no L 2-solutions of (3.23).
If A>1, T, = 0 implies that ¢, €L * (a bound state of zero
energy).

The behavior of S, (k) near kK = 0 is obtainable from
(3.10) and Lemma 3.3. We have the following theorem.

Theorem 5: If T'; =.%,(0)#0 and VeL!(R,),
1<o<1+ 24,421, then as k-0,

8, (k) =0(k"~")
andforo=14 24,

8, (k) =0k,
(For a proof see Appendix B.)

(mod 7),
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We also have the following lemma.

Lemma 3.4:f VeL ! (R,), 1<o <3, then

Fk)y=F,(0)+0(k® "), A>1.

(For a proof, see Appendix B.)

This lemma implies that in the exceptional case the
phase shift need not approach a multiple of 7 as k—0. In
fact, we have, by the same argument as that given at the end
of Sec. I1.

Theorem 6 (Levinson theorem): If VeL ! (R,) and
‘?-/{ (0) #07 A’} 19

61(0) ——51(00) =7Tn;~,
where n; is the number of bound states. If % , (0) = 0 and
F (k) = Ck* +0(k*®),a>0c — 1,ask—0 (which is com-
patible with Lemma 3.4 but not implied by it), then

6;‘(0) _5/1(®) =7T(n,1 +%a).

Theorem 5 implies that if VeL |, 1<o <3, then all par-
tial-wave scattering amplitudes for A>1 generically are
o(k° ~*?) as k—0. Thus, by Theorem 3 they vanish relative
to that for A =0 if 0> 1, and they are bounded if o>3. If
F(0) =0, thena, = O(k* ~*? log k), so that we have the
following theorem.

Theorem 7: If VeL ! (R, ), o> 1, then in the generic
case, i.e., if # ; (0) #0 for all integers A, the differential scat-
tering length in two dimensions becomes independent of the
scattering angle as k—0 and

lim L(k)k(log k)% = 7.
k0

If % ,(0) = 0, then
L(k) =0 [k*>*~3(log k)?],
foralla <o <3.
The universal value of the limit of L(k) k(log k)? is

noteworthy.? Also note that if o> 3, then in the exceptional
case for A = 0, L is bounded as k—0.

IV. THREE DIMENSIONS

We next consider the Schrédinger equation in three di-
mensions with a central potential. It is separable, and the
radial equation is the same as (3.1), but with A =1 4,
/=0,1,2,... . Subscripts in this section will refer to / rather
than A.

(a) The case [=0. If f,(k,r) is the Jost solution defined
by the boundary condition

lim e*fy(k,r) =1

r—0
and @, (k,r) is the regular solution defined by

¢O(k’0) = 0, ¢6(k’0) = 1’
then the Jost function %, is given by

F o= W fotbo)= fotts —Fsdo- 4.1
It is well known (but since there does not appear to be a

detailed published proof, a proof is given in Appendix C)
that if VeL ; (R, ) and if ¥ 4,(0) = 0, then near k =0,

Folk) = —iak +o(k), as0. (4.2)
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If V&L ;, this need no longer hold and we have the following
lemma.
Lemma 4.1: If VeL ! (R,), 1<o <2, then as k-0,

Folk) = Fo(0) +0(k°™ 1),
while for o = 2,

Folk) = F,(0) + O(k).
(For a proof see Appendix C.)

The S matrix is given by

So=e¥% =F (—~k)/Fk) 4.3)
and hence we have by Lemma 4.1 the following theorem.

Theorem 8: If VeL | (R, ), 1<0 <2, then generically,
i.e., if & ,(0) #0, in three dimensions

So(k) =0(k°~ ') (modw)
as k—0,and ifoc =2
S6o(k) =0(k) (mod ).

If.%,(0) =0and F (k) =ak® +0(k*),a£0,a>0—1
(which is consistent with but not implied by Lemma 4.1),
then

80(0) = Irax

The implications for the partial-wave amplitude are
easy to see. Since the partial-wave amplitude for / = O is giv-
en by

(mod 7).

Go= —— (% — 1),

2ik
we have generically [i.e., when % ,(0)#0] for VeL!,
I<o<2

ag(k) =0(k’~?), (4.4)
while foro =2
ag(k) = O(1). (4.4')

Therefore there is assurance of a finite cross section at k = 0
only for o = 2.

Lemma 4.1 and Eq. (4.3) also immediately lead to Le-
vinson’s theorem by the same argument as at the end of Sec.
II.

Theorem 9 (Levinson theorem): If VeL ! (R, ), 1<o,
then in the generic case, i.e., if F,(0) =0,

80(0) — 8y( 00 ) F#ny,
where n, is the number of bound states of /=0. If
Fo(0)=0 and F,(k)=ak® +o0(k*), a#0, for
a>o—1 (which is consistent with but not implied by
Lemma 4.1), then

80(0) — 8p(0) = m(ny + Sa).

(b) The case [>1. All the formulas and representations
(3.2) to (3.10) now hold, with A =17 + 1, /=1,2,.... [Of
course, A ! istobereplaced by I'(A + 1).] We then obtain
the following lemma.

Lemma 4.2: The same as Lemma 3.3, with 4 =17+ }.
Corollary: If

=1+ f drr='V(r)é,(r) =0,
(V]
then for /> 1, #,€L ? and there is a bound state of zero energy.
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We also have the analog of Lemma 3.4, with the same
proof. (The logarithmic terms in the estimates used are now
absent, of course.)

Lemma 4.3: If VeL ! (R, ), 1<o <3, then
fl(k) =¢7,(0) +0(k0‘1)~

Also, from (3.10) and Lemma 4.2 we derive the following
theorem.

Theorem 10: If %,(0)#0, />1, and VeLl(R,),
1<o <21 + 2, then as k—0,

6,(k) =o(k°~") (mod m)
andforo=2/+2
8,(k) = O(k%+1') (mod 7).

If #,(0) =0and & ,(k) =ak*+0(k*),a#0,a>0 — 1
(which is consistent with Lemma 4.2 but not implied by it),
then

6,(0) =1ma (mod 7).

The Levinson theorem has the same form as in the two-
dimensional case for 4> 1.

Theorem 11 (Levinson theorem): The same as Theorem
6withA =141

Since in the exceptional case (which by the corollary to
Lemma 4.2 for />1 is a zero energy bound state) the phase
shift need not approach an integal multiple of 7, the cross
section may grow toinfinity as ¥ ~2. By Theorems 8 and 10in
the generic case if o <2, all the partial waves may vanish
equally as k— 0 and hence the differential cross section may
be both unbounded and angle-dependent.

Theorem12:If VeL ! (R, ), 1<0 <2, theninthe generic
case, i.e., if & ,(0)#0 and there is no zero-energy bound
state, the differential cross section may tend to infinity as
o(k*~*) and it may be angle dependent. If there is a zero-
energy bound state of angular momentum />1 [or
F(0) = 0], then the cross section may grow as k ~2, with
the angle dependence of the square of the Legendre polyno-
mial of order /.

We note that if 0>2, the zero-energy cross section is
isotropic and finite, except if ¥ ,(0) =
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APPENDIX A: PROOFS FROM SEC. II

We shall use C for an arbitrary constant that need not
have the same value everywhere.

Proof of Lemma 2.1: If VeL |, the Volterra equations
(2.3a) and (2.3b) can be solved by iteration. That gives
uniqueness, continuity, and for x > 0,

| fi(x)|<C exp [2f dy y| V(,v)l] <C.

For x <0, therefore,

[ v —»rorion]| <ca+1h,
0
and hence by (2.3a)
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Al = [1-

<c<1+|x|>+2|x|fdyw| il

|f1(X)| <C+2rdy(l+|y,)’yl lfl(V)l

1+ |x| 1+’
and by iteration | f;(x)[/(1 + |x|)<C. So
C(1+ |x|), x<0,
| fi(x )|<[ X0,

We now use this result in(2.3a) for x <0:

fw=1-x " wviex[ i+ [ dw,

f: dnyf,‘ <C,

denyf,‘ <Clx|(1+ |xll"’)fdy(1 +hv|
<C( + [x[2~),

[ awn|<cariro [ aasppl
For x> 0 by (2.3a) and the boundedness of f;,

| filx) — l|<CJ- V) px' 7 =0(x'"°)

as x— + oo. Similarly for ;. If y =0, f, and f, must be
multiples of one another since their Wronskian vanishes.
Letg(x) beasolution of (2.1) suchthat W(g, f1) =gf}

— g'fy = 1. Then define h = g/f, so that h ' = 1/f2. There-
forelim, . A'(x) =1 and hence
h(x) = f dfi—1) +x
b
=x+ f dyo(y' =) =x+ 0(x>°). O
b

The remark below (2.3b) follows from the above proof.
Before proving Lemma 2.2 we define

h(kx) = f dy alk(y —x))(x — I VGVL), (A

where

a(x) =1— [(sinx)/x]e™

Lemma A.1: If VeL !, 1<0<2, then

Cv(k), forx>0,
|A(kx)|< C[v(k) + _ilxl_] (1+|x]), forx<0,
1+ 2k |x|

where v(k) is bounded, independent of x, v(k) = o(k° 1)
as k—»0ifo<2,and v(k) =0(k) ifo=2.

Proof: We use

le(x){<C[|x]/(1+ |x])].

Now, for x>0 by Lemma 2.1,
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2
|h|<Cf ""‘ y’ |V(y>|<0f b2V
o-1 v g ky )Z—Ui k
<Ck fo dyy IV|(1+ky =v(k).

One easily proves that the integral tends to zero as k—0 if
o <2, by splitting it into

-]l

wherea =k
For x <0,
x| x| 2 2
J ‘ <c| ayv| k(x| + D) 2k |x| )
o o 1+ k(x| + D 142k |x|

r ‘ <Ck°~! dyIVly (——ky—)zw@(k),
|| x| 1+ ky

f---\<Cfdy|V|

2k |x|?
142k x|
Next we consider the Volterra equation

2k |x|?

1
ok TP

<C

glhkx) =htkx) — [y k= sinkix—)
X e =DV (p)g(ky), (A2)
where 4 is the function defined by (Al).

Lemma A.2: If VeL !, 1<0<2, then (A2) has a unique
solution g and this solution satisfies the same inequalities as
stated in Lemma A.1 for A.

Proof: Equation (A2) is solvable by iteration, using

|sin x| <C [|x|/(1 + |x)].

From x>0 this gives directly |g(k,x)|<Cv(k).Forx <0 use
this result in

f dy k ~" sin k(x — p)e O =0 V(p)g (k)
(4]

<Cv(k) f dy|V|(|x| +y)
0

<Cv(k) (1 + |x]).
Therefore by (A2) and Lemma A1l for x <0,
lgl<Z(k,x)

J‘]dy k ~lsin k(y — x)e O~ 2V (y)g(k,p) ’ ,

where
2k |x| ]
2(k =C[ k — 1 .
(k.x) v(k) + T3 2k o] 1+ |x)
Since 2(k,x)/(1 + |x|) increases with x,
8g(kx)
2 (k,x)
k)
<1 Crd 1 v ’g( P ¢
+C | dy( + DIV S(ky) <
by iteration. Thus |g(k,x)|<CZ(k,x). O

We now consider the integral equation (2.5a), which
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can be solved by iteration if ¥eL ! for k 0, Im k>0. Multi-
plication by e ~** and subtraction of (2.1) shows that the
function

glkx) = fi(kx)e ™™ — f,(x) (A3)
satisfies (A2). Thus we obtain Lemma 2.2 from Lemma A2
for £, and similar for f,. a

Proof of Lemma 2.3: We have, with ¢ defined in Lemma
2.1 and g by (A3),

LK) =7 + f dx V(x)g(kx).

Now use Lemma (A2) for g, and
2—0o
2k |x| <2( 2k le ) ka~—l|x|a-—1.
1+ 2k |x| 14 2k |x|
Furthermore, by the same argument used in the proof of
Lemma Al,

- 2k x| Y-

as k—0 for 0 < 2; for o = 2, of course, it is O(1).
For I, we write

L—y= f dx V(x)[e*f,(kx) — f1(x)]
= fw dx V(x)g(kx)e*™

+ 2iJW dx V(x)f(x)sin kx e**,

use Lemma A2, Lemma 2.1, and

. kx| _ kx| \*—°
sin kx|C ——~— <C(k |x])° ! (————) .
| | 1+ kx| x)) 1+ kx|
Similar arguments are used for 7. a

APPENDIX B: PROOFS FROM SEC. Il

Proof of Lemma 3.1: The solution ¢, of (3.13) satisfies
the Volterra equation

do(r) =r"2 4 f ar'(rr)"?1og ( ) V(r)do(r).

Using the inequality
[log(r/7)|<(1 + |log #|) (1 + [log 7'|),
we iterate

|go(r)|
r'/2(1 4 |log r|)
<1+ fdr’ (14 |log ¥ )| V()| [$o(r)]|
o r'2(1 4 |log 7))

<exp [f dr' r(1 + |log r'|)2|V(r’)|] <C.
(1]

Hence
|o(r)|<Cr2(1 + |log 7).
It follows from the Volterra equation that
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do(r) =r'"?log rj dr rY2V(r)go(r)
l/zlogrf dr r'’*vg,

P2 [ f dr r'?log r’V(r')¢0(r')] )

But

f dr r’”zV¢0‘

(1 + Jlog |)?

=0(1/|log r|)
1+ |log r| fog #

<cf ar r|v|
and hence

do(r) =Tr 2 logr + r'/2

X (1 - f dr' ¥''?log r’V¢o> + o(r'?),
]
where I is defined by (3.14). Note that we needed only

f drr|V)(1+ |logr|)? < co. (B1)
0
It also follows that as 7—0, ¢,(7) = r'/? + o(r*?(log r)?), if
VeL.

Let g, be such that W(do.go) = ogs
define 4(r) = go/¢o. Then

=1/¢2 =r~'+o(logr)?, r—0.
Therefore h=1logr+ O(r(logr)?) and g,=r"*logr
+ O(r*'*(log r)?) as r—0. O
Proof of Lemma 3.2: Since both J0 (x) and Y,(x) de-
crease like x~'/? as x - w0, while Jy— 1 as x -0 and ¥, goes

- ¢6g0 =1, and

1/2

as log x,
1 + |log x|
W C , B2
[Wo(x)|< 1+ [logx| +x'/2 (B2)
C
o(x)|< Tr™ (B3)

where W, is defined by (3.22). Replacing Y, in (3.4) by
(3.22) therefore leads to
|go (ko Y |KCZ (K, Z(K,r),
where
r'/2(1 + |log r]) (1 + |log k7|)

Z(k,yr) =
(k) 1 + |log kr| + (kr)'/?

Thus from (3.5)
| folk,r) | <Ck 2Z(k,r) + CZ(k,r)
xf dr Z(k,”) | V(r)| | folkr)]

and by iteration
| folk,r) |<Ck V2 Z (K,r)
X exp [Cf dar Zz(k,r’)lV(r’)l] .
Since

Z(k,)<r'’?2(1 + |log7|),
it follows that if VeL !, o> 1, then
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| folk,r)<CZ(k,r)k /2.
Near r = O the function f,(k,7) goes as
folk,yr) =ar'’? 4 br'/?log r + o(r''?)
and we find from (3.5)
b = (77'k/2)1/2 P

(B4)

_ f " dr P2 (ke V(R (k)
(4]

and by (3.8), b= (7k /2)V2*™*F . One then readily
finds from (B3) and (B4) that

I}im Fok)=1.

We next need more detailed estimates of J, and W

[Jo(x) — 1|<C [x/(1 +x)]? (B5)
and

|Wo(x) — Wo(0)|<C [x/(1 +x) 13 (B6)

which follow from their boundedness and approach to zero
as x2. Therefore, from (3.6) and (3.22)

Soolk,r) =k V2 log k e¥™4(2r/m)'/?
+ k 1/2 ei‘rr/4(17,r/2)l/2
X[14 is/mlogr+iWy(0)] + Ry,
(kr)3'?
(1 +kr)?
<C(kr)* =V 1<ca<3.
Furthermore, from (3.4), (3.22), (BS), and (B6),
lgolk,rr’) — (1) 2 log(r'/r)|
<C(rr')V2(1 4 |log r])
X (1 + [log k7| [kP/(1 + k#') )?
<C@rr)V2(1 + |log r|) (kr' )=},
for r'>r.

(B7)
|Ro|<C (1 + |log &kr|)

(B8)

l<ca<l, (B9)

We now insert (B7) in the integral equation (3.5) and ob-
tain

k 1/2 log k(2/77) 1/2 e3irr/4g(r)
+k'Y2(7/2)"2 e™*n(r) + R(k,r), (B10)

Solkr) =

where g(r) and A(r) satisfy (3.19)-(3.21) and
R(k,r) = Ry(k,r) + f " ar [go(k,r,r')
— ()2 log( )] V(F)fo(k,)
+ f dr (rr)”210g( )V(r)R(kr)

The Volterra equations (3.19) and (3.21) have unique solu-
tions and determine g and 4.
By (B4) and (B9) we have
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f dr' [go(k,r,r') —(r")"?10g (L)] V(o (kr)
r r
<C a—l/2r1/2(1 + |10g "|)
XJ dar re\v(r)|(1+ |log ¥|)

<Cka_l/2(l + P~ 1)r1/2
if we choose a < o. As a result the integral equation for R
yields by iteration

|R |<Cka_l/2(1 + ’a—l)rl/Z,
for all ae(1,0). Insertion of (B10) in the second form of
(3.8) then gives (3.15) with (3.17) and (3.18), and (3.16).

It follows from (3.19) that as 7— w0, g = r'/? + o(#'/?),
and as r—0, g = — (7/2)Ar'?log r + O(r"'?). Therefore

A = 01is the exceptional case (3.14). O
Note that Z,(ke™) = F,(k) for real k because
Reh=g.

Proofof Lemma 3.3: The “regular solution” ¢, (r) satis-
fies the Volterra equation

. (r) =rVP A f dr g, (r,/)YV(r')e, (r') (B11)
0
with
g (rr') = (1720) (rr)' 2 (#/1)* — (r/P)*].
Using
Igl(r’r’)|<cr(l/2)+/1r’(l/2)—l

for ¥ <r, we iterate and obtain

(B12)

|64 (1) |<Cr/® *+ % exp [CJ dr r’lV(r')I] <CPAD +4
0

(B13)

if VeL }. Thus ¢, is continuous and bounded by Cr¢}/? +4,
The integral equation (B11) now shows that as r— o0,

¢A (r) — r(1/2)+/ll-\i + o(r(1/2) +,1)-

Define a solution g, (7) of (3.23) by the equation

g (r)=r/»-4_ f dr' g, (r,rYV(rg, (),

which can be solved by iteration. One easily finds that

W(d:.8:) =¢:8% — 18, = — 24T ;.
Hence, if I'; = Othen ¢, is a multiple of g, . Furthermore by

its boundary condition ¢, cannot vanish identically. There-
foreif I'; =0, as r—c,

$r(r)=cr'?2= L o(r'2—7),

where ¢#0. O
Proof of Theorem 5: For A > 1 the function W, defined by
(3.22) behaves as follows’ as x—0:

W,(x) = — (1/m)(3x) ~*(A — DI + O(x2—4).

One readily finds that
x Y —1/2
|Ja(x)|<C(m) (I +x)7" (B14)

| Y, (x)|<C(1—j‘:;)—l (14+x)~172 (B15)
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X )—’1 1 + |log x|
1+x 1+ [log x| +x'/?’

W (x)l<C( (B16)

(1x)*
Ji(x) — T

x 244
<C( ) 1+ x)*~%, (B14)
14+x

1 /1 \~4
‘WA(X)+—(—x) (/1—1)!’
7 \2
2= 1 + |log x|

x A
. B1¢'
l+x) 1+ |log x| + x'/2 (B16H

<c(

As a result, for <z,

kr 17244
ky ’ ! <Ck_1 ("_—) (
g1 (kor,r') 1+ kr

’ 172 —-A
kr ) , (B17)
1+ kr

and eliminating ¥, by (3.22) from (3.4),

2 A
kr ) (L) (rrl) 1/2’
1+ kr r

(B17")

|gi. (k)r)rl) — 8 (r,r')]gC(

where g, (') is given by (B12).

The “regular solution” of (3.1) satisfies the Volterra
equation (3.2). Using the above inequalities we find that the
equation is solvable by iteration and

¢, (kyr)|<Ck ~ 2= 4{kr/(1 +kr)]V2 % (B18)

if VeL }. We use this bound in the first form of (3.8) and
then let k—0, so that ¢, (k,r)—¢, (r). Comparison with
(3.24) shows that %, (0) = T'; . Thus the exceptional case
is the one for which % (0) =0.

Next we use the inequalities (B14) and (B18) in the
representation (3.10) if I"; #0:

1S, (k) — 1| <Ck —! F ar\ven)| ( fer )1 o
0

14 kr
Since

1424 1424 —0o
( fer )+ <(kr)°(———k’ )+ ,
1+ kr 14+ kr

if 1<o<1 + 24, it follows that
IS, — 1|<Ck°~ 1,
if VeL . Since one easily proves, by splitting the integral
IR
0 0 a

where a = k ~'/?, that

f drr"|V|( kr )E=o(1),
o 1+ kr

fore>0, wefind foro<1 + 24
S, (k)y=1+4+0(k°" "),
for1<o<1+24,andforo=1+24
S, (k) =1+ 0(k*).

The theorem follows by the definition (3.9). O
Proof of Lemma 3.4: By the inequalities (B17") and
(B13) we have
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| f dr V() [ (kar) —g,l(r,r’)]¢,1(r’)‘
0
" kr \?
’ ’ rl 1/2+,{( )
<CJ; ar (V(r|rr _l+kr

<C’,x/z+,1( kr )2
14+ kr/’

if VeL !. Now subtract (B11) from (3.2) and use the above
inequality, (B14'), and (B17):

|¢/1 (k,r) "‘¢,1(")|
<Cr1/2+/1( ) +Cf darr 1/24+ A '(1/2)—-
14+ kr

X|V(r)| ¢, (k) — ()]

<C,,l/2+;.( kr )2
1+ kr

by iteration if VeL }.
Next we subtract (3.24) from the first form of (3.8):

. © 1 A
2’:1’! fo drr'’?V(r) [(—2-k) H P (kr)

(B19)

y;_(k)—r;~=

+ i(/l—— 1)!r—‘]¢,1(k,r)
a

— LJ‘ dr rV = Ap ()
22 )

X [@a(kr) —d.(r)].

By (3.22), the fact that H{V =J, +i¥,, (3.14) and
(3.16),

1 .
’(ik) H(kr) + L A=NDr2
2 T

kr 2?4 kr
o |(55)  + (75) @+ heskeb].
< 14+ kr + 14 k&r (1 + [log kr|)

for 1<o<3 and 0 <24 + 1. Therefore by (B18) and (B19)
|F (k) =T,

<Ck”“f drr"|V|( ker
o 14+ kr

By the usual argument, the integral tends to zero as k—0 if
VeL!. a

3—0c
) (1 + |log kr|).

APPENDIX C: PROOFS FROM SEC. IV

Let us differentiate (4.1) with respect to %, indicating
the derivative by an overdot, and allow k—0. Since ¢, is an
analytic function of k& ? we have ¢,(0,7) = 0 and hence

Fo(0) = W(£5(0,r),85(0r)).
Suppose now that % ,(0) =0. Then f,(0,r) = céy(0,7),

¢#0, and hence
Fo(0) = (1/c) W (f,(0,r), £o(O,)).

This formula holds, provided that VeL 1. Otherwise there is
no assurance that f;,(0,7) exists, as can be seen from the inte-
gral equation

£o(0,r) = ir — r ar' (r—ryvr)yf(0,r).
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If VeL }, iterating this equation shows that

| fo(0,r) — ir|<wa dar r3\v(r')| -0,

r—o

| f5(0,r) — i|<cf ar r|v(r')| —o0.

r—-o

Since furthermore

| fo(0,r) — 1|<Cf ar'\v(r)|r -0,

r—oo

|fa<o,r)1<cj ar|V(r)) = 0,

we may evaluate the Wronskian of ﬁ)(O,r) and f,(0,r) at
r— 0, replacing f;, by ir and f;, by 1:

Fo(0) = —i/c#0.
This demonstration of the well-known fact that if
Fo(0) =0, then near k=0, Fy(k)= —iak + o(k),
where a0, clearly shows its dependence on the assumption
that VeL }.

Proof of Lemma 4.1: Suppose VeL |,

for)=1+ f dr (r —n)V(r)f(r).

This can be iterated and converges. One easily gets | f(r){<C
for all ».
Next consider

JoCkr) — fo(r)
=e* 1+ on ar(r —r)

sin k(r' —r)

A=D1 reiten

+ f dar' (r — V) Lfolkr') — fo(P)].

Here we use the inequalities
kr
1+ kr’

sink(r —r) ll <C
k(r —r)
and iterate to conclude that

| folk,r) — fo(1)]

kr * kr'’?
c[ +f ar
< 14 kr r rl+kr’

Therefore

| £o(0,r) ﬁ,(0)|<cf ar -

2—0
<Ckv—1f dr[V]r"( kr ) :
o 14 kr

if VeL |, 1<o <2. By the usual argument, splitting

[-[+[r e
0 0 a

one sees that the integral is 0(1) as k—0. For ¢ =2, one
directly obtains O(k). 0

| ikr 1|<C

kr'

, r'>r
14k

|V(r’)|].

il
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New classical properties of quantum coherent states
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A noncommutative version of the Cramer theorem is used to show that if two quantum
systems are prepared independently, and if their center of mass is found to be in a coherent
state, then each of the component systems is also in a coherent state, centered around the
position in phase space predicted by the classical theory. Thermal coherent states are also

shown to possess properties similar to classical ones.

I. INTRODUCTION

The coherent states ¢ to be studied in this paper have
expectation values of the form

(¢;e— i(uP + vQ))

=exp{ — O(Uu? + A ~W?)/4}e ~ P> +u@N 1 (11)
where P and Q are the momentum and position operator for
a quantum particle in one dimension; the generalization to
R" is straightforward. The physical interpretation of the pa-

rameters (P), (@), 6, and 4, characterizing the state ¢, is
obtained from (1.1) by differentiation; namely,

(P) ={$:P),

(@) =(:0),

01/2= (:(P— (P, (12

04 ~1/2={$(Q—(2))?),
so that

((P—(P))HUQ—(2)*) =64 (1.3)
We must therefore have

A>0 and O34 (1.4)

The case © = #i corresponds to the class of coherent states
introduced by Schrodinger': they have minimal dispersion,
compatible with the Heisenberg uncertainty relation,
around the point ({P),(@)) of the classical phase space
T*R~R> They are pure states and are characterized by the
existence of a vector ®e#'=.22(R,dx) such that,

(i = (WP +1D) — (P o~ P +O) (1.5)
and

&% =0, (1.6)
where

a=0Q+ia'P (1.7)
with

P=pP—(P), 0=0-(0). (1.8)

® Permanent address: Department of Mathematics, The University of Flor-
ida, Gainesville, Florida 32601.

) Permanent address: Institut fiir Theoretische Physik, Universitat Gottin-
gen, Gottingen, West Germany.
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Note that (1.6)—(1.8) is equivalent to saying that {I\D is
the wave function for the ground state of the harmonic oscil-
lator with Hamiltonian

H=(1/2m)P% + (1/2)k0?, (1.9)
where m and £ satisfy the relations

A=mo with o’*=k/m. (1.10)

When we further have

(P)=0=(Q), (L.11)

let us denote by @, the vector & characterized by (1.5)-
(1.8). Since the Schrodinger representation of the canonical
commutation relations is irreducible, every vector <7 is
cyclic. In particular we thus have that the (algebraic) vector
space

Span{e ~ " +"@@ |u,veR} (1.12)

is dense in &, and for, general values of (P} and (Q) the
corresponding vector ® is linked to ®, by

(%:e—i((Q)P——(P)Q)/ﬁ(I)O. (1.13)

In this sense, the vectors fl\>, obtained by letting
({P),{Q)) run over the classical phase space 7 *R~R?,
form an overcomplete basis in #°, a mathematical property
that has been given much attention® in connection with the
theory of reproducing kernel Hilbert spaces.

When O > 4, the change of variables

O=#i coth(frw/2), (1.14)

allows one, as explained in Sec. III, to interpret the corre-
sponding coherent state as the canonical equilibrium state,
at inverse temperature 3, for a quantum harmonic oscillator
(1.9) with frequency defined as in (1.10). These states are
therefore not pure.

All coherent states (©>#) have in common the proper-
ty that they allow one,? upon controlling the limit #-0, to
derive from Mackey’s formulation of quantum mechanics
the formalism of classical mechanics, complete with its Jor-
dan and Lie products, i.e., with the algebraic structures cor-
responding to (a) the pointwise multiplication of functions
on the classical phase space T'*M, and (b) the Poisson
bracket associated with the canonical symplectic form on
T*M.

In this paper we focus our attention on other classical

A =mo,
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properties of quantum coherent states, exploring what can
be said about the individual states of two quantum systems
when these are prepared independently and when their cen-
ter of mass is found to be in a coherent state. In Sec. II we
limit our attention to the usual case of pure coherent states
(© = #i); the general case (O3>#) is presented in Sec. II.

The mathematical motivation for this paper is a quan-
tum version of the classical Cramer theorem.® The latter
asserts that if the sum of two independent random variables
is normally distributed, then each of the two random vari-
ables entering in this sum must also be normally distributed.
Lemma 4.1 allows a simple derivation of a quantum version
of this theorem adapted to the case © = #; in Sec. III, how-
ever, we need the general quantum version established by
one of us in Refs. 6 and 7. The mathematical proofs, perti-
nent to the results stated in Secs. I and III are collected in
Sec. IV.

Il. PURE COHERENT STATES

If two classical particles, X, and 2, say, are prepared
independently and if their center of mass is found to be at the
point {pca» gon I} Of phase space one concludes immediately
that the state of each of the component systems is described
by a point {p,, ¢} (x =1, 2) and that

P1+P2=Pcms H141+ H292 = Gems (2.1
with
Le=m/mcy and mey =m; + m,, (2.2)

where m,_ is the mass of the «th particle.

If, however, the two particles are guantum systems, and
one knows the wave function W,, describing the state of
their center of mass, one cannot in general conclude any-
thing about the shape of the wave function ¥, (« = 1,2) of
the two component systems, beyond consistency relations
between expectation values, e.g.,

(P1> + <P2> = (Pcm>, /1'1(Q1) +ﬂ2<Q2) = <QcM)»
(2.3)

((Py = (P1))?) + (P, — (P2))?)
= <(PCM - (PCM>)2>’

Q) — (@)D + 13 (@, — (@))D)
= ((QCM - (QCM))2>;

where g, (k = 1,2) are as in (2.2). To establish (2.3) one
uses the linearity of the state, while to establish (2.4) one
also uses the fact that when the two systems =, and X, are
prepared independently, there are (by definition) no corre-
lations between the observables 4, relative to X, and the
observable A4, relative to 2,.

The purpose of this section is to show that if in addition
W\ describes a coherent state, centered around the point
{{Per)s (Qcm )} in the classical center-of-mass phase
space, then each of the component system must be in a pure
coherent state, centered precisely around the points {2,
(@)} (x = 1,2) satisfying (2.3), and with dispersion pa-
rameter A, given by the now unique solution of (2.4), name-
ly,

Ac=pA

X

(2.4)

(withk =1, 2), 2.5)
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where A is the dispersion parameter of W, determined
uniquely from

{(Per ~ (Pew))?) = A#/2,
((Qcm — (QcuN?) =1 7'8/2.

As a consequence, the wave functions ¥, and ¥, will inherit
both the Gaussian character of ¥, and minimal disper-
sion, i.e., equality sign in the Heisenberg uncertainty rela-
tion,

(2.6)

(P, — (P UQe — (QN)?) = #/4, (2.7)
for k = 1,2. We have, in fact,
2y _
(P, — (P ) = A, (#/2), 2.8)

(@, — QN =4, (#/2),

with A, asin (2.5).

As discussed in Sec. 1, this is the closest one can possibly
come to the classical result: when the scale of the phenomena
one observes is such that # can be neglected, our quantum
states are well approximated by the corresponding, disper-
sion-free classical states.

We now turn to the mathematical formulation of these
results. For the general mathematical concepts underlying
the following brief presentation, see, e.g., §8.3 and §9.1 in
Ref. 4. In order to streamline our nomenclature, we system-
atically use the following abbreviations. By an “algebra” .o/
we mean a W *-algebra, with unit denoted by I, i.e., a C*-
algebra (with unit) that is the dual of a Banach space &/ ;
by a “state” ¢ on &/, we mean a completely additive state,
i.e., a positive linear functional

@: Aed—{P;A YeC (2.9)

that is normalized to 1 and belongs to ./, (these states are
called “normal” in the literature on von Neumann algebras;
we will, however, avoid this adjective here, as it may create
confusion with the concept of “normal” distribution, famil-
iar in the literature on classical statistics to which we also
refer). The following particular case will be of central inter-
est in the sequel: if &/ is (isomorphic, as a W *-algebra, to)
the algebra & (#°) of all bounded linear operators on a sep-
arable Hilbert space #°, then completely additive states ¢ on
/ characterized by the fact that they are of the following
form, familiar to physicists:

¢: Adestr—tr( pd)eC, (2.10)

where p is a density matrix, i.e., p is a positive trace-class
operator on 5%, of trace 1, uniquely determined by ¢. In the
present section, we are primarily concerned with (complete-
ly additive!) states ¢ on & ~ Z (5°) which are pure, i.e.,
states for which p is a one-dimensional projector, and we
denote by P any unit vector in the range of p. For this section
and the next, it is nevertheless useful to recall that for every
state (whether pure or not) ¢ on &7, there exists a represen-
tation, unique up to unitary equivalence,

Ty A€\ 1y (A)ERB (I ) (2.11)

called the GNS representation canonically associated to ¢
and characterized by the existence of a vector $#°,, such
that

(@,7,(4)D) = ($34), Vdesd, (2.12)
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Span {m, (4)®|des'} = 7. (2.13)

While the existence of the GNS representation does not re-
quire that ¢ be completely additive, the latter property en-
sures that 7, is ultraweakly continuous so that 7, (/) is a
W *-algebra. If in addition the state ¢ on &' ~F (F°) is
faithful, i.e., if

($;4%4) =0 implies 4=0, (2.14)
then 7, (/) is a factor, i.e.,
Ty (A Ymy (L) = Cl, (2.15)

isomorphic to its commutant
7y () ={Be# (5%,)|[Bm,(A)] =0, Vde'}.
(2.16)
Moreover, every (completely additive!) state ¢ on
o ~ % (H) is then a vector state for this representation,
i.e., there exists a vector Y&, such that

(V,ms (A)V)= (4 ), VAeod. (2.17)
Finally, by the Weyl CCR algebra for a particle with one
degree of freedom, we mean the abstract W *-algebra, de-
fined by its realization on L ?(R,dx), namely,

o = {9 |y veR}”, (2.18)
where P and Q are the self-adjoint operators defined by their
restriction to the Schwartz space .¥ (R), i.e,,

(P¥)(x) = —ifi(d,¥)(x),

(Q¥) (x) = x¥(x).

For two particles of mass m, and m, with Weyl CCR alge-
bras &, and &, the Weyl CCR algebra o/ ¢y for the cen-

ter-of-mass motion is the subalgebra of &, ® &/, generated,
in the L *-realization, by

{ei(“l’cm + uQCM)iu,UGR}, (2. 19)
where, in analogy to (2.1) and (2.2),
Py=P,®l+1I3P,
CM 1 2 (220)

Ocm=u,01 81+l Q).

The results of this section can now be expressed mathemat-
ically as follows.

Theorem 2.1: Let .7, (x = 1,2) be the Weyl CCR alge-
bras for two particles with one degree of freedom; let &7
be the Weyl CCR algebra for the center-of-mass motion; let
¢, beastateon .7, (k= 1,2); let

bo=¢,®8¢, on = 8, (2.21)
and let ¢y, be the restriction of @, to o oy C &g, i.€.,

Sem=¢o | L cm=0*¢. (2.22)
If ¢ is a pure coherent state, then ¢, and ¢, are also pure
coherent states.

The relations between the characteristic parameters of
&, and ¢, and those of ¢y, are now specified.

Corollary 2.2 With the notation of the theorem, the pure
coherent state ¢y, is completely described by

COVE
= exp{ — Aildeyt? + A Giv?)/4te ™ " (Perd) + vQomd)
(2.23)
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valid for all «, veR; the characteristic parameters (Pgy, ),
(Qcum > and Ay of oy are determined by the relations

(Pem) = bcmiPem )y {Qcm) = (bcom;0cm ) (2.24)
(Bems (Pom) — (PCM>)2> =Acmfi/2,
(Bere3 (Qem — Qe ) = A GA#/2. (229
The ¢, (k = 1,2) are then of the form
<¢K;e—i(u}’cm+vQCM)>
— exp{ _ ﬁ(/ikuz +A7 1v2)/4}e—i(u<1’,> + v(Q,,))’
(2.26)

where

A =ehoms e =M /Moy, Moy =my +my,

(2.27)
(P =(dP)s (Q) = (4:Q.), (2.28)
and
(Py) + (Py) = (Peu)s
(2.29)

114Q1) + 12(Q,) = (Qem )

The following information on the state of relative mo-
tion is also available.

Corollary 2.3: With the notation and assumptions of the
theorem and with ¢, the restriction of ¢, to &, C o, We
have that ¢, is also a pure coherent state, and

$o=0cm ®bra- (2.30)

Note that (2.30) means physically that there are no cor-
relations between the observables for the center of mass and
those for the relative motion.

The above three results follow directly from the non-
commutative extension of the classical Cramer theorem ob-
tained in Ref. 6, the essence of which, for the case of interest
here, is captured in Lemma 4.1 below.

Ill. THERMAL COHERENT STATES

Let = be a classical ideal gas in canonical equilbrium at
inverse temperature £, its partition function Z and density
function f are thus, by definition

ZzZ = f ...fdpl s de dql . qu

Xexp[ — BH s sPrG15-9n) s (3.1)
f(pl""’pN’ql""’qN)
=Z " 'exp[ —BH(Py PN G1r-n) ] (3.2)
with
N
HPpyobwlnln) = Y, He(Prorh) (3.3)
k=1
and, for x = 1,2,...,N,
H (poq.) = (1/2m)p + V. (x,). (3.4)

Suppose now that the center of mass of this ideal gas is ob-
served to be distributed according to the canonical equilibri-
um density of a harmonic oscillator, i.e,

—~ 1, — BHcy(peme9em)
b

Jom (Pemsdem ) = Z cue
with

(3.5)
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Hens Penisom) = (1/2men I0em + 3 Kem@ems (3.6)

Zoy =ffdeM dgcm exp{ —BHeym (pCM’qCM)}'
(3.7)

It then follows, by repeated application of the classical
Cramer theorem, that the situation described by (3.5)-
(3.7) occurs if and only if the individual particles of the ideal
gas are displaced harmonic oscillators, in equilibrium at the
inverse temperature fB. Specifically, one finds, for
x=12,.,N,

H, = (1/2m,)(p. — @)Y + 1k (g, — (g )%

(3.8)
with
N
Z mx = mCM’ (3‘9)
x=1
N
Y peos = oo (3.10)
k=1
N
2 Hilg) =0 and 2 @) =0, (3.11)
k=1
where
B =m/mey (3.12)
o, =k /m, and by =kow/Mey. (3.13)
Note that
0 =&cy, Yx=12,.N, (3.14)

is always a solution of (3.10) with g, defined by (3.12) and
(3.9). Mathematically, this particular solution is character-
ized by the condition that the independent, R?-valued ran-
dom variables

(P )s & =12,.,N, (3.15)
defined by

Pe =1, (3.16)

G.=uYq,. with §, =g, —{(q.) (3.17)

be identically distributed, with density
fp,9) = 2m) ™' By

—B((1/2mey )pz +1 chqz)]-
(3.18)

Alternatively, this condition can be expressed by saying that
for any pair «, #x, of indices 1, 2,...,N, the two R>-valued
random variables

Xexp|[

PcemGem) and  (PrgGre) (3.19)
are statistically independent, where

Pem =Py, + Pu,> (3.20)

Iom = B4, + B, (3.21)

Dra =My (‘I—Px, - '—I—Px,) ) (3.22)

m,, m,,

G =4, — 4, (3.23)
with

B =m/Mey  (K=Ky,K,), (3.24)
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(3.25)
(3.26)

Physically, the condition (3.14) means thus that for every
pair 3, #3, of oscillators in the gas one has

H (p..9.)+H,(p..q.,)

= ECM (ﬁCM ’qCM ) + I_irel ([_’rel ’6rel )’ (327)

where H,, and H,, are harmonic oscillator Hamiltonians.
Specifically

}_ICM = (1/2mcy )ﬁcm2 + % ECM?CM 2: (3.28)
_rel = (l/zmrel )ﬁrcl2 + i l_crelqrclz’ (3 29)

where the masses 7, and m,,, are defined in (3.25) and
(3.26) and the oscillator strengths k., and k.., are given by

(3.30)

The purpose of this section is to analyze the correspond-
ing quantum situation. Let

My =m, +m,

mrel = mx,mxz/mCM‘

CM/mCM = wCM = wrel = krel/mrel'

V: xeR—V(x)eR (3.31)
be such that
H= —# ———~+ V(ix) (3.32)
m dx?

defines a self-adjoint operator in % = Z*(R,dx) with

exp( — BH) of trace class for all 5> 0.

The density matrix

p=Z 'exp(—BH) (3.33)
with

Z =Trexp(—BH) (3.34)

is then interpreted as the canonical equilibrium state, at in-
verse temperature 5, of a quantum particle in the potential
V.In particular, fora harmonic oscillator

H= —#— kx2 3.35)
2m dx + ¢
the state
& BeR (7 )—Tr pBeC (3.36)

is faithful and is uniquely determined by its restriction on the
Weyl algebra; specifically, with P and Q defined as in (2.19
and 2.20) one has*

(rexp[ —i(uP +vQ) 1)

= exp{ — O(Au? + A ~W?)/4}, (3.37)
where

O = #i coth(Bfiw/2) (3.38)

A=mow with &*=k/m. (3.39)

It is worthwhile for the sequel to note that (i) ¢ is Gaussian;
(ii) one recovers the classical result

lim {(P?) =1im OA /2 = m/f3,
o Ao (3.40)
lim (Q?) =lim ©4 ~'/2 = 1/kB;

#-0 #—-0

and (iii) one recovers the low-temperature limit of Sec. II,
namely,
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;im (P (Q?) =#*/4.

We therefore extend the definition of coherent states on the
Weyl CCR algebra for one degree of freedom to include
states that satisfy

(gsexp[ — i(uP +vQ)])
= exp{ — O(Au? + A ~W?)/4}e P +u(@) (3 4))

with ©/%>1; such states are pure coherent states (in the
sense of Sec. II) if and only if ©/7i= 1, i.e.,, B = « in Eq.
(3.38). The following result is stated for two-particle sys-
tems although it extends trivially, as does its classical coun-
terpart, to an n-particle system.

Theorem 3.1: Let &/, (with « = 1,2,CM) be as in
Theorem 2.1. For x = 1,2 let ¢, be a state on &7, , and let

=000, on F;=o,8 L, (3.43)

Then the restriction ¢y, of @, to o ¢ 1S a coherent state of
the form

(Bem ;exp[ — i(uPoy +vQcm) |
= exp{ — Oy (Aem#?
+A C_Mlvz)/4}e — i(u(Pcy) +U(QCM)),
with Oy /7i>1 (3.44)
if and only if ¢, (x = 1,2) are coherent states of the form
(@;exp[ — i(uP, +v0,)])
=exp{ — O, (A u* + A W?)/4}
Xexp[ —i(u(P,) + (@],

(3.41)

and Aqy >0,

with O,/#>1 and A, >0 (3.45)
with the compatibility relations
<P1> + <P2> = <PCM>s
(3.46)
/‘1<Q1> + 2 D5 = Qe )s
91/7.1 + 92’12 = eCM/i'CM,
2 —1 2 -1 —1 (3.47)
OA T+ 14304 7 = Oy cm»
where
e =m/Mcy and mey =m, +m,. (3.48)

The physical meaning of the compatibility condition (3.47)
is given by the following result.

Scholium 3.2: With (3.43)-(3.46) taken into account,
(3.47) is equivalent to

((Py— (P )2 + (P, — (P))D)
= ((PCM - (PCM))2>:
w13 (Q — (@))% + 130, — (@))%

= ((QCM - <QCM))2>;

where i, and u, are given by (3.48)

Note that these results are in conformity with the classi-
cal results; see in particle (3.9) and (3.10).

The results of Sec. II (“low-temperature limit”) are re-
covered from (3.45) and (3.46) and the following conse-
quence of (3.47).

Scholium 3.3: With the notation of Theorem 3.1, the
following two conditions are equivalent:

(3.49)
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Ocm =, (3.50)

for k=12, ©,=# and A, =pA. (3.51)

The following change of variables allows us to interpret
our results in terms of canonical equilibrium states of har-
monic oscillators, in particular in the nontrivial Corollary
3.5.

Scholium 3.4: With the notation of Theorem 3.1, there
exist (forx = 1,2, CM) B,.€(0,» ] and @,€(0, o ) such that

O, = ficoth(B8, fiw,/2), (3.52)

Corollary 3.5: With the notations of Theorem 3.1 and
Scholium 3.4 assume that

A, =mo,.

By =B,=Pe(0,x), (3.53)
and

either Boy =8 or w,=w,=o. (3.54)
Then

oy =w,=wcy and B, == Bewm, (3.55)
and

$o=bcm @ Prars (3.56)
where ¢,,, is the coherent state
(Drea;exp[ — i(uPy + vQ.q) |}

= exp{ — O, (A, qu? + 4 5'v?)/4}

Xexp[ — i(u{P,y) +U<Qrel>)]’ (3.57)

with

O, = fi coth(B . fiwr /2),

Ore = Ocms Bra =Bems (3.58)

A = [mymy/(m; + my) 1 Acy.

IV. PROOFS

The proofs of Theorem 2.1 and of its Corollaries 2.2 and
2.3 follow directly from the introductory remarks presented
in Sec. I-see in particular (1.5) and (1.6) and (1.9) and
(1.10)-and the next simple lemma, an analog of Lemma 2.2
in Ref. 6. The reader interested in domain questions may
consult Lemma 2.1 in Ref. 6.

Lemma 4.1: With the notation and assumptions of
Theorem 2.1, let (for k = 1, 2) 7, be the GNS representa-
tion of ., associated to ¢,, let ®, be the corresponding
cyclic vector, and let

?)KET’-K(PK) - (PK>’

QKE”K(QK) - (QK)’

aKE@x + i/l K_ lﬁx'

Then, for 4, as in (2.27), one has
a,®. =0 (k=12).

Proof: Let 7, (k = 1, 2,0) be the GNS representation of
o, associated with ¢,, and let @, be the corresponding
cyclic vector. Note that

@0 - ¢1 ® q)z.
Define

(4.1)
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?)CM—=—70(PCM) —{Pcm ),
aCM =75(Qcm ) — (Qem )
dcm EaCM +id C_Ml}\)CM9
and, forx = 1,2,
B=r.(P) —(P,),
0.=7.(Q) — (),
8,=0, +ii; P,
where
(P)=(s:P), (Q)=(4::Q.),
A=t Aoms pe=m/(my+m;).

(4.2)

(4.3)

(4.4)

We then have
(4.5)
(4.6)

oy =md1 @1+ p,l 00,

(9,,0,9,)=0 («=12)
and, from the fact that ¢\ is a pure coherent state,
4.7)

Upon inserting (4.5) and (4.7), taking the norm of the re-
sulting expression, and taking (4.6) into account, we obtain

8 Do = 0.

pi11a, @, + u3]|a,2,]|* =0 (4.8)
and thus, since g, >0,
4,0.=0 («=12). (4.9)

This proves Lemma 4.1.

The proof of (3.45) in Theorem (3.1) is a straightfor-
ward application of the general quantum version of
Cramer’s Theorem established by one of us.®” The consis-
tency relations (3.46)—(3.48) follow then by inspection, we
replace Py, and Qcy in (3.44) by their definition (2.20)
and match then (3.44) and (3.45), taking into account
(3.43).

Scholium 3.2 follows immediately from (3.44), (3.45),
and (1.2).

Proof of Scholium 3.3: We multiply the two equations in
(3.47) by one another to obtain

(1,0, + 1,6,)*

+ 14426,0,(A14,) T (pad, —pid,)? = 0%y, (4.10)
From the facts that ©.y =%, ¢, +u, =1, and O, >#
(k =1, 2), we conclude from (4.10) that

O, =% (k=12)
and

ui A =u, A, (4.12)

Upon inserting (4.12) in the first (or the second) of the
consistency relations (3.47), upon taking into account that
U1+ p, = 1 and that ©, = 6, = O, we obtain

Ao =p A (k=12).

This completes the proof.

Scholium 3.4 is only an adaptation of the change of vari-
ables (1.14) to the situation now under consideration. Note
that 8, = o corresponds to the pure case O, = 1.

Proof of Corollary 3.5: With the change of variables
(3.52) the consistency relation (3.47) reads

(4.11)

(4.13)
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116,10 + 1,60,0, = Ocm@cm >

(4.14)
#1007 + 10,07 ' = Ocmon,
with
O, =ficoth (B,%w, /2) (k=12,CM). (4.15)
In case we assume
B =B, = Bcu=Pe(0,), (4.16)

it is useful to write the consistency equations (4.14) in the
vector form

'lllX(wl) +,L‘2X(wz) =X(a)CM)’ (4.17)
with
E(w)
X E( ) 4.18)
(w) £() (
and
=: we(0, 0 ) coth(Bhw/2)e(0,w ),
(4.19)

& we(0, 0 )0~ ! coth(Bhiw/2)€(0, ).

Upon noticing that £ is bijective, we can use £ as a variable,
and define

E(£)=Eow(£) (4.20)
and .
X’(g)z(zif)) . (4.21)
We then verify that
d2
E(£) >0, 4.22)
FrE (&)> (

i.e., that Z is strictly convex. As a consequence, the equation

1X(E) + X (&) = X)), (4.23)
where

He>0 and p, +u,=1, (4.24)
admits a unique solution, namely,

§1=§2=§CM, (4.25)
ie.,

0= 0, = Oy~ (4.26)

We have thus proven the first part of (3.54) and (3.55).
If we now assume

B, =P=Pc (0,0] and o, =w,=we(0,x), (4.27)
we have

O, = 0,=0=Hi coth(Bfiw/2), (4.28)
so that (4.26) reduces to

Ow = Oy Wy, O~ ' = Oy, (4.29)
from which we obtain, upon using (4.15) and (4.28),

Ocm =0, Ocm =@, Beu =8 (4.30)

We have thus proved (3.55). The remainder of the corollary
follows then by straightforward inspection. Q.E.D.
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Phase-integral formulas for Bessel functions and their relation to already

existing asymptotic formulas

Per Olof Froman, Finn Karisson, and Staffan Yngve
Institute of Theoretical Physics, University of Uppsala, Thunbergsvigen 3, S-752 38 Uppsala, Sweden
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The phase-integral method devised by Froman and Fréman [N. Froman and P. O. Fréman,
JWKB Approximation, Contributions to the Theory (North-Holland, Amsterdam, 1965); Ann.
Phys. (NY) 83, 103 (1974); Nuovo Cimento B 20, 121 (1974); N. Froman, Ark. Fys. 32, 541
(1966); Ann. Phys. (NY) 61, 451 (1970) ], involving a general phase-integral approximation
of arbitrary order, which is generated from an unspecified base function, is used for deriving
first- and higher-order phase-integral formulas for Bessel functions. For different choices of the
base function one thus obtains in a systematic way different kinds of asymptotic formulas. By
series expansion of these formulas one obtains already existing asymptotic formulas presented
is standard handbooks. The phase-integral formulas are seen to have certain advantages that

those latter formulas do not possess.

|. BACKGROUND

Consider the differential equation

d*y _
FEIRs R(2)¥ =0,
where R (z) is an analytic function of z. For the approximate
(but in general very accurate) solution of this differential
equation one can use the phase-integral method developed
by Fréman and Fréman.'~® For the advantages of this meth-
od and its relation to the so-called WK B method we refer to
papers by Dammert and P. O. Froman® and by Froman and
Froman.” Briefly speaking one can say that the method con-
sists first in the solution of the local problem, where one
determines two linearly independent phase-integral func-
tions, generated from an unspecified base function, that are
approximate solutions of the differential equation, and sec-
ond in the solution of the global problem, where one deter-
mines the appropriate linear combinations of these phase-
integral functions, which approximately represent the exact
solution in various regions of the complex z plane.

(1.1)

A. Phase-integral approximation of arbitrary order
generated from an unspecified base function

The phase-integral approximation to be described now
was introduced in Ref. 4 and on pp. 126-131 in Ref. 5, and it
was summarized in a somewhat more lucid way in Ref. 7.

In the original differential equation (1.1) there appears
no small parameter. One of the essential ideas behind the
phase-integral approximation to be discussed now is the re-
alization of how a “small” bookkeeping parameter can con-
veniently be introduced in a flexible way. To this purpose we
introduce an unspecified function Q(z), called the base func-
tion, and write the function R (2) in the differential equation
(1.1) as the sum of the two functions Q2(z) and
[R(z) — Q%(z)], of which Q2(z) is considered to be domi-
nant in some sense. To account in an explicit way for this
dominance we introduce a “small” parameter A, which will
at the end be put equal to unity. Thus, instead of the original
differential equation (1.1), we now consider the auxiliary
differential equation
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% (9@ _ 02 _
44 (29 4 R - 2@ =0,

where A is a “small” bookkeeping parameter, and Q(z) is the
so far unspecified base function. The functions R(z) and
Q?(z) are assumed to be independent of A and to have such
properties that the phase-integral solution of (1.2) remains
valid when one puts A equal to unity. The choice of the base
function Q(z) obviously determines how the “small” pa-
rameter A appears in the auxiliary differential equation. By
putting A = 1 in a solution of (1.2), one obviously obtains
the corresponding solution of (1.1).

The differential equation (1.2) has the two linearly in-
dependent, approximate solutions

(1.2)

Y=g "2(2)exp[ +iw(2)], (1.3)
where
w(2) =f g(z)dz. (1.4)

When the order of the approximation is 2N + 1, the expres-
sion for ¢(z) is

N
gz)= Y Yer+boz)A !, (1.5)
n=0
with (cf. Ref. 8)
Y®=1, (1.6a)
YO = % €0 (1.6b)
Y(S) — §(€(2) + 62), (16C)
Y7 = 326 + 66o€, + 561 + €4), (1.6d)
Y® = — 4.(5€} + 30€5€, + 50€qe7 + 10€4€,
+ 286,65 + 19€2 + €), (1.6e)
where
R(z) — Q%) ~3200 42 512
€= &) "% L) —_— z) (1.7
0 0%(2) +0Q (2) d22Q (z) (1.7)
and
1 de,_,
€, = —_—, > 1.8
0@ dz # (18
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For the usefulness and flexibility of the approximation now
described it is very important that the base function Q(z) is
unspecified and can be chosen in a way appropriate for the
particular problem under consideration. For the particular
choice Q(z) = R '/?(z) one obtains the special phase-inte-
gral approximation of arbitrary order introduced by N. Fr6-
man.>* In the applications in Sec. II we shall see how one can
obtain approximations with different regions of validity by
choosing the base function in different, appropriate ways.
As regards the notations we remark that the function
R(z) in (1.1), (1.2), and (1.7) was denoted by @2(z) in
Refs. 1-6 and 8, the base function @(z) in (1.2), (1.5),
(1.7), and (1.8) was denoted by @, (z) in Refs. 4-6, and
the quantities ¥ *"* " in (1.5) and (1.6a)—(1.6¢) were de-
noted by Y,, in Refs. 2-8. Of these changes of notation thﬁ

first two are made in order to simplify the writing, while the
third is made since in the present paper the notation Y,, is
used for the Bessel function of the second kind and of the
order 2n.

To prepare for the applications to be made in Secs. II
and III of the present paper we insert {1.5) into (1.4), get-
ting

N
w(z) = Z w+D (A=, (1.9)
n=0
where
w1V (z) —_-J Y@ +D0(z)dz. (1.10)

Inserting (1.5) and (1.9) into (1.3) and recalling (1.6a), we
get

¢=[Q(Z)J—]/2(i Y(2n+1)/12n)_]/2ex1:)(i_;T ﬁv: w(2n+l)/l2n)

A

n=20

n=1

n=0

=[Q(Z)]—1/2exp[ iiw(l)(z)](l—l- g: y@n+D g 2n
A A

kb i ud (2n+1)7 2n
exp -}_—/{ z w A%, (1.11)
n=1

where (in the last member) N is assumed to be > 1; the corresponding formula for N = 0 is obtained by leaving out the sums
over n in (1.11). Using the power series expansion of the exponential function, one obtains for the product of the last two

factors on the right-hand side of (1.11) the formula

N - 1/2 i N
(1+ Z Y(2n+1)/12") eXP(iI Z w(2n+l)ﬂ,2")

n=1 n=1

=1 iz’w‘”ﬁ _ %(YG) + [w(3)]2)42 + i(w(S) _ % w(3)y(3) _ -g[w‘3’]3)/1 3

— %(Y;S) _ ‘3‘[};(3)]2 + 2w(3)w(5) _ %[w(3)]2y(3) _ _112[w(3)]4)/1 4
+ z(w‘ ) % w( )Y(S) _ % w(S)y(3) + %w(B)[Y(S)]Z _ %[w(B)]Zw(S) + l_12[w(3)]3y(3) + T%n[w(3)]5)/1 5

_ %(Y(7) _ %YB)Y(S) + g[Y(3)]3 4 2w(3)w(7) + [w(S)]Z - %[w(3)]2y(5)

_ w(3)w(5)Y(3)+ g[w(3)]2[Y(3)]2 _ %[w(3)]3w(5) +2_14[w(3)]4y(3) +3_166[w(3)]6)/16+ .

In this formula, where we have assumed that N>3, i.e.,
2N + 17, the simple structure of the left-hand member
should be compared to the complicated structure of the
right-hand member (which appears in asymptotic expan-
sions of conventional form ). Furthermore, the Wronskian of
the two linearly independent approximate solutions corre-
sponding to the upper sign and the lower sign in (1.11) is
constant, whereas the Wronskian of the corresponding ap-
proximate solutions, obtained by using (1.12) with the series
in the right-hand member truncated, is in general not con-
stant. If one rewrites the expression in the left-hand member
of (1.12) as the exponential function of a power series in 4,
that power series (which gives rise to the higher-order terms
in the WKB expansion) would also have a complicated
structure, and the Wronskian of the corresponding two lin-
early independent approximate solutions (with the series
truncated) would in general not be constant. The simple
structure of the phase-integral solutions (1.11) thus stands
out in contrast to the complicated structure of the usual
asymptotic solutions and of the WKB solutions. This fact
illuminates one of the advantages of the phase-integral ap-
proximation. One of the other advantages is the presence of
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(1.12)

the unspecified base function in the phase-integral approxi-
mation and the freedom to choose this function convenient-
ly; in the WKB approximation (of higher order) one has no
such flexibility.

For higher orders of approximation, i.e., when
2N + 1> 1, the function g(z) has singularities at the zeros of
Q2(2), and therefore we cannot choose the constant lower
limit of integration in the definition (1.4) of w(z) to be a
zeroof Q 2(z). When Q %(z) has asimple zero, or more gener-
ally a zero of odd order, it is instead convenient to express
w(z) by means of a certain contour integral on a two-sheet
Riemann surface on which ¢(z) is single valued. The two
sheets of this Riemann surface are cut and joined appropri-
ately along a line emerging from the zero of Q *(z). Calling
this zero ¢, we thus define

q(z)dz,

r(z)

w(z) = —1— (1.13)
where T, (2) is a contour of integration starting at the point
corresponding to z but lying on the Riemann sheet adjacent
to the complex z plane under consideration, encircling the
point # in the negative or in the positive sense, and ending at
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dw
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Complex z plane
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FIG. 1. This figure refers to the case treated in Sec. I1 B, where the order v
and the argument z are of the same order of magnitude and sufficiently
large. (a) When v is positive, the behavior of the function (2.14), i.e.,
Q2(z) =1 —+*/2, is shown for real, positive values of z. (b) and (¢) Con-
tour of integration ", (z) when z> v [(b)], and when 0 <z <v [(¢)]. The
part of the latter contour that lies on the Riemann sheet adjacent to the
complex z plane under consideration is indicated by a broken line. The
heavy line along the part of the real axis, where z > v, indicates the cut neces-
sary to make the base function Q(z) single valued. When the contour I, (2)
in (b) is turned through the angle 7 in the positive sense around the point v,
it goes over into the contour T, (z) in (c¢). (d) The phase chosen for Q '/2(z)
on the real axis to the left of v and on the upper lip of the cut along the anti-
Stokes line emerging from z = v towards the right is indicated.

the point z. Examples of such contours I, (z), with the point
t ( =v) encircled in the negative sense, are shown in Fig.
1(b) and Fig. 1(c). For the first-order approximation the
contour I', (z) can be deformed to coincide with a line join-
ing t and z, and hence w(z) is given by the integral (1.4) with
t as the lower limit of integration. When R (z) and Q 2(z) are
real on the real z axis, the functions ¥ "+ ! are real there,
and hence, on the real z axis, the function w(z), given by
(1.13) with ¢ real, is (for any order of approximation) real in
the interval where Q ?(z) is positive (classically allowed re-
gion in the generalized sense) but purely imaginary in the
interval where Q?(z) is negative (classically forbidden re-
gion in the generalized sense). Inserting (1.5) into (1.13),
we obtain (1.9) with

L Y @+ D0(2)dz.

r(2)

w?rt(z) = (1.14)
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B. Connection formulas

We shall now consider the particular global problem or
connection problem associated with a well-isolated transi-
tion point # [i.e., a point  where Q 2(¢) = 0] on the real axis,
when R (z) and Q ?(z) are real on this axis. Such a point # is
called a generalized classical turning point. We assume w(z)
to be given by (1.13), which is equivalent to (1.9) with
(1.14).

The connection formula for tracing (on the real z axis)
an approximate solution across the generalized classical
turning point ¢ from the classically allowed region to the
classically forbidden region is [cf. Eq. (20) in Ref. 3]

lg= () |cos[|w(z)| + ¥ — 7/4]
—sin y|g™V2(2) |exp[ |jw(2)|], (1.15)

where ¥ is a real constant subjected only to the restriction
that sin ¥ must not be too close to zero.

The connection formula for tracing (on the real z axis)
an approximate solution across the turning point ¢ in the
opposite direction, i.e., from the classically forbidden region
to the classically allowed region is, in a somewhat simplified
form [cf. Egs. (21) and (22) in Ref. 3],

lg="2(2) |exp[ — |w()|]
—2|g™"3(2) |cos[ |w(z) | — 7/4]. (1.16)

We emphasize the one-directional character of the con-
nection formulas (1.15) and (1.16), which means that the
tracing of a solution must always be made in the direction of
the arrows in (1.15) and (1.16).

The above connection formulas for the phase-integral
approximation of arbitrary order, generated from an unspe-
cified base function Q(z), are of the same form as the corre-
sponding, well-known connection formulas for the first-or-
der WKB approximation. Before the former connection
formulas had actually been derived, it was, however, far
from trivial that this important, simple fact should be true.
In this connection we also remark that connection formulas
for the WKB approximation of higher order have seldom
been treated rigorously (cf., however, Ref. 9), although the
corresponding first-order connection formulas have some-
times uncritically been generalized with the hope that such a
generalization is immediately possible. It is an important but
far from trivial fact that this assumption can be shown to be
true.

il. PHASE-INTEGRAL FORMULAS FOR BESSEL
FUNCTIONS

In his preface to the Russian translation of Ref. 1, where
arigorous method for handling the connection problems as-
sociated with the first-order WKB approximation was de-
veloped, the editor of that translation, Professor A. A. Soko-
lov, remarked that the authors did not include among the
applications the highly interesting question of obtaining ap-
proximations for special functions of mathematical physics
with the aid of the WKB approximation, although the re-
sults obtained in Ref. 1 apparently allow this to be done.
Later the phase-integral approximation of arbitrary order
generated from an unspecified base function was introduced
in Refs. 4 and 5. This approximation, which has been briefly
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described in Sec. I A of the present paper, is related to the
WKB approximation of corresponding order, but it has
nicer properties and is in higher order of simpler form; it is
also very flexible, since the base function, from which it is
generated, is a priori unspecified. Furthermore, the connec-
tion problems can be handled by means of the method devel-
oped in Ref. 1; thus one obtains the connection formulas
presented in Sec. I B of the present paper. The applications
suggested by Sokolov are still more promising when one
uses, instead of the WKB approximation, the arbitrary-or-
der approximation just mentioned, but very few such appli-
cations have so far been made. In the present section we shall
demonstrate the power of the approach in question for the
application to Bessel functions.

The general solution of the differential equation

d% ( L2 ) _

p +{1+ -4——22 =0
is an arbitrary linear combination of the spherical Bessel
functions (also called the Riccati—Bessel functions)

¥ = (3 72)%,(2)
and
¥, = (3 m2)"?Y,(2), (2.2b)

J,(z) and Y, (z) being the usual Bessel functions of the first
and second kind, respectively.

Using the phase-integral approximation of arbitrary or-
der generated from an unspecified base function, which has
been described in Sec. I A, and the connection formulas,
which have been presented in Sec. I B, we shall now obtain
accurate phase-integral formulas for the Bessel functions.
For the sake of simplicity we shall assume v and z to be
positive. The phase-integral formulas to be derived in Sec.
IT A, which are valid when v is fixed and z is sufficiently
large, are related to the usual asymptotic formulas for the
Bessel functions; see Sec. III A. The phase-integral formulas
to be derived in Sec. II B, which are valid when v and z are of
the same order of magnitude and sufficiently large, and z
does not lie too close to v, are related to Debye’s asymptotic
formulas for the Bessel functions; see Sec. III B. In Sec. II C
phase-integral formulas are derived for the case of fixed ar-
gument z and sufficiently large order v. These formulas are
related to existing but not so well-known asymptotic formu-
las; see Sec. III C.

(2.1)

(2.2a)

A. The case of fixed order and sufficiently large
argument

In the present subsection we shall assume v to be fixed
(positive), while z ( > v) is sufficiently large. To account for
this assumption, we replace in the differential equation (2.1)
z by z/A, where A is a “small,” positive “bookkeeping” pa-
rameter, which is introduced only to indicate in a formal way
orders of magnitude, and which will at the end be put equal
to unity. Thus we obtain from (2.1) the differential equation

d’y (L j_—i) -

dz? + A? + z? ¥=0,
which reduces to (2.1) when 4 is put equal to unity. Choos-
ing

(2.3)
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Q%) =1
and
R(z) — Q%) = (3 — V) /2 (2.5)

in (1.2), we obtain the differential equation (2.3). Inserting
(2.4) and (2.5) into (1.7), we get €, = (4 — v*)/Z%. Using
this expression for €,, choosing in agreement with (2.4) the
base function to be

(2.4)

g(2) =1, (2.6)
and recalling the definition (1.8), we obtain

€u=(—1)"(/::;1)!(,%—1’2)’ 1230 2.7
Inserting (2.7) into (1.6a)—(1.6e), we get

Y@+t =g, 27 n>0, 2.8)
where
a,=1, (2.9a)
=43 —, (2.9b)
a,= — A=V +6(1—), (2.9¢)
as=14((1 —v*)*+28(} — )2+ 60(} —+))),  (2.9d)
ag= — h(5( —v)* +380(1 —+*)?

+3228(} — +*)2 + 50403 —+2)) . (2.9¢)

Inserting (2.6) and (2.8) into (1.10) with the constant low-
er limit of integration chosen conveniently (different for
n =0and n>0), we obtain [cf. (2.9a)]

w(z) =ayz =2, (2.102)
w®+V(z) = [ay, /(1 =2n)]2' =%, n>1. (2.10b)

Recalling (2.2a) and the fact (cf. Ref. 10, p. 199) that
(m2/2)V% J,(z) tends to cos(z — vr/2 — 7/4) as z— + o
(for fixed v), we obtain with due regard to (1.11) and (2.6),
when A is finally put equal to unity, the phase-integral for-
mula of the (2N + 1)th-order approximation

2 172 N Y(2 b - 172
o= () (£,)
( ) wz nE_-:o

Xcos(i w?+Y(z) —(v+i) 1)
2/ 2

n=0
( 2 \12 (l N yo +l))-1/2
= - + "
7TZ) n;l
1y 7 S 2n+1)
Xcos{z — v+ — —+Zw (2) ),
2 2 n=1
z>v, (2.11)

where Y 2"+ and w®*+ Y are given by (2.8) and (2.10a)
and (2.10b), respectively. Recalling (2.2b) and (cf. Ref. 10,
p. 199) the behavior of (7z/2)'/? Y, (z) as z— + o (for
fixed v), we similarly obtain a phase-integral formula for
Y, (z) for fixed v and sufficiently large z:

Y 2 1/2( N Y(2"+ 1))— 1/2
w=(Z)"(2,
N 1\ 7
: Qr+1) _ —_ ) —_
><sm(n;0w (z) (V+ 2) 2)
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( 2 )1/2 (1 ad Y(z +1))_1/2
=f{— =+ "
— )y

n=1

. 1\ 7 o Qn+1)
X sin{z — v+—2— —2—+ Z w (2) ),

n=1

V. (2.12)

One obtains this formula from (2.11) by replacing there
J.(z) by Y, (z) and cos by sin, In writing down the last
members of (2.11) and (2.12) we have assumed that N>1.
One obtains the corresponding formulas for N = 0 by delet-
ing the sums over n in the last members of (2.11) and (2.12).

B. The case when the argument and the order are both
sufficiently large

In the present subsection we shall assume v and z to be
sufficiently large (positive) and of comparable order of mag-
nitude. To account for this assumption, we replace in the
differential equation (2.1) vby v/A andzby z/A, where A isa
“small,” positive parameter that will at the end be put equal
to unity. Thus we obtain from (2.1) the differential equation

d*y (l — /2 1 )
ly=0,
= S ERE)
which reduces to (2.1) when 4 is put equal to unity. Choos-
ing

(2.13)

Q%z) =1 -2 (2.14)
and

R(z) — Q%(2) = 1/(42%) (2.15)

in (1.2), we obtain the differential equation (2.13). When
the functions in (1.2) are given by (2.14) and (2.15) with
v#0, the phase-integral approximation remains valid in the
neighborhood of the origin z = 0 but breaks down in the
neighborhood of the generalized turning point z = v. Insert-
ing (2.14) and (2.15) into (1.7), we get

1 ( 1 Vz)
€. = — 4 ). 2.16
A\ TS (2-162)
From (1.8), (2.14), and (2.16a) we then obtain
1 1 5v W
6= ——— (4 V) 2.16b
! (1 —v3/22)°"2 (223 TET 27) ( )
1 3028 34t 4
= N — —
2T —V2/2%)8 (224 + 28 P + z'o)’ (2.160)
1 6 1802
€q = — —_—
2T T U= <25+ 7
440v* 17605 88
+ 2 + 211 ZT) ’ (2.16d)
e 1 (_32 132012 | 5400v*
T =2\ 8 28 z1°
4576v%  808v® 1641
+ et ) (2.16¢)

where the phase of the square root of 1 — 12/2? is to be cho-
sen in agreement with that of Q(z); see Fig. 1(d). Inserting
(2.16a)—(2.16e) into (1.6a)-(1.6d), we get
YW =1, (2.17a)
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1 Y
Yo = +—————-——(— ——) 2.17b
T (£ 1FV/2)? 82 ¥ 2 ( )
Yo — _ 1 < 25
(+ 1 F+2/22)% \ 1282
57v¢ 354 V&
R R 2210), (2.17¢)
yo 1 ( 1073 1117142
T (1 FV/2%)° \ 102425 256z%
11511v*  611v° 21348 10
e T e Te T 2z16)’ @170

where it is convenient to use the upper signs when z is real,
positive, and larger than v and to use the lower signs when z
is real, positive, and smaller than v.

Consulting Fig. 1(d) as regards the phase of the base
function Q(z), we obtain from (2.14)

241/2
0z) = [(1 Vv/2%) > zZ>v,
W22 - 1DY2 Oczew,

the square roots in the right-hand member of (2.18) being
positive. For w(z) it is, in the present subsection, convenient
to use (1.9) with (1.14) for #=v. Inserting (2.17a)-
(2.17d) and (2.18) into (1.14), we obtain

wV(z) = (22 — v V2 —wvarccos(v/z) (>0), z>v,

(2.18)

172
() =1,1n[_1’_+(l’2__ 1) ] (2.192)
z z?
— (P =222 (50), O0<z<v,
w?(z) 1 (1 Vv )
=T — , 2.19b
w2 T T % 1:Fv2/22)3/2\82+ 122° (2199)
w®(z) _ 1 [ 25 20347
w2 (£ 1F/2)2\3842  3202°
214 v® )
_r\ 2.19
* 307 3607 (2.150)
w2 _ _ 1 {1073 | 21269+
iw™(z) (+ 1F22/22)52\5120° 35847
148277 985/° | 4148 10 )
+ 0087 168 T Tesa® T 12602/
(2.19d)

where the upper and lower expressions in the left-hand
members and the upper and lower signs in the right-hand
members in (2.19b)—(2.19d) apply for z>v and O<z < v,
respectively.

Introducing the positive quantity ¢ by the definition

2V —-1)"V2 S
={( / )—1/2 orz>v (2.20)
(1 =22/v%) , forO<z<w,
we obtain from (2.18)
A+ 1"Y2 forzsw,
@ = [i(c2 —1"Y2 for0<z<v, (2.21)

and we can rewrite (2.17a)—(2.17d) and (2.19a)-(2.19d)
into the following alternative forms.

Forz>w,
Yo, (2.22a)
Y® = (¢%/8+2) (1 + 6¢ + 5¢*), (2.22b)
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Y = — (c*/128v%) (25 + 556¢* + 2078¢*

+ 2652¢° + 1105¢%), (2.22¢)
Y? = (c5/1024v°) (1073 + 51 122¢2

+ 423 691¢* + 1361 420¢® + 2064 503c®

+ 1490 850¢'® + 414 125¢'2); (2.22d)
w" =v(1/c — arccot ¢) (>0), (2.232)
w¥= — (/YL + 4D, (2.23b)

=(E/V)NE+ B+ B+ HE ), (2.23¢)

wh = — (/") (R + % ¢ + 1y ¢*

+ 44899¢5 82825 ® - 52825 ¢10), (2.23d)

ForO0<z<v,

YW=, (2.24a)
YO = — (c¥/8) (1 — 62 + 5¢%), (2.24b)
Y = — (c*/128v*) (25 — 556¢>

+ 2078¢* — 2652¢° + 1105¢®), (2.24¢)
Y? = — (c%/102445) (1073 — 51 122¢2

+ 423 691¢* — 1361 420¢° + 2064 503¢®

— 1490 850¢' + 414 125¢12); (2.24d)
W = _v(-l-—iln c+ 1) (>0), (2.25a)

c 2 c¢c—1
w? = — (/M —4 ), (2.25b)
W= —(/V)VE -3+ B —HE ), (2.250)
(05/1,5)(3%_8 soo49c + 186821 ol
— 848995 | 385 o8 285 010). (2.25d)

It is easily seen that (2.24a)—(2.24d) and (2.25a)-(2.25d)
are obtained from (2.22a)-(2.22d) and (2.23a)—(2.23d),
respectively, by the replacement of ¢ by — ic. We also note
that, when c is kept fixed, ¥ *"+ " is proportional to v~ 2",
and w®"*+ Y is proportional to v' ~ 2",

Recalling how J, (z) behaves when z is close to zero, we
realize that in the classically forbidden region between the
origin and the turning point v the function (2.2a) is given by
the approximate formula

¥, =1Clg"*(2)|exp] — [w(2)|], O<z<w, (2.26)

where w(z) is given by (1.13) with z = v, 4 is to be put equal
to unity, and C is a not yet determined quantity, which is
independent of z. Since the function ¥, defined by (2.2a) is
positive immediately to the right of z = 0 when v is positive
(which follows from its power series expansion), C is posi-
tive. With the aid of the connection formula (1.16) we get
the following approximate expression for ¥, on the real axis
to the right of the turning point v:

=Clg~"?(2)|cos[|w(z)| — 7/4], z>v. (2.27)
From the facts that the function #,, defined by (2.2a), has
the amplitude (1 — v%/2%) ~!/4 for large positive values of z

[see Eq. (7) on p. 229 in Ref. 10], that v is assumed to be
sufficiently large, and that the constant C is positive, we ob-
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tain the aid of (2.27) with (1.5), (2.18), (2.20), and
(2.22a)-(2.22d) forA =1

C=1. (2.28)

The function #,, defined by (2.2b), has also the ampli-
tude (1 — +2/2z%) ~ /% for large positive values of z but has the
asymptotic phase shifted by — 7/2 from that of ¢,; see Eq.
(7) on p. 229 in Ref. 10. Hence we obtain from (2.27) and
(2.28) the approximate formula

0, =lg7 "2 (2)|cos[|w(z)| — 37/4], z>v. (2.29)
Using the connection formula (1.15), we obtain from (2.29)
the approximate formula

Y= —lg7"?(@)|exp[lw(z)|], O<z<w. (2.30)

Recalling (1.5) and (1.9) with A = 1, and taking the
phases of Q(z) and w'V(z) into account, we obtain from
(2.26), (2.27), (2.28), (2.29), and (2.30) approximate for-
mulas for ¢, and ¢,, which, with the aid of (2.2a) and
(2.2b), yield

J( )_ 2 1/2 N Y(2n+1) —-1/2
@=(%) (Q") 2, )

l) zZ>V,
4 b b

1 2 172 . N Gn+ 1 —1/2
L@ =5 (;) ( —i0@ 3 ¥ )

N
XeXP(— 3 iw""*”(z)), O0<z<v, (2.31b)
n=0

N
Xcos( S w+(z) — (2.31a)
n=0

—1/2

2

¥ 172 N oma 1)
L (2) = (;) (Q(Z) ,,;o Y )

N
Xsin( S w2+ (z) —

n=20
( 2 172 . ( ) N Y(2n+ l)) — 172
- —77'7) <_lQ z nZ_—:O

N
Xexp(Z z'w‘z’”’”(z)), O<z<v,

n=0

—Z—), >V, (2.32a)
Y, (2) =

(2.32b)

The quantities Q(z), Y®**P, and w®**P in (2.31a),
(2.31b), (2.32a), and (2.32b) are given by (2.18), (2.17a)-
(2.17d), and (2.19a)—(2.19d), respectively. Alternative ex-
pressions, in terms of the positive quantity ¢ defined by
(2.20), for Y 2"+ Y and w@® + 1 are (2.22a)-(2.22d) and
(2.23a)~-(2.23d) when z>v and (2.24a)—(2.24d) and
(2.25a)—(2.25d) when 0 <z < v; see also (2.21).

We have thus, by means of the phase-integral approxi-
mation generated from a conveniently chosen base function,
derived approximate formulas for Bessel functions when
their order v and their argument z are both sufficiently large
and of the same order of magnitude. The formulas are, how-
ever, not valid when z lies too close to v.

Recalling that in the present subsection z and v are both
assumed to be sufficiently large, we now introduce the
further assumption that z»v. Assuming that N> 0, we then
expand Q(z) ZY_ Y@+ D and Z¥_,w?" * V(z) in powers
of v/z, keeping in the former function powers up to 2V and in
the latter function powers up to 2N — 1. The formulas one
obtains by inserting these truncated power series expansions
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into (2.31a) and (2.32a) are identical to (2.11) and (2.12),
respectively, with ¥ @"+1 and w®+V(z) given by (2.8)
and by (2.10a) and (2.10b). When z and v are both suffi-
ciently large, and furthermore, z>v, (2.31a) and (2.32a)
should be more accurate than (2.11) and (2.12), and this
expectation is confirmed by numerical tests.

C. The case of fixed argument and sufficiently large
order

In the present subsection we shall assume z (positive) to
be fixed, while v ( >z) is sufficiently large. To account for
this assumption, we replace in the differential equation (2.1)
v by v/A, where A is a “small,” positive parameter, which
will at the end be put equal to unity. Thus we obtain from
(2.1) the differential equation

d*y N ( _ vz

dz* A2
which reduces to (2.1) when A is put equal to unity. Choos-
ing

1
14+ —J¥=0, 2.33
+ +422)¢ (2.33)

Q%z) = —v¥/7* (2.34)

and
R(z) —Q%*z) =1+ 1/(42%) (2.35)

in (1.2), we obtain the differential equation (2.33). When
the functions in (1.2) are given by (2.34) and (2.35) with
v#0, the phase-integral approximation remains valid in the
neighborhood of the origin z =0. Inserting (2.34) and
(2.35) into (1.7), we get €, = — z*/+*. Using this expres-
sion for €,, choosing in agreement with (2.34) the base func-
tion to be

Q(2) =iv/z, (2.36)
and recalling the definition (1.8), we obtain
€, =2*2/(iv)**%  u>0. (2.37)
Inserting (2.37) into (1.6a)—(1.6¢e), we get
YW=, (2.38a)
2
Y= 2 2.38b
2 (2.380)
422 4 24
YO = , 2.38
8v* ( c}

82% 4 222% + 25
B 16+°

64z% + 912z* + 320z° + 528
B 128/ '

Inserting (2.36) and (2.38a)-(2.38¢) into (1.10), where
the integration constant is chosen conveniently (different
for n = 0 and n > 0), we obtain

Y7 = , (2.38d)

YO = (2.38e)

w'=1n(1/2"), (2.39a)
2

w® = —i— , (2.39b)
14

4

o =8 +2 (2.39¢)
324°

) 24z7% 4 332% + 26

= T T E 2.39d)

5677 (
2 4 6
1682 + 54722 1 12802° + 152° (239

3072v7

According to (2.38b)—(2.38¢) and (2.39b)—(2.39¢)
Y@ +Y and w+ Y tend to zero as z tends to zero when
n>0. Recalling (1.11), (2.2a) and (2.2b), and the beha-
viors of J, (z) and Y, (z) for sufficiently small values of z,
and using (2.36) and (2.39a), we therefore obtain (for
N>1) the phase-integral formulas

J (z)-_—__L(1+ i y(2n+1))_l/2
Y 2vr(v+1) n=1

N
xexp( 2 —fw‘2"+"(z)), (2.40a)
n=1
Vv N —_
Y, (@)= - 20 (1+ s Y<2"+'>) v
vz n=1
N
Xexp(z +iw‘2”+”(z)), (2.40b)
n=1

where Y7+ and iw®™*+ 1 (z) are to be obtained from
(2.38b)—(2.38¢) and (2.39b)-(2.3%¢). In writing (2.40a)
and (2.40b) we have assumed that N> 1. The corresponding
formulas for N = 0 are obtained from (2.40a) and (2.40b)
by leaving out the sums over » (>1). The additive part of
Y, (z), which, for integer values of v, has a branch point at
z =0, does not appear in (2.40b), since the corresponding
contribution to Y, (z) is not significant in that approximate
formula.

lll. ASYMPTOTIC FORMULAS OF CONVENTIONAL FORM FOR BESSEL FUNCTIONS

In the present section we shall use (1.12) to rewrite the phase-integral formulas obtained in Sec.II into asymptotic

formulas of conventional form.

A. The case of fixed order and sufficiently large argument

From (2.11) and (2.12) we easily obtain the formulas
N

2\ y -2 v+
J — (2n+ 1) 2n+41) _
-2 (172) [(1+ 2 ) cos(z Y (Z)) cos(z —?l—)

n=1 n=1

(14 % yanen) P L enen
+ ¥ sinf > w (2)

n=1 n=1
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) sin(z — ——2—(V + 1)‘”)]
2 3

3.1)
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Y,(z) = (_2__)1/2[(1 n i Y(2n+1))—1/2 sin(i w(2n+l)(z)) cos(z— (V+§)17'>
(rd

n=1 n=1 2

+(1 + ﬁ,: Y‘z"“’)_mcos(g: w”"‘“”(Z)) sin(z—wz—i)—ﬂ)]. (3.2)

n=1 n=1

Inserting (2.8) and (2.10b) with (2.9a)—(2.9¢c) into (1.12) with A = 1, we obtain for N>2

(1+ i Y(24+1))_1/2ex ( . y (2n+l))
pl £i > w

n=1 n=1

=1ii Frv+144) 1 Twv+2+H _ ¢ T(v+3+41)) 1 T(v+441) o (3.3)
2ZU0(v—1+3) (22220 (v—2+4+1) (22’ 30(v—3+1) (24T (v—4+1)
Using the equations one obtains by taking the real and imaginary parts of (3.3), one can rewrite (3.1) and (3.2) to obtain the
usual asymptotic expansions for J, (z) and Y, (z) for fixed order v and large argument z (see, e.g., p. 199 in Ref. 10):

Jv(z)=(i)m[cos(z—ﬂ—1)(1—F(V+2+1L) 1, Pr+4+p 1 _)
w2 2 4 AT(v—2+1) (22)7  4T(v—4+1) (22)°

_sin(z_"_” 1>(F(V+1+%) 1_Tr+3+h 1 3+...)], (3.4)
2 4)\Irv—1+p 2z 3Tv—3+1) (22)
Y (z)=(i)m[sin(z—ﬁr-—i)(l-— Tv+2+)) 1 + Fv+d+)) | —‘)
v po 2 4 2IT(v_2+1) (22  AT(v—4+)) (22)°
_vr_ w\(Tw+1+1H 1 Tw+3+44 1 )] 5
+°°s(z 2 4)(1!1"(1/—1—}-%) 2 A(v—3+1) 227 | (3)

B. The case when the argument and the order are both sufficiently large (Debye’s asymptotic formulas)

Debye’s asymptotic formulas for the Bessel functions were originally given in Ref. 11 and can be found, for instance, also
on pp. 241-245 in Ref. 10, on p. XXXV in Ref. 12, and on pp. 130-134 and 382 in Ref. 13. It is also worth mentioning that in
1817, i.e., almost a century before Debye,'" Carlini'* (see also Ref. 15) derived an approximate formula that, when expressed
in terms of the Bessel function J,, (§), when § ( < v) is proportional to v, is essentially equivalent to the next lowest order of the
corresponding asymptotic formula derived by Debye'! in a quite different way; see Ref. 16.

A new, alternative derivation of Debye’s asymptotic formulas is achieved by appropriate series expansion of the phase-
integral formulas (2.31a) and (2.31b) and (2.32a) and (2.32b). To demonstrate this alternative way of deriving Debye’s
formula for J, (z) when z > v, we start from (2.31a) and obtain, when N> 1, the approximate formula

2 172 T N — 172 N
J,(2) = (—-) Q" '%(z) [cos(w“’(z) — —) (1 + ¥ yoen+ ”) cos( Y wn l’(z))
7wz 4 ne1 A= 1
T N —1/2 N
— sin(w‘”(z) - T) (1 + 3 y@n+ ”) sin( D wn+ ”(z))], zZ> . (3.6)
n=1 n=1

Inserting (2.22b)—(2.22d) and (2.23b)-(2.23d) into (1.12) with A = 1, we obtain (when 2N + 1>7)

(1+ EN: Y‘z"“’)_mex (+' EN: ‘2"“’)
Pl i w
n=1

n=1
c 1{ ¢ \? ifc)
=1Fi— (345 ——(——) 81 + 462¢? 4 385¢* +—(—) 30 375 4 369 603c* + 765 765¢* + 425 425¢°
Figg, Q3 —5l5,-) B+ +385¢) £ 355 ) ¢ + )

1 (c
+120 24y

4
) (4465 125 + 94 121 676¢* + 349 922 430c* + 446 185 740c® + 185 910 725¢%)

. 5
T __s;o (_c ) (1519 035 525 + 49 286 948 607 + 284 499 769 554¢* + 614 135 872 350¢°

24v
+ 566 098 157 625¢® + 188 699 385 875¢'0)

6
1 (__c_) (2757 049 477 875 + 127 577 298 354 750c* + 1050 760 774 457 901c*
25200 \ 24v

+ 3369 032 068 261 860c® + 5104 696 716 244 125¢°

+ 3685 299 006 138 750c'® + 1023 694 168 371 875¢'?) + - . 3.7

Taking the real and imaginary parts of (3.7), and inserting the resulting two formulas into (3.6), where now 2N 4 1 is
assumed to be >7, and using also (2.20), (2.21), and (2.23a), we obtain
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J.(2) = (L) {[1——(—) (81 + 462¢2 + 385¢*)
wv

L1 ( c )(4465 125 + 94 121 676¢ + 349 922 430c* + 446 185 740¢° + 185 910 725¢%)

120
1 ( ) (2757 049 477 875 + 127 577 298 354 750c* + 1050 760 774 457 901¢* + 3369 032 068 261 860c°

T 25200 \24v.

+ 5104 696 716 244 125¢® + 3685 299 006 138 750¢'° + 1023 694 168 371 875¢'?) + ---]cos[v(l — arccot c) - —Z—
[+
[—— (3 + 5¢%) — —1-( ) (30 375 + 369 603¢2 + 765 765¢* + 425 425¢°)
24v 30 \ 24v

+ ?i? (—) (1519 035 525 + 49 286 948 607¢* + 284 499 769 554c* + 614 135 872 350¢°

+ 566 098 157 625¢® + 188 699 385 875¢'%) + -n]sin[v(% — arccot c) — %”, zZ>v. (3.8)
This formula is equivalent to the formula (39a) with the definitions (38) and (39c) in Ref. 12. Since the asymptotic expansion
of Y, (z) for large positive values of v and z ( > v) differs from that of J, (z) only in the shift of phase by — 7/2 [see Eq. (7) on
p.2291in Ref. 10], one easily obtains from (3.8) an approximate formula for Y, (z) when z > v; this formula is equivalent to the
formula (39b) with the definitions (38) and (39c¢) in Ref. 12. Analogously as we have for z > v obtained (3.8) from (2.31a),
we can for 0 < z < v obtain corresponding approximate formulas for J, (z) from (2.31b) and for Y, (z) from (2.32b); these
formulas are equivalent to the formulas (41a) and (41b), respectively, with the definitions (39c) and (40) in Ref. 12.

The above derivation of Debye’s asymptotic formulas is much simpler than the derivation by means of the method of
steepest descents. In fact, it is a herculean task to obtain further terms in the expansion (3.8) with the method of steepest
descents, whereas the amount of work is reasonable with the above derivation, if a desk calculator is used to obtain the
numerical coefficients.

C. The case of fixed argument of sufficiently large order

Inserting (2.38b) and (2.38c) and (2.39b) and (2.39c¢) into (1.12) with A = 1, we obtain for N2

(1+ % roes) e 1 5 wore)
p{+i Y w
n=1

n=1

22 8224z 96z% 4+ 362 +z°  1536z% + 1344z* + 962° + 28
=14 —+ + =+ - (3.9)
4v 3272 3844° 61444*
Inserting then (3.9) into (2.40a) and (2.40b), we obtain
v 4 2 4 6 2 4 6 38
J.(z) = z (l _ z 4 822 + 2 _962% +362° +2° | 15362% + 13447 j— 96z° + 2 ) , (3.10a)
2T+ 1) 4 3212 3847 6144y
2T(v) ( 2 82242 9622 +36z* +2° 153622 + 1344z* + 962° + 2B )
Y (2) = — 14— — . (3.10b
@ wz¥ 4v * 322 3844° 61444* )

These formulas can also be obtained from the power series
expansion of J, (z) and the corresponding series expansion
of Y, (z), where the additive part of Y, (z), which for integer
values of v, has a branch point at z = 0, is to be deleted, since
it is not significant in the approximate formula (3.10b). Us-
ing Stirling’s formula for evaluating the gamma functions in
(3.10a) and (3.10b), and keeping only the leading term in
each one of these two formulas, we obtain

J,(2) = [1/(2mv)Y?] (ez/2v)>,
Y, (2) = — (2/mv)"/2(2v/ez)".

(3.11a)
(3.11b)

IV. CONCLUSIONS
A great advantage of using the phase-integral method
instead of the method of steepest descents for deriving

2746 J. Math. Phys., Vol. 27, No. 11, November 1986

stmptotic formulas is that the amount of work is much
reduced, so that higher-order terms are obtained compara-
tively easily. Furthermore, one can obtain different kinds of
asymptotic formulas by choosing the base function in differ-
ent ways. For every appropriate choice of the base function,
it is possible to calculate two linearly independent approxi-
mate solutions in a straightforward way and to handle the
connection problems for these approximate solutions effi-
ciently. We have illustrated this in Sec. II for Bessel func-
tions under the assumption that v and z are both positive, but
the treatment can be generalized to complex values of v and
z.

The phase-integral formulas of Sec. IT have certain very
important properties, which sometimes make these formulas
more convenient than the conventional asymptotic formulas
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of Sec. III. For corresponding order of approximation, the
former formulas are much simpler than the latter ones. This
is obviously seen when one compares the formulas in Sec. I1
with the correponding formulas in Sec. III. Furthermore,
the phase-integral formulas of Sec. II have such a form that
the two linearly independent functions ¢, and ¥, defined in
(2.2a) and (2.2b) have a Wronskian that is exactly con-
stant. This is an important property, which the asymptotic
formulas of Sec. III in general do not possess. In fact, apart
from the particular case when v is a half-integer number (3,
3, 3,...), the Wronskian of the functions #; and #, in (2.2a)
and (2.2b) withJ,(z) and Y, (z) givenby (3.4) and (3.5) is
not constant, if the series are truncated in corresponding
ways and higher-order contributions are included. Further-
more, neither Debye’s asymptotic formulas nor the formulas
of Sec. III C have the property of exact constancy of the
Wronskian of the functions ¢, and ¢, in higher orders of
approximation.

It should be pointed out that there are, however, situa-
tions when the phase-integral formulas of Sec. II are less
convenient than the conventional asymptotic formulas of
Sec. III. Assume, for instance, that we have an integral with
a Bessel function in the integrand. Sometimes it may then be
possible to evaluate the integral analytically, if the conven-
tional asymptotic formula for the Bessel function is used,
while this may not be possible if the corresponding phase-
integral formula is used.

One can consider the phase-integral formula as a useful
asymptotic representation of the function in question. When
this representation is advantageous, one uses it directly, but
when the corresponding asymptotic representation of con-
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ventional form is preferable, one goes over to it by using the
expansion (1.12) with 4 = 1, as we have shown in Sec. III.
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Rotation in cosmology: Comments on “Imparting rotation to a Bianchi type |
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The aim of this paper is to clarify confusing notions of the word “rotation” as applied to
cosmological solutions of metric theories of gravity, both in general and in the specific case
addressed by the article in which these confusing notions have recently reappeared.

Flat Minkowski space-time or open submanifolds of it
may be sliced by a family of three-dimensional spacelike or-
bits of three-dimensional subgroups of the Poincaré group of
Bianchi types I II, V, VII,, and VII, ., and thus be made to
appear as a spatially homogeneous Bianchi-type cosmologi-
cal model.! Timelike congruences that are spatially homo-
geneous with respect to any of the non-Abelian groups of this
list (all but type I) are in general rotating congruences: they
have nonzero vorticity. No one would correctly call Min-
kowski space-time a rotating cosmology because of this fact,
yet articles in the literature continue to do exactly this in
similar circumstances.

Rotation in cosmology can refer to one of two distinct
notions that are often related. Either (1) the space-time pos-
sesses an intrinsically defined timelike congruence with non-
zero vorticity,? or (2) a natural slicing exists in terms of
which an orthonormal basis of eigenvectors of the extrinsic
curvature necessarily rotates as one moves along the con-
gruence normal to the slicing.

The first idea is relevant to stationary space-times where
rotation is usually first met in studying relativity; unfortu-
nately intuition about this case is often extended to other
situations where it is no longer appropriate. Nonstatic sta-
tionary space-times possess a Killing vector field that is
timelike on an open submanifold of the space-time and has
nonzero vorticity, i.e., the corresponding one-form is not hy-
persurface forming.? On the other hand, perfect fluid filled
space-times whose fluid velocity vector has nonzero vorti-
city are often justifiably referred to as rotating cosmologies.
In both cases the rotation refers to a component of the mo-
tion along the congruence of the perpendicular projections
of Lie dragged ‘“connecting vectors™ associated with the
congruence relative to a Fermi-propagated triad of ortho-
normal vectors spanning the local rest space relative to that
congruence (a “nonrotating spatial frame”).>* In the fam-
ous Gddel solution,” which originally challenged people’s
ideas about rotation in relativity, the fluid velocity vectoris a
timelike Killing vector field, combining both of these possi-
bilities into a single example.

The second idea is relevant to space-times where a natu-
ral slicing exists, since it refers to quantities defined not by
the space-time but by a slicing of the space-time. A “Kasner
frame®’ could be defined as an orthogonal spatial frame con-
sisting of eigenvectors of the extrinsic curvature relative to a
particular slicing. The orthonormal frame obtained by nor-
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malizing such a frame (a unit Kasner frame) can then be
compared to an orthonormal spatial frame that is Fermi-
propagated along the congruence of unit normals to the slic-
ing. If the unit Kasner frame rotates relative to the nonrotat-
ing spatial frame and is unique (nondegenerate
eigenvalues), the slicing might be called a rotating slicing of
the space-time. When the eigenvalues of the extrinsic curva-
ture are degenerate, one may freeze out the rotational free-
dom in the eigenvectors due to this degeneracy by minimiz-
ing the square of the angular velocity vector, which describes
the rotation. If the rotation is still nonzero, the term rotating
slicing may again be used.

Like rotating congruences, all space-times have such ro-
tating slicings; for this to be significant the rotating slicing
must be intrinsically defined by the space-time. Probably the
best candidate for such a slicing is one for which the trace of
the extrinsic curvature (Tr K), also called the mean extrin-
sic curvature, is constant on each slice.”'* Such a slicing is
referred to as a constant mean curvature slicing or a
“Tr K = const” slicing, and in the case of vanishing mean
curvature, a maximal slicing, and is a choice preferred by the
simplifications that occur both in the initial value problem'’
and in geometric coordinate conditions.'®!” A space-time
with a synchronous spacelike singularity also has a unique
slicing associated with the maximum lifetime function. '

For a nonstatic, stationary, axially symmetric space-
time, an example of which is the Kerr rotating black hole,° a
unique maximal slicing”' exists consisting of the hypersur-
faces orthogonal to the congruence of locally nonrotating
observers.”>>* Some thought shows that this slicing is a ro-
tating slicing, suggesting that the idea of describing rotation
of a space-time by an intrinsically defined slicing rather than
a congruence is not unreasonable.

Spatially homogeneous space-times have a natural con-
stant mean curvature slicing by the family of spacelike orbits
of the homogeneity group. When these space-times have an
initial big bang or final big crunch singularity, this slicing
coincides with the maximum lifetime slicing. It therefore
makes sense to classify spatially homogeneous space-times
as rotating or nonrotating according to the second sense us-
ing the natural slicing. Such a space-time is rotating in this
sense if one cannot diagonalize (for all time) the matrix of
components of the spatial metric with respect to an invariant
spatial frame that is comoving with the normal vector field
to the natural slicing. This means that in orthogonal spatial
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gauge (zero shift vector field), the invariant spatial frame
cannot remain an orthogonal frame if it is chosen so initially.
If it does, the space-time is nonrotating, a term which is
therefore synonymous with “diagonalizable” as used in the
literature.?

All Bianchi types including Bianchi type I can be rotat-
ing in this sense provided the source is general enough. For
example, an electromagnetic Bianchi type I space-time will
be rotating as long as the electric and magnetic field densities
are not eigenvectors of the extrinsic curvature. As one might
expect, all of the spatially homogeneous slicings of Minkow-
ski space-time are nonrotating.

For a spatially homogeneous perfect fluid space-time
both notions of rotation are relevant but not synonymous. If
the fluid has nonzero vorticity, the natural slicing is neces-
sarily rotating, but the converse is not true. For certain sym-
metry types the slicing may be rotating without the fluid
having nonzero vorticity. This is true of the class B “sym-
metric case” models, which rotate in the Kasner frame sense
even in vacuum but which do not admit a rotating fluid
source.

In the case of Bianchi type II space-times, a general ho-
mogeneous perfect fluid has nonzero vorticity before one
imposes the Einstein equations. If no other source is present
with nonzero supermomentum, the degeneracy of the gravi-
tational supermomentum components that occurs for Bian-
chi type II, requires the single component of the fluid veloc-
ity vector which is responsible for the vorticity to vanish. If
one includes a general spatially homogeneous electromag-
netic field as a source, one can have general values of the
individual supermomenta of the fluid and the electromag-
netic field while still satisfying the supermomentum con-
straints and thus have a rotating fluid. Bianchi type I is the
only symmetry type that cannot support a rotating fluid un-
der any conditions.

The form of the metric presented by Rebougas and d’O-
lival is a locally rotationally symmetric (LRS) Bianchi type
II metric with an LRS electromagnetic field. This is a mem-
ber of a continuous family of exact nonrotating LRS Ein-
stein—Maxwell solutions of Bianchi types I, I1, VIII, and IX
known as the Brill solution.?* The type VIII solution follows
from the type IX solution by the Weyl unitary trick, which
relates these two semisimple groups, while the type I and 11
solutions are obtained by Lie algebra contraction of the
semisimple case. All of these may be obtained from Taub’s
original vacuum solutions*?® by a “variation of param-
eters” trick discussed for the semisimple case by Jantzen.*’
One may easily write the structure constant tensor param-
eters back into the equations of that discussion and thus ex-
tend them to the type I and II cases.

By introducing the new spatial coordinate
X=x—fC7?4dt and defining @'=dx +ydz, the
Rebougas—d’Olival metric takes the usual orthogonal gauge
form

_ds2 — _NZ dt2 + C2(51)2 +B2((w2)2 + (m3)2) ,
N=B"C", (mn)=(1,-1),
which is explicitly diagonal, where {@",0* &} are time inde-

pendent one-forms in the new spatial coordinates having the
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same exterior derivative relations as the original one-forms.
As originally noticed by Bonanos,”® different choices of
(m,n) lead to different decouplings of the various equations
determining B and C. The choices (m,n) = (2,1), (2, — 1),
and (0, — 1) were made, respectively, by Taub,? Brill,**
and Misner? for the type IX case. For the choicen = — 1,
the vacuum zero cosmological constant equation

0=500+E33=%(§00_1—z33) ,
which is also valid for an LRS electromagnetic source and
nonzero cosmological constant, decouples and provides a
second-order equation for B alone which simplifies for
m = 1, where the solution is B = (23) ~! cosh B¢, neglect-
ing an integration constant associated with the origin of the
time variable. (This equation is identical in the Bianchi type
VIII and IX cases.) The vacuum zero cosmological constant
equation

0=R',+R3,,
also valid for an LRS electromagnetic source, then provides
an easily integrated equation for the natural variable C (not
the unnatural variable 4) which has the solution
C = y sech f¢. (This changes for the semisimple case.) The
super-Hamiltonian constraint then relates the two param-
eters 8 and ¥ to the single conserved quantity determining
the LRS electromagnetic energy-momentum tensor exactly
as in the case (m,n) = (0, — 1) used by Misner. The same
“‘variation of parameters” enables one to insert a stiff perfect
fluid as well.

The initial Rebougas—d’Olival ansatz

—ds’= — (dt + 40")* + B*((0")’ + (0*)* + (”)?)
= —~B¥B*—A*)"'dt*+ (B*—4?)?
X (@' — C 724 dt)’ + B (&) + (0°)?)
=—N?dt?*+g,(0°+ N°dt) (w® + Ndt)

is motivated by the stationary case for which — (dt + Aw")
is the covariant form of a Killing vector with nonzero vorti-
city and is not particularly relevant to rotation in the nonsta-
tionary case. It manifestly expresses the metric in an obvious
orthonormal frame, which is tilted with respect to the slicing
and expressed in coordinates that are comoving with respect
to the timelike member of the frame. The above coordinate
transformation to orthogonal gauge coordinates represents a
translation of the group manifold that eliminates the non-
zero shift vector field while leaving the restrictions of the
spatial one-forms to the slicing unchanged.

The above ansatz is a special case of a slightly more
general ansatz introduced for the same LRS family of type I,
I, VIII, and IX space-times by Bradley and Sviestens®® for
the purpose of studying rotating imperfect fluids where one
no longer has deterministic field equations. This form of the
metric

—ds*= — (dt+ Aw")? + B*(0")?
+D*(0*)* + (&)Y,
do®*=nP9®’Nw, n?=n?,

where (a,b,c¢) is a cyclic permutation of (1,2,3) and n‘® are
constants, may easily be reexpressed in lapse/shift form with
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C?=B?—-4%
—ds*= —B?C%dt*4+ C¥w'—C 24 d?
+ D}{(0*)? + (2)?),
= —B*C~%dt> 4+ CX@")? + DY (@*)?* + (@*)?).
The new one-forms @°, defined by
S=¢", §=N'=—C~24, N>’=N>=0,
k,= —n%e, 4+ n¥%?,, @°=S "' (0" +N"dp),

where e’, is the matrix with whose only nonzero entry is a
one in the ath row and b th column, satisfy the same exterior
differential relations as the original one-forms and corre-
spond to a new spatial frame which is comoving with the
normal vector field to the homogeneous slicing. This shows
the ansatz to be entirely equivalent to the usual orthogonal
gauge form of the metric for this family of space-times.

The velocity vector u for a perfect fluid must coincide
with the normal vector field for this class of space-times. By
choosing u to be d /dt in the original coordinate system (a
vector field that is tilted with respect to the normal as long as
A is nonzero), one cannot satisfy the perfect fluid Einstein
equations. However, one can impose a single condition on
the Einstein tensor of this metric to be able to define an iso-
tropic pressure and let the other independent components of
the Einstein tensor determine a heat flow vector field. The
original frame and coordinates then comove with the fluid
velocity vector of this imperfect fluid, which has nonzero
vorticity as long as An®#0. This procedure is entirely ad
hoc and done only to investigate rotating fluids. One should
not forget that these are more appropriately described as
“nonsolutions” than as “solutions” of the Einstein equations
in the usual sense in which the word “solution” is used.

This ansatz was misunderstood by Grén® who integrat-
ed the Bradley—Sviestens equations in the vacuum type IX
case with a positive cosmological constant to obtain an exact
solution already found by Brill and Flaherty® for the Misner
choice of time corresponding to (m,n) = (0, — 1). (The
same solution with a ‘“‘variation of parameters” allows an
electromagnetic source and extends to the other Bianchi
types of the Brill family. The general vacuum type IX case
with cosmological constant was studied qualitatively by Sir-
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ousse-Zia.*') Then using the imperfect fluid vorticity for-
mula, Grén claims the solution is rotating when in fact itis a
vacuum solution which is nonrotating in every sense.
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The general spherically symmetric dyonic solutions of vacuum Einstein equations compatible
with a K-dimensional toroidal fiber structure in 4 + K dimensions are found. Solutions with no
electric and/or magnetic charges can be obtained by suitable limiting procedures.

I. INTRODUCTION

In Kaluza-Klein theories,' we try to unify the gravita-
tional interaction and the gauge interactions by considering
only the gravitational interaction but in a higher-dimension-
al manifold. This manifold is assumed to have the structure
of a fiber bundle with a four-dimensional base manifold and
a compact homogeneous fiber. Furthermore, the metric is
assumed to have a special form compatible with the bundle
structure and, when restricted to the fiber, to be invariant
under the “internal” group G that acts on the fiber. The
question then arises as to why nature chose such a (pseudo)
Riemannian manifold rather than, say, a flat higher-dimen-
sional Minkowski space. In particular, if one assumes that
the Lagrangian governing the higher-dimensional gravity is
the Einstein—Hilbert Lagrangian generalized to higher di-
mensions, as the geometrical arguments would suggest, then
it is natural to ask if there are any stationary points of the
Lagrangian that display the characteristics of our ansatz.
Moreover, those stationary points that cannot be continu-
ously deformed to the trivial one, the higher-dimensional
Minkowski space, are of particular interest. The monopole
solution of the vacuum Einstein equation discovered by Sor-
kin? and by Gross—Perry® is such an example in five dimen-
sions. This solution has the special property of being regular
everywhere. In five dimensions, the internal group G is nec-
essarily Abelian.

In this work, we shall investigate the general spherically
symmetric dyonic solutions of vacuum Einstein equations
under the Kaluza-Klein (KK) ansatz with an Abelian Lie
group G. This may not be of direct physical relevance, how-
ever, it is one of the simplest cases where one may analyze the
predictions of classical KK theories in an analytical way.
Moreover, in other works,*® we have pointed out the rela-
tions of such systems to the nonlinear sigma models in two
dimensions, which have received a lot of interest for other
reasons.

In a previous work,” we found a Lax form for the field
equations we are considering. A method of integrating these
equations was outlined later.® Using the results of these
works, we can express a general solution of our system in
terms of parameters that satisfy nonlinear constraint equa-
tions. The purpose of this work is to fill in the details and to
solve the nonlinear constraint equations. The investigation
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of the various properties of the explicit solutions will be car-
ried out in future works.

In the next section, we review very briefly the previous
work’ following largely the same notation. In Sec. ITI, we
show how to integrate the field equations and write out the
explicit solutions in terms of constrained parameters. The
constraint equations are solved in Sec. IV. The general solu-
tions can then be expressed explicitly in terms of indepen-
dent parameters. A brief discussion is given in the final sec-
tion.

. FIELD EQUATIONS

The metric of the (4 + K)-dimensional manifold is as-
sumed to have the following form:

=g, (x)dx*edx" + &, (x)0°8 0", (1)
where
0°=dy" + 4,(x)dx", a=1,.,K, (2)
and
8., (x)dx* dx” = — exp(2¥(r))dt>
+ exp(2A(r))dr* + P dQ?, (3)
Ffy =g"sin(0), F° =p°(r), Fj, =0, otherwise,
(4)
D, (x) = (exp2y (PP a, ¥(r) =Tryx(r). &)

The field equations are given by the vanishing of the Ricci
tensor. The equation R,,, = 0 can be integrated once to give

@, P exp(¥ + 7 +A) =c,, (6)
where the ¢, are the integration constants. The vanishing of

Rab’E:v an and E@g gives
g; [P exp(¥ + F — A)(P79,D)%, ]

1 2, ~
= &%, exp(¥ +} + A) — e, exp(¥ + A — D)),

(7
2 (P exp(¥ + § — W) === c*c, exp(¥ + £ — A),
dr 27
(8)
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i(r exp(V + vy — A))
dr

=exp(¥ + 1+ A) —?lﬂ—g"ga exp(¥ + ¥ + A),

&)
X” __fl(\lll_‘_Al) +%Tr(¢)—la'q))2___l (\Pr +AI),
r
(10)
where f' = df /dr,
ga = q>ab gb’ ca = <I)abgb9 (Dac¢cb = 5ab’ (11)

and summation for repeated indices is implied.
Let us change variables from 7 to z defined by the equa-
tion
dz 1 N
—=—exp(A -V —%). (12)
ar r P x
Combining Eqs. (8) and (9) and the trace of Eq. (7), we
find

2
L (W +Inn) =P exp(2¥ +2D), (13)
which can be integrated to give
r* exp(2¥ + 2¢) = (k /sinh kz)?, (14)

where k is the integration constant. This equation gives the
relation between » and z once ¥ and j are known. Our solu-
tion will express ¥, ¥, and ¢ as functions of z. A and p° then
follow from Eqgs. (12) and (6), respectively. We find
exp( — 2A) = (sinh k2/k)?[W¥ + ¥ + k coth kz]>.
Introducing the vielbein e, ™ for ® so that
<I>ab =ée, meb m’

(15)

we find that Egs. (7)-(9) can be written as a single matrix
equation®
B4 [LB] =0, (16)
where B and L are (K + 2) X (K + 2) matrices given as
B=3[G7'G+(G'®)7], (17)
L=3[G'G-(G'T]. (18)
The matrix G is an extension of the vielbein e and is defined
by
Goo = exp(¥), Gom = i(YTe)m,
Goxr1 =wexp(— (¥ + 7)),
Goo=0, G,,=€,", G, =IX, exp(— (¥ + 7))
Gei10=0, Gii1m =0,
Gxi1x+1 =exp(— (¥ + 1)), (19)
where X, Y are column vectors and w is a scalar defined by
X =dgexp2(¥V + 7)), Y=>0 'cexp(2¥),
w= —XTY= —g" ®Yexp2(¥ + })). (20)

Note the use of matrix notations for ®,, g° and c,. It fol-
lows from Eq. (5) that det ® = exp(2¥) so that

1<m, a<k,

detG=1. (21
From this and Eq. (17), we find that

Tr B =0. (22)
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We still have to check that Eq. (10) is satisfied. One can
show that it is equivalent to the equation

Tr B> =2k2 (23)
Since Tr B" are constants of motion, as follows from Eq.
(16), Eq. (10) merely relates k 2 to other integration con-

stants. Let the initial value of B be B,,. Since B, is symmetric
we can write

B,=KHK,", KKI=1 K,=1IK,I, (24)
where H and I are diagonal,

Hy = —tw,, Ino=L per=—1

I, =1, otherwise, 25)

where K, is the complex conjugate of K, The condition on
K, is necessary to guarantee that the real and imaginary ele-
ments of B, appear in the proper places. Equations (22) and
(23) become, respectively,

Sw, =0, Y w,>=8k>

In the following section, we shall indicate how to inte-
grate Eqgs. (16)—(18).

lil. INTEGRATING FIELD EQUATIONS

The integration of the field equations is based on a
theorem known in the mathematical literature in a more
general context.” For simplicity, we shall choose a gauge so
that the vielbein e is upper triangular. Then G is also upper
triangular. The theorem states that if

K, exp(zH) = S(z)K(z2), Q27

where S is upper triangular and K (z) satisfies the same con-
straints as K, i.e.,

(26)

KKT=1, K=IKI, (28)
then

B(z) =K(z2)HK(2)7, (29)

G(z) = GS(2), (30)

where G|, is the initial value of G if the initial value of S, S, is
chosen to be identity.

The proof of this theorem is quite simple and can be
found in Ref. 8.

This theorem reduces the integration of the field equa-
tions to the problem of matrix decomposition. The required
decomposition was carried out in the previous work.® It was
also pointed out there that to find “‘gauge invariant™ quanti-
ties, i.e., those independent of the choice of the extended
vielbein G, such as the metric components ®,,, there is no
need to do the matrix decomposition. Indeed, from Eqgs.
(27) and (30), we find

GGT=Uexp(2zH)U 7, (31)
where

U= G\, (32)
It is also convenient to introduce the matrix

V = Uexp(zH). (33)

We shall denote the rows of U,V by U,,V,, respectively,
and consider them as (K + 2)-dimensional vectors.
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From the definitions of G in Eqs. (19) and (20) and
using Eq. (31), we can express the metric components in
terms of V as follows:

exp(—2(¥ + )= |V 1 % (34)
@, =T/a '?b’ (35)
exp(2¥) = |v|?, (36)
iXaz(Va'VK+1)/|VK+1,2’ (37)
i@y, =V, -7, (38)
w= Vo Ve 1)/ Viir]s (39)
where a,b = 1,....K and
V,=V, =X, Vg, (40)
Vo=Vo—wVg, 1, (41)
v="V,—i f: YV,. (42)

a=1
Similarly, if we take the inverse on both sides of Eq. (31),
and define
V=(VN~l, U*=(U"H"}, (43)

then we can obtain alternate formulas to those presented in
Eqgs. (34)—(36). In particular, we have

exp( —2¥) = |V'*,)3, (44)

(P, =V*. 7, (45)

—iY, = (VE-V2)/|VE? (46)
where

Ve=V*4+iy, VL (47)

Let us observe that X, ¥, and w are auxiliary variables
that depend on the metric components through their defini-
tions in Eq. (20). This has two consequences. First, Eq. (20)
will give constraints among the initial data U. Next, since
Eq. (20) involves only the first derivatives of X, ¥, and w, the
metric components will not depend on their initial values.
This is also obvious from Egs. (35) and (36). We shall refer
to this as gauge degrees of freedom. More explicitly, the met-
ric components are invariant under the following gauge
transformations:

U, U, +ik,Uc,;n a=1,..kK,

K
UpsUs+i 3 k"U, — (k")<+ Uy, |,

a=1

(48)
(49)

where k ¢, k ’°, are arbitrary constant vectors of dimensions
K and X + 1, respectively.

The constraints following from Eq. (20) are the follow-
ing:

K
Iy &V + (W, —a)Vg, 1, =0, a=1..K, (50)
a=1
K+1 -
ic, o+ ¥ w,(V,)n0, =0, a=1..K, (51)
n=0

where a is a constant parameter.

These constraints need only be satisfied at z = 0. Equa-
tions of motion will guarantee that they be satisfied at any z.
This is also obvious from the explicit solutions (34)-(39).
Finally, we have, following from Egs. (21) and (32),
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(det U)>=1. (52)

In the following section, we shall show how to solve the
constraint Egs. (50)-(52) on the initial data U.

IV. SOLVING CONSTRAINTS ON INITIAL DATA

Let us begin with Eqs. (51). This equation can be writ-
ten as

—ic, =V, - v/|v]?
= Det( Vd’l’Vl""’ VK +1 )/Det(v, Vl""’ VK+ 1 )

= Det(U,,U,,...,Ux_ 1)/Det(UyU,,...,.Ug 1),
(33)

Whelf V. is the (K + 2)-vector with the components
w,(V,), and U/ is the (K + 2)-vector with the compo-
nents w, U,,. In the arguments of “Det,” we have written
out the rows of the determinant. To obtain the second equa-
lity, we used the fact that v is orthogonal to V,...,F, ,. To
obtain the last equality, we used Eq. (50), and factored out
the z dependence. It follows from Eq. (53) that we can write

K
z YabUbn + iﬂa UK+ 1,n ica UOn =w, Uan’

b=1

a=1,.,K,
(54)

where 7, and S, are constants.
Equations (50) and (54) can now be combined into a
single matrix equation

(w, — U, = —iUp,G n=0,..K+1, (55)
where 7 is the (K + 1) X (K + 1) matrix

—_ (7" B

7=( & a) (56)
and U’,, ¢ are (K + 1)-vectors with the components

(U')e=U,,, (U, dks1 = iUg ., L 4= 1,...K,

(57)

(©)a=¢s (g1 =0, (58)

respectively.

It is convenient to write

K+1
UOn = lf;l det(wn - ?_/) = lf;l Z wnK+ ! —mam (77)’
m=0
(59)
where the last equality defines a,,, (7).
Using the Hamilton—Caley equation,’® ie., if
P(A) =det(A — 7), then P(¥) = 0, we can compute the in-
verse of w, — 7 to get

K

(det(w, —M)w, -7 '= ¥ w,"""R,, (60)
m=0
where R,, are the (K + 1) X (K + 1) matrices
R,=Y a,(y" " (61)
n=0

Defining the (K + 1)-vectors #,, by
u,(¥€)=R, (62)

and using Eqgs. (55), (59) we obtain
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K
U =f Y w5 ") a=1..K, (63)
m=0
K
Uk i = —ify z w, X", kst (64)
m=20
Note that the matrix U can be decomposed as
U=I"2.T-A.-W.F-17'72, (65)
where I'/2 and F are diagonal matrices
(11/2)00=i’ (11/2)K+1,K+1 — -—i, (Illz)aa — 1’
Foo = ifor Fxirki1 = —'l.'fK+1’
F,.=f, a=1..K; (66)
T is the matrix
Tw=1 T, =T, =0,
T,=0"%, ab=1,.K+1, (67)
and A4 is upper triangular, and is given by
Ay =a®), j=0,..K+1 (68)
Finally, W is the matrix
W= W) ', det W= A(wg,...wx 1) (69)
It is now trivial to find the determinant of U, we get
K+ 1 _
det U= ( II f,,) A(wg,...,wx , )det T. (70)
n=0
The constraint equation (51) can be solved by
K+1
(F,,)?=bh,(—1)" ] ' (w, —w,,)"},
m=0
n=01,..K+1, (71)
K+1
H h,=1, h,>0 fwy>w,> """ >wg,,, (72)
n=0
where the superscript “’'” in Eq. (71) means the term
m = n is to be omitted and the constant b is given by
bX+2 = (detTTH™! (73)
and is a function of 7,¢ only.
Computing V¥V 7, we find
VPV =€, 85 /A, ;=TI (74)

where A, is the determinant obtained from A (wy,...,wx , ;)
by replacing the first row of

w, X T '—bh, I, P;(w,)exp( — w,z); (75)
P; is the polynomial
2K+2
Py(w,) = Z w,*+*""q,, (76)
n=0
with
a5, = S (TA), (T4, _,,
y=n
r,=max(0p — K —1), r,=min(n,K+1). (77)

Similarly, we can compute V' *¥V *” to get
(VAVAT), = e* A%, /A, e*, = (1—1/2)i,.(1—1/2()71,§)

where again A*; is obtained from A by the replacement of its
first row
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w, X+ '—b " o U,..P}exp(w,2); (79)
P} is now given by
K+1 __ —
Pr= 3 (T*4*),(T*4%),a,(D,)a,(D,), (80)
rs=0

where D,, is the (K + 1) X (K + 1) diagonal matrix ob-
tained from the diagonal matrix D, D,, = w,, by deleting
the mth row and column. The matrices T'*,4 * are defined
similarly to ¥ *,U *. Note that we have, from Eq. (26),

a,(D,) =w,, aD,)= —4k*+w,> (81)

In general, a,(D,,) can be written as a polynomial in w,,
with coefficients depending only on Tr D ™.

The components of the metric tensor then follow from
Egs. (34), (35), (44), and (45). We have

exp(—2(¥+ 1)) = — B x4 1/4, (82)
exp( —2¥) = — A% /A, (83)

P, = (Aa,K+1Ab,K+1 - AabAK+1,K+1)/(AAK+1,K+1)»
(84)

(q)—l)ab = (A‘O,a A*O.b - A*abA*O,O)' (85)

The remaining components exp( — 2A) follow from Eq.
(15) and the electric fields p®(r) follows from Eq. (6).

We have expressed the general solution of the field equa-
tions in terms of 7, ¢,, w,, and A,,, which are related to the
initial conditions. Here w, and A, satisfy constraints that are
trivial to solve. There are, however, still redundant param-
eters due to the gauge degrees of freedom as expressed in
Eqgs. (48) and (49). Substituting these equations in Eq.
(55), we find that the gauge transformations are equivalent
to the following transformations on ¥:

_ 1, —k)_(l, k) T

1’—>(0, AT +c(k’)’,
where the vectors k¢, (k') are gauge parameters that ap-
pear in Eqgs. (48) and (49).

Let ¢* be an arbitrary K-vector that may depend only on

c,, & and is such that (¢*)7c = 0. Then one can choose a
gauge such that

(86)

K
B.=0, a=0, = g (87)
a=1
In this gauge, it is easy to see that
det T =a, () (c*T : ¢)Det(c,yc,....y~ " 'c), (88)
ag . (PN =0, a,¥)=a,(y), n=01,.K. (89)

Since the gauge constraints [ Eqs. (87)] are linear, it is easy
to solve explicitly. However, as in the case of w,,A,, we may
leave it here to preserve the symmetric appearance in the
indices.

Equations (82)—(85) represent our principal results.
An application of these formulas to the six-dimensional case
to obtain an explicit expression for all dyonic solutions can
be found in Ref. 11.

V. CONCLUDING REMARKS

By adding 2K + 1 auxiliary variables, namely X, ¥, and
w, we have shown that the system of field equations for
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(4 + K)-dimensional KK dyons is equivalent to a Toda
type system® based on the symmetric space SL(X + 2,R)/
SO(K,2). (Although pure imaginary quantities seem to ap-
pear in our formulas, they can all be removed by conjugation
with 7 /2.) In five dimensions (X = 1), it is well known that
the group SO(1,2) appears'? and SO(K,2) appears to be the
proper generalization to higher dimensions.

The fact that we have to add auxiliary variables means
that the true physical system is a reduction of the corre-
sponding Toda system. This reduction is carried out by alge-
braic manipulations in this work. A more geometrical ap-
proach will bring the symmetric aspects forward and may
help in global analysis of the solutions.

Our initial motivation is to look for regular dyonic solu-
tions in higher dimensions. We have succeeded in obtaining
an expression for the general solutions. The analysis of regu-
larity, even around the origin, by examining the curvature
scalars is quite tedious. We hope to reformulate the problem
of regularity in the language of Toda flows and see if a more
powerful method can be applied. This is still under investiga-
tion.
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Starting from the plane-wave metric, solutions to the Einstein field equations coupled to a
Weyl neutrino field and to a Yang-Muills field are found. These solutions can be superposed to
yield a solution with both sources if the direct interaction between them is neglected. A
solution to the coupled Einstein—Yang-Mills—Weyl equations that represents a multiplet of
neutrino fields interacting with the gauge field and the gravitational field is also found. All

these solutions contain arbitrary functions.

I. INTRODUCTION

In a previous paper,’ some type D solutions to the Ein-
stein field equations coupled to different sources were given
which, in the gauge employed there, where the metric has a
Kerr-Schild form, can be superposed in the sense that, neg-
lecting any interaction between the matter fields, the form of
the solution found for each of the matter fields in interaction
with the space-time metric is unaltered by the presence of the
other sources, while the structural function contained in the
metric is the sum of the expressions corresponding to each
source separately. Thus, in those cases, the indirect interac-
tion between the matter fields via the space-time metric does
not change the form of the solutions as expressed in the basis
used.

In the present paper a similar result is given starting
from the plane-wave metric, which is a type N metric of the
Kerr-Schild form, with a Weyl neutrino field and a Yang-
Mills field as sources. We also give a solution of the coupled
Einstein—Yang—Mills-Weyl equations, which represents a
multiplet of Weyl neutrino fields interacting with the gauge
field. The limiting case where the gauge field is absent and
there is only one neutrino field corresponds to a solution
previously found by Audretsch and Graf,? while when the
Weyl neutrino fields are absent, the solutionisa non-Abelian
generalization (for an arbitrary gauge group) of the plane-
wave solution of the Einstein—-Maxwell equations found by
Robinson.? In the flat-space limit, this second limiting case
corresponds to the non-Abelian plane wave found by Cole-
man.* We find that the gravitational field produced by a
plane wave (Abelian or non-Abelian) can also be produced
by a neutrino plane wave.

The formalism used in this paper is mostly the null tet-
rad formalism as presented in Ref. 5. We also make use of the
spinor formalism; the necessary information concerning its
connection with the null tetrad formalism is summarized
here (see also Ref. 1).

1. INTEGRATION OF THE FIELD EQUATIONS

We shall assume that the metric of the space-time has
the Kerr-Schild form

g&=2d5dE +2dudy +2h(k, dx*)?, (1a)
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where » and v are real coordinates, ¢ is a complex coordinate,
and £ denotes its complex conjugate, with the choice

k, dx* =du
and

h=h(Cu) .

Writing g = g, e°¢® = 2e'e? 4+ 2¢’¢*, with
el=df, e=df, é=du, =dv+hdu, 2
one finds that the tangent null tetrad d,, defined by
e*(d,) =83, 18

8,=06,, 0,=6;, 9,=4,—hd,,

(1b)

(1c)

a
d,=8,=k*— (3)
! A+
and that the independent connection one-forms, which sa-
tisfy de® = ¢® AT, are given by

F42 = 0 = Fl2 + I‘34 y F31 = (alh)e3 . (4)

Therefore, the curves defined by (£,€,u) = const, which
have d, as tangents, form a nonexpanding and nontwisting
shear-free congruence of null geodesics.

With respect to this tetrad, the nonvanishing indepen-
dent components of the curvature are Ry,5, = — 8, d,hand
R,5, = — 3, 8,h. Hence if CV=2R,,;, is different from
zero the metricis of type N and d, defines a quadruple princi-
pal null direction of the conformal curvature. The only non-
vanishing component of the Ricci tensor R, = R°,,, is
then given by

R33=2ag afh, (5)
therefore,
R, =ok,k,, (6)

where o is a real-valued function. The metric (1) admits the
Killing vector field d,, which is covariantly constant.

We now solve the field equations for the gravitational
field represented by (1) coupled to a Weyl neutrino field and
to a gauge field separately.

A. Weyl neutrino field

The Weyl neutrino equation—V~2¥, = 0 in spinor no-
tation—can be written explicitly in terms of a null tetrad g,
as
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(05 — Dyz1 + 3(T 124 + T30))¥,

— (01 — §(Fipy + Tsqy) + T300)¥, =0,
(@2 + Cazs + 3T 15p + T342))¥,

+ (03 = §(Fyps + Tag3) — Tapp)¥, =0,

where I',. =T, (4. ) and ¥, denotes the components of
the neutrino field. The energy-momentum tensor is

T,, = (i#/8) [g. 4B (V;V, ¥, — ¥, V,¥;)
+8 P (¥V, Y, — ¥,V 9], (8)

where W, = ¥, g, =g, = —g;2=g,'' =2, and all
other g,*? are equal to zero. The covariant derivatives of ¥ ,
are obtained from

VY, =3,¥, —a®,(3,)¥,

o)

with
o' = -0’ = T+ Thy, 0, =T;, 0’ = —Ty,,
and
VW, =3,%, —0®,(3,)¥;,
where

CDBA = b” A°
In order to satisfy the Einstein field equations

R,, —\Rg,, = — 8T, , )]

with R, given in (6), we impose the condition ¥, =0,
which implies, using (4) and (8),that T,, =T,, = T,,=0.
Then from Eqgs. (4) and (7) it follows that
3,¥, = d,¥, =0, which implies that ¥, = ¥,({,u), and
from T,, =0 we get ¥, = V,(u). Now, expressing ¥, as
V¥, = Re®, with R and 6 being real-valued functions of u,
from Egs. (5), (8), and (9) we find that

~do

h= — 2IrAR T2

+f(Eu) +F(Eu), (10)

where fis an arbitrary function. When 8 = const, with R #0,
Y, is a ghost field and the space-time corresponds to the
general plane fronted gravitational wave.®

The neutrino field given by ¥, = 0, ¥, = ¥, (u) has an
energy-momentum tensor of the form T, = pk, k,, with
k,, being proportional to its flux vector, which is analogous
to that of an electromagnetic plane wave, but, in contrast
with the electromagnetic case where p > 0, for the neutrino
field p can be positive, negative, or zero, depending on the
value of d6 /du. This solution, together with the metric (1)
and (10), was obtained previously in Ref. 2; in the flat space-
time, corresponding to 4 = 0, it represents a plane wave.

B. Yang-Mills field

A gauge (Yang-Mills) field is described locally by a
matrix-valued one-form, 4 = A4, dx*, which can be re-
garded as defining a connection on a principal fiber bundle
with a certain structure group G. The field strength
F=1F,, dx" Adx" that corresponds to the curvature of the
connection defined by 4, is given by

F=dd+}[44], (11)
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with the definition [4,4] = [4,,.4, ]dx* Adx". The Yang—
Mills equations are

d*F + [AXF) =4n%, (12)

where *F denotes the (Hodge) dual of the two-form F,
[A4, dx*, §*F,, dx*Ndx"] = [A,,, }*F,, 1dx* Adx* Adx®,
is a matrix-valued one-form and *j denotes its dual. The cur-
rent one-form is constructed out of the matter field interact-
ing with the gauge field. If the gauge group G consists of
unitary matrices, then A, F, and j are skew-Hermitian.

The energy-momentum tensor of the Yang—Mills field is

417-Tab = _tr(Fachc_tidFCdgab) ’ (13)

where tr denotes the trace. In order to have all T, = 0 ex-
cept for T, as required by (5) and (9), F;; and F;, must be
the only nonvanishing independent components of the field
strength; then

47TT33 = - 2 tr(F31F32) . (14)

We shall assume that A, is the only nonvanishing component
of A (in some specific gauge), then 4 =A,du, and
F = dA; \du. From the condition F,; = O it follows that 4,
must be a function of , ¢, and £ only.

Defining the components of *F by *F,, = (i/2)
X Eapea F?, With €55, = 1, we get

= — ialA3el /\63 + i32A3e2/\63;
therefore

d*F + [A,*F] =20, dz4,¢' Ne* Né? (15)
[cf. Eq. (5)]. In the sourceless case (j = 0) from Eqgs. (12)
and (15) it follows that 4, = y({,u) + 6(§,u), where y and
d are arbitrary matrix-valued functions. If the elements of G
are unitary matrices, then 4 must be skew-Hermitian and,

therefore, § = — y', where y' is the Hermitian adjoint of 7.
The Einstein field equations (9) with (5) and (14) give

h= =2tryyt + £ (Gu) + 1 (Su),
where f'is an arbitrary function.

The particular solution y({,u) = c(u){ represents, in
the flat space-time corresponding to # =0, a non-Abelian
plane wave.* The gravitational field corresponding to this
wave, according to (16) is determined by

h= —2(trecHEE+f(&u) +F(Eu), (17)

which is similar to the expression given by Eq. (10). Thus,
when d@ /du > 0, the gravitational field given by Eq. (10)
can be considered as produced by a neutrino field or by a
plane wave, Abelian or non-Abelian. An analogous dual in-
terpretation for the source of a gravitational field has been
found in Ref. 1.

(16)

lil. SOLUTION OF THE EINSTEIN-YANG-MILLS-WEYL
EQUATIONS

It is easy to see that, expressed with respect to the tetrad
(2) and (3), the fields

A=[y(&u) +8(u)ldu,
¥V, =0, ¥,=R(u)expif(u),
with
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h =2 tr(y8) — 22mhR 2;?%5— +f(&u) +f(Ew),

satisfy the Einstein—Yang-Mills—Weyl equations provided
that any interaction between the Yang-Mills field and the
Weyl field be neglected. This means that the perturbation of
the space-time geometry produced by each of these matter
fields does not change the expression of the other. This result
is similar to that given in Ref. 1.

In the present case we can also take into account the
interaction between the Yang-Mills field and a multiplet of
Weyl neutrino fields. Labeling with Latin indices, i, j,..., the
components with respect to a basis of the “internal space,” a
multiplet of Weyl fields has components W, that, interact-
ing with a gauge field 4, = (47,), satisfy the equation ob-
tained from Eq. (7) by replacing d, by d, + 4, (regarding
¥, as a column with entries ¥, ). Expression (8) must be
modified by replacing V, ¥, by V,¥, + 4, ¥, and V, ¥,
by V, ¥, — W4, (regarding ¥, as a row with entries ¥, )
and placing the dotted components to the left of the undotted
ones.

Assuming, as before, that ¥,’ = 0 and that 4,0 only,
one gets essentially the same equations as in Sec. II, which
imply that ¥, are (complex-valued) functions of £ and u
only. Then condition T, =0 requires that ¥s, 3, ¥,' =0
(summed over {); thus, ¥;, ¥," has to be a function of « only.
The Weyl field multiplet acts as a source of both the gauge
field and the gravitational field. The (matrix-valued) cur-
rent one-form corresponding to the multiplet ¥, * is given by
j* = ieg ABW;, W %¢?, where € is a (real) coupling constant.
[The value of € is already fixed by the normalization used in
Egs. (8), (12), and (13).] In the present case we have

Jzk = — \/iie‘l’i,.‘l’zke3,
therefore

= — 62eW;, W,k N2 AP,
and from Eqgs. (12) and (15) it follows that the gauge field is
determined by

3, Fpds* = 122ie¥;, ¥, .
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Then, from Eqs. (5), (8), (9), and (14), one finds that the
solution of the Einstein equations is given by

3,0zh =21r(9,4,)(3z45)
+ 2k (Y, 8,¥5 — Wi 3, Wy, + 2W5, 4, 70,F) .

IV. CONCLUDING REMARKS

We have shown that the metric considered in this paper
is compatible with a Weyl neutrino field, with an electro-
magnetic field, and with a Yang-Mills field. Furthermore,
the effect produced by each of these fields on the metric of
the space-time does not change the form of the other solu-
tions. This is due to the fact that, with the proposed align-
ment of the fields, the function 4 included in the metric does
not appear in the expressions for these matter fields. The
metric studied in Ref. 1 also has these properties; moreover,
according to Ref. 6, these two metrics are the only ones that
admit a ghost neutrino field and, in the auxiliary Minkowski
metric2 d¢ d€ + 2 du dv, the corresponding geodesic shear-
free null congruences defined by &, [see Eq. (1a)] consti-
tute geometric representations of twistors (see, e.g., Refs. 7
and 8).
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In general relativity there is a well-defined prescription for defining a quantity that represents
the radiated energy of an exact, asymptotically flat solution of Einstein’s equation. This
quantity is called the Bondi energy flux. However, in linearized gravity off a stationary and
asymptotically flat background, the second-order Einstein tensor has been used as a stress-
energy tensor for the perturbed gravitational field, enabling one to calculate the energy
radiated away in gravitational radiation. It is natural to ask how this method compares to the
exact method for calculating the Bondi energy flux. In this paper, it is shown that if the metric
perturbation satisfies certain falloff and gauge conditions, then the radiated energy calculated

using the second-order Einstein tensor equals the second-order contribution to the Bondi
energy flux associated with the perturbation. As an application, the second-order Einstein
tensor is used to demonstrate gravitational superradiance from a Kerr black hole. Also, the
Appendix contains a theorem that makes precise the notion that if V ,£,, and its derivative is

“small,” then &, is close to a Killing field.

l. INTRODUCTION

For asymptotically flat space-times there is available a
natural, well-defined prescription for calculating the total
energy carried off in gravitational radiation. We call this
prescription the Bondi prescription and the energy carried
off in gravitational radiation is called the total Bondi energy
flux.! The Bondi prescription is natural in the sense that no
additional geometric structures, other than those present for
all asymptotically flat spaces, must be introduced on the
space-time to define the procedure. The Bondi prescription
is also satisfying in the sense that the Bondi energy flux is
equal to the change in the Bondi mass of the system. In prac-
tice, however, the Bondi energy flux is difficult to calculate.
This is because the Bondi energy flux is defined as an integral
over .# *, the future null boundary of the space-time. If one
wants to calculate the Bondi energy flux given a certain as-
ymptotically flat solution of Einstein’s equation, he must
first perform the tedious process of constructing the mani-
fold # * and its relevant fields before the integral may be
evaluated.

A different method has been proposed to calculate the
energy contained in gravitational waves that employs the
Landau-Lifshitz complex. In a suitable coordinate system
this method has been shown to agree with the Bondi pre-
scription.?

In this paper we propose another method for calculating
the total energy flux in gravitational radiation, which we call
the second-order Einstein method. This method is defined in
connection with linearized perturbations off a stationary as-
ymptotically flat background. The idea is the following. To
any solution ¥, of the linearized Einstein equation we asso-
ciate a divergence-free, symmetric tensor field G? [y, 1.
called the second-order Einstein tensor, defined by

1 d2
G(Z)[ycd]ab =’2_71F G [gcd +/17cd]ab |/1=0 s (11)
2759 J. Math. Phys. 27 (11), November 1986

0022-2488/86/112759-11$02.50

where G[g.; + A¥.4 . is the Einstein tensor for the metric
8ap + AVap. We formally treat — 877G @[y, 1., asifit were
a stress-energy tensor for the field y,,. The total radiated
energy flux, denoted £[v,, ], is now calculated by contract-
ing the timelike Killing field into — 87G ®[y.; 1., and inte-
grating the resulting mass-energy current over a timelike
three-surface surrounding the source of the gravitational ra-
diation. This method has been used®* to calculate the energy
flux associated with linearized gravitational waves on a Min-
kowski background.

The main goals of this paper are to define rigorously the
second-order Einstein method and to demonstrate that, un-
der suitable conditions, the energy flux calculated with this
method equals the second-order contribution to the total
Bondi flux. With these goals in mind, we begin in Sec. II with
areview of the mathematical machinery needed to define the
total Bondi energy flux.

In Sec. III we discuss some properties of the second-
order Einstein tensor and define the second-order Einstein
method for perturbations off a stationary asymptotically flat
background. One problem that arises in using the second-
order Einstein tensor as a stress-energy tensor for the pertur-
bation ¥, is thatitis gauge dependent. That is, two different
metric perturbations, ¥,, and ¥’ ,, which differ by a symme-
trized derivative of a covector field, generally produce differ-
ent second-order Einstein tensors. Hence, it is possible that
£[ V.5 1 will not equal £[7/,,, ] even though 7, and ¥',,, rep-
resent the same physical situation. This threatens to destroy
the uniqueness of the second-order Einstein method. How-
ever, in Sec. III we show that if one restricts attention to
perturbations that satisfy a certain set of falloff conditions,
called the weak falloff conditions, then the second-order
Einstein method is unique. Roughly, the weak falloff condi-
tions require ¥, , in a neighborhood of null infinity, to van-
ish identically in the past of some spacelike slice and it and its
first and second derivatives are required to approach zero in
the future of the slice.
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While imposing the weak falloff conditions on y,, is
enough to insure that the second-order Einstein method is
gauge invariant, an additional restriction is imposed on ¥,,
in Sec. IV in order to prove that the radiated energy calculat-
ed using the second-order Einstein method equals the sec-
ond-order contribution to the total Bondi energy flux, de-
noted E @[y,, ]. This restriction requires y,, to be gauge
related to some perturbation ¢/, that is in the Geroch—
Xanthopoulos gauge and satisfies a strengthened set of
falloff conditions. These strengthened falloff conditions,
which imply the weak falloff conditions, apply to the confor-
mally related perturbation ', = ﬁzy'ab , which is defined
on the “unphysical” conformally related space-time used to
defined the asymptotic flatness of the background space-
time, where ( is the conformal factor. The Geroch—Xgntho-
poulos gauge choice requires certain components of ¥/, to
fall offto zero on .# * like 0, Q2 and Q2. Geroch and Xanth-
opoulos® have shown that any perturbation satisfying the
weak falloff conditions can be brought into the Geroch—
Xanthopoulos gauge through a gauge transformation. How-
ever, it is not clear when a perturbation satisfying the weak
falloff conditions is gauge related to a ¢, that satisfies both
the Geroch-Xanthopoulos gauge conditions and the
strengthened falloff conditions; therefore we impose this re-
striction on ¥,, in the hypothesis of our theorem.

The key steps in the proof of our main theorem and their
motivation are best illustrated by first describing a seemingly
reasonable approach to the proof of the theorem, pointing
out its major flaw, and then describing how this flaw is dealt
with in the acutal proofin Sec. IV. The seemingly reasonable
approach is the following. First, write the integral for defin-
ing £[7., ] in terms of “unphysical” quantities, such as ¥, ,
on the unphysical conformally related space-time used to
define the asymptotic flatness of the background space-time.
Second, because this integral is independent of surface (since
G @[ ¥.4 1as is divergence-free), we may push the surface of
integration out to .# *. We then compare this integrand on
& to that used to define E ?[y,, ]. If the integrands are the
same, the theorem is proved. The major flaw that appears
when one tries to implement the above approach is that the
integrand may not smoothly extend to .# . In our proof in
Sec. IV, we get around this difficulty by first gauge trans-
forming the perturbation so that it satisfies the Geroch-
Xanthopoulos gauge and the strengthened falloff condi-
tions. With our perturbation in the Geroch-Xanthopoulos
gauge, it turns out that the integrand used to define the sec-
ond-order Einstein method now extends smoothly to # .
Comparing this integrand on .# * to the integrand that de-
fines E®[y,, ], we find that they differ by a term that inte-
grates to zero; thus proving the theorem. We have yet to
mention the role that strengthened falloff conditions have in
the proof. Essentially, these conditions insure that we can
push the integration surface out to.# * without changing the
value of the integral. Without these conditions, we knew
only that the integral was independent of surface within the
physical space-time.

To complete our discussion of the second-order Einstein
method, we use it to demonstrate that the Kerr space-time
possesses superradiant gravitational modes. Press and Teu-
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kolsky® have previously shown that Kerr possesses superra-
diant modes by a different method involving a separated ver-
sion of the spin-2 field equation in Kerr.

Finally, the Appendix contains a theorem that is used in
Sec. I11. Essentially the theorem makes precise the notion
that if V . &,, is “small” then &, is close to a Killing field.

Il. ASYMPTOTICS AND THE GEROCH-
XANTHOPOULOS GAUGE

In this section we review the asymptotic machinery
needed to define the total Bondi energy flux. A more exten-
sive account of the material contained in this review can be
found in Ref. 1. The Geroch~Xanthopoulos gauge choice for
the linearized metric perturbation y,, is also defined, and
the expression for the second-order contribution to the
Bondi energy in this gauge is presented.

Recall that to an asymptotically flat space-time (M,g,, )
we associate an asymptote (M 3,,,Q,#) that consists of a
space-time (M.,3,,) with null boundary .# and a conformal
factor Q that conformally relates the interior of (M3 £ap ) tO
(Mg.,), ie., 9%, =F.,. The conformal factor Q is re-
quired to satisfy the followmg four properties: Q=00n.7,
V,Q=h,#00n.7, i, i,g° =00on.#,and #° = 7, g% is
to be a complete vector field when restricted to #. The
boundary .# is required to be diffeomorphic to two discon-
nected copies of S 2X R. The components of .# are denoted
F+ and &, where £ " is called future null infinity and
7 is called past null infinity. Here (M.g,; ) is called the
physical space-time while (M.g,, ) is called the unphysical
space-time. Heuristically we think of the asymptote as a
means of attaching the points at infinity (the boundary .#)
to the physical space-time.

The physical Ricci tensor R, is related to the unphysi-
cal Ricci tensor R,, through

ﬁSab = ﬁs’ab + zvaﬁb _]gab P (2.1)
where V, is the derivative operator associated with the un-

physical metric, and S, , S, , and fare defined by the follow-
ing expressions:

Sab _Rab - Rgab 1 (2-2)
Sab = Rab ) Rgab s (2.3)
F=Q 'r*ntg,, , (2.4)

with R and R being the physical and unphysical scalar cur-
vature, respectively.

As a manifold, £ inherits many geometrical struc-
tures from M, including a vector field, a degenerate metric,
and a volume element. We denote tensor fields defined on
< * by underlining their symbol. The vector field, denoted
n®, is simply the restriction of 7#° to # . The degenerate
metric g, is obtained by restricting the action of g, to # .
The volume element €,,. on .# * is defined by the require-
ment that 7, & ¢,,, = 3!, where &> is the contravariant
volume element on M. It follows from (2.1) that if Q is
chosen so that f vanishes on .# * then both ga» and €, are
Lie derived by n°. Such a conformal factor is said to be in the
Bondi gauge. We shall impose this gauge choice on our (.

Even though g, is not invertible, it is still possible to
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define an object g*°, which is similar to an inverse. Let g be
any tensor on . * that satisfies g,.g*° g,y = g.s. We note
that gg" is unique up to addition of any tensor of the form
n‘“v® . Of course, we must only use g, in places where the
freedom in choosing g does not affect the result.

If our physical space-time satisfies the vacuum Einstein
equation in a neighborhood of # *, then .# * also possesses a
symmetric tensor field ¥, called the Bondi news tensor.
Here N, contains information about the asymptotic gravi-
tational radiation field. In particular the total outgoing
Bondi energy flux is obtained by integrating the square of the
Bondi news over .# * with the volume element ¢,,.. A few
important properties of the news tensor are the following:

(i) Nyn®=0, (2.52)
(ii) I_Ya,,g"" =0, (2.5b)
(lll) I_Yab =‘§ab _Bab ? (250)

where S, is the pullback of S, to.# " and Pas 1S a tensor
field on # * uniquely defined by #° and g, . The expression
for p,, in terms of n° and g,,,, is complicated and will not be
given here. _

_(iv) if £° is an asymptotic time translation vector field
on M and 7* restricted to.# * equals n®, then the total Bondi
energy flux at # *, denoted E, associated with 7 is given by

E= (32#)“f NN 88" - (2.5d)
e

We note that the use of the inverse metric g"" is justified in

(2.5d) since n°N,, = 0. Also since the signature of g, is

(0, +, + ), E vanishes if and only if N, vanishes.

Fix (M,g,,) as a stationary asymptotically flat space-
time with timelike Killing field #* and asymptote
(M3.5,0,.7). We would now like to calculate the lowest-
order change in the total Bondi energy flux due to a first-
order metric perturbation in the Geroch-Xanthopoulos
gauge. For this calculation we keep the Bondi gauge choice
in force and we further choose our conformal factor so that
the extension of the timelike Killing field to .# * equals n°.
Let ,, be a solution of the linearized Einstein equation in a
neighborhood of # *. Because the Bondi news tensor for a
stationary space-time vanishes, the lowest-order contribu-
tion to the total Bondi energy flux, denoted E ?[y,, ], of the
metric perturbation y,, is second order and is given by

E®rn] = G2m [ N'uN'aggen. 26)

where N !, is the first-order contribution to the Bondi news
due to ¥, . We need not include any changes in g" , OT
changes in the conformal factor ) in (2.6) because these
would only contribute to the total Bondi energy to third
order or higher. Hence the integral in (2.6) is performed
using the inverse metric g*, volume element €., , and con-
formal factor £} associated with the background space-time.
To compute N ', we will employ the properties of the Ger-
och-Xanthopoulos gauge.

The perturbation y,,, is said to be in the Geroch~Xanth-
opoulos gauge if y,, = 0?4, is smoothly extendable to and
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satisfies the following three properties on .# *:

() V| =0, (2.7a)
(ii) Q7 'y,7° |, =0, (2.7b)
(iii) Q2,74 |, =0. (2.7¢)

As a consequence of the Geroch—Xanthopoulos gauge, we
have

N, =£,(07',,) pulled back to L.  (2.8)

Indeed, (2.8) follows directly from (2.7a)-(2.7¢c), (2.1),
and (2.5¢). Equation (2.7a) implies that to first order g,,
and n° are unchanged; hencep,, (whichisdependentong,,
and n® ) is unchanged to first order. Therefore (2.5¢) implies
N', =S8, where S, is the first-order contribution to
S, That §,, = £, Q- 7/,,,,) on .+, where S§',, is the
first-order contribution to S, , follows from (2.7a)~(2.7¢),
(2.1), and the fact that y,, satisfies the linearized Einstein
equation. Therefore N',, = £,(927'7,,) pulled back to
F.

Using Egs.
E[y.,]as

E®y,]= (327)—‘f £, ()£, (Y )e -
J+
(2.9)

We were allowed to convert the inverse metric g’ ons*in
(2.6) to the full Lorentz metric 3°® on M in (2.9) because of
(2.7b). One nice feature of Eq. (2.9), besides the fact that it
is the formula for E ?[y,, ] that we have sought, is that the
only geometrical object it contains that is intrinsic to & * is
the volume element. Even though the integral is over .,
theintegrand £, (275 ,) £, (279, ) is a function onM
This fact helps us in comparing E ?[y,, ] t0 £[#,,] in the
proof of our main theorem.

At this time, we also introduce some auxiliary struc-
tures on M that we will need in order to state and prove our
theorems in Secs. III and IV. The auxiliary structures are a
neighborhood of # * denoted U, a three surface o, a time
coordinate ¢ on U, and a norm on tensors on U. We require U
to be a neighborhood of # * in which g, satisfies the vacu-
um Einstein equation and which contains complete integral
curves of #°, the timelike Killing field. We require o to be a

(2.6) and (2.8) we can now express

FIG. 1. The unphysical space-time (#,g,, } with future null boundary # *,
past null boundary .# ~, open neighborhood Uof # *, and spacelike slice of
U denoted o.

Chris X. Habisohn 2761



spacelike three-surface in U that intersects .# * in a cross
section and intersects each integral curve of #* in U, see Fig.
1. Alsolet us define £ on U using the following two equations:

t], =0, (2.10)
£1=1. (2.11)

Finally, let A, be a positive definite metric on U that satisfies
the property

£h,, =0. (2.12)

We now define the norm of an arbitrary tensor 7% __, in
the tensor space of U by the formula

1T

— {Tal".blc,-nd. Taz...bzczmdZ ha,a2 veu hb,bzh e, h d,d2}1/2 ,
(2.13)

where 2°® is the inverse of A, .

ill. THE SECOND-ORDER EINSTEIN TENSOR

The second-order Einstein tensor associated with the
metric perturbation y,, is defined by (1.1). Expressed in
terms of the background derivative operator, the second-
order Einstein tensor is given by

Gm[?’cd]ab
=1 Ve VoV + i (Vafd )VoVeu
+ (V) (VeYa) =4 €% (V0 Vara = Va¥a)
— 32V V 3 Vaya — Ve VaVa)
+{—17rVV.yu —§ (V) V.7, +1C7C,

+ 17V, Cy + 1 (V) (Vo) Y8as » (3.1)

where C,; represents the combination 2V°y,, — V,¥°.. The
expression (3.1) is rather lengthy. It is one of the goals of this
paper to present a simple method, in some cases, of calculat-
ing quantities involving the second-order Einstein operator
without actually writing out this lengthy expression. Essen-
tially this is achieved by replacing G ?[y,, ],, Wherever it
appears by the Einstein tensor associated with the metric
Zap + 474 One then calculates the appropriate quantities
as functions of 4 and takes their second derivative to arrive at
the desired result. This is done in Sec. V to demonstrate
superradiance off a Kerr black hole.

The second-order Einstein operator arises naturally in
perturbation theory. Recall that in perturbation theory one
considers a one-parameter family of solutions to Einstein’s
equation, g(4),, . The perturbation equations are generated
by expanding out Einstein’s equation in powers of 4 and
equating like powers. In the absence of matter the first few
lowest-order equations become

0=G [gcd les » (3.2a)
0=G"[Vea]us > (3.2b)
O=G(l)[7,(2)cd]ab +G(2)[7/cd]ab ’ (320)

where ¥, and '?, are the first- and second-order contribu-

tions to g(4) .4, respectively, and G,, and GV, are the Ein-
stein operator and the linearized Einstein operator, respec-
tively. The second-order Einstein operator first appears in
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Eq. (3.2c). Let us define the tensor field 7, as

7'ab = - (87)_1G(2)[?’c‘d]ab (3.3)
and rewrite Eq. (3.2c) as
G Yy lap = 87Ty - (3.4)

We are now tempted to regard 7, as a stress-energy tensor
for ¥, for the following three reasons. First, 7, is quadratic
inits dependence on 7., . Second, 7, is symmetric and diver-
gence-free with respect to the background derivative opera-
tor. And, third, 7, is sourcing the higher-order correction
92, in the same way that a first-order matter stress-energy
term T, would have sourced y,, if a one-parameter fam-
ily of matter stress-energy tensors, 7(4),,, would have been
included in the perturbation expansion (i.e,
GVNVea) =87TV,).

The divergence-free property of 7, is a consequence of
the definition of G ?[y,, 1., and the first two perturbation
equations (3.2a) and (3.2b) in the absence of matter. To
show this let V,, be the background derivative operator and
let I'"(4)?,. be the connection between V, and the deriva-
tive operator associated with the metric g’'(4),, defined by
g (A)ap = Qs + A¥4p - Taking the second derivative with re-
spect to 4 of each side of the identity

0=g'(A)*{V,G gDl + "D,
XG [gl(/l)cd]hb + ') G [g’(/i)cd]e,,} ’

(3.5)
setting A = 0, and using (3.2a) and (3.2b) we get
0=VGCG?[Ves]us + T'(O*cGC?[Veuas
+T(0)%°G?[ Vet J e - (3.6)

Substituting I'"(0)¢,. = 0 into (3.6) produces the desired
result

0= — 87) "'V G [ ¥y ]us = Vs - (3.7)

We are cautioned against taking this analogy too far, though.
Probably the main drawback in using 7, as a stress tensor
for the perturbed gravitational field is that it is gauge depen-
dent. That is, two different y,,’s, which differ by a symme-
trized derivative of a covector field, and hence represent the
same physical perturbation, will not in general produce equi-
valent second-order Einstein tensors.

We are now in a position to describe the second-order
Einstein method for calculating radiated gravitational ener-
gy. Basically, the second-order Einstein method is a proce-
dure for assigning a total radiated energy flux {[y,,] to a
linearized metric perturbation y,, off (M,g,, ), which satis-
fies the linearized Einstein equation in U. In this method, Eq.
(3.3) is used to construct 7,,, which is then contracted into
the timelike Killing field #* to produce a conserved mass-
energy covector j, = — 7,,t°. This covector is integrated
over a timelike three-surface X in U surrounding the source
of the radiation to obtain [y, ].

To insure that = catches all the outgoing radiation, we
require X to approach future and past timelike infinity and to
stay away from .7, see Fig. 2 (there are timelike surfaces
that intersect .# *). A reasonable restriction that we shall
impose on = which will insure that this condition is met is
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FIG. 2. The unphysical space-time (M,g,, ) with a typical timelike surface
of integration 2.

that the surface should lie tangent to and contain complete
orbits of the timelike Killing field.

In order for the second-order Einstein method to be
uniquely defined, we impose a few relatively minor con-
straints on the metric perturbation. The uniqueness of the
second-order Einstein method is assured if { [y, ] exists and
is independent of choice of integration surface £ and if a
class of gauges for y,, can be specified such that if y,, and
¥’ . are gauge related and both belong to the specified gauge
class then &[7,,1 = &6[¥ 2 ]. We will find that both these
requirements will be satisfied by requiring 7, to satisfy a set
of falloff conditions called the weak falloff conditions.

The perturbation y,, is said to satisfy the weak fall-off
conditions if ,, vanishesin the pastof gand ¢! + 972 |y, |,
t1+9/2 \¥_ y,.|, and 11 +972 |V, V,y.,| each approach
zero uniformly to the future of U, where € is some positive
constant and ¢ is the time coordinate described at the end of
Sec. II. By a function p approaching zero uniformly to the
future of U we mean that for each § > 0 there exists a number
¢(8) such that |p| <& in that part of U for which ¢> ¢(5).

Let y,, satisfy the weak falloff conditions in U and let
Ja =G ®[¥.q1.1 . Becausej, depends algebraically ony,,,
V. %, and V.V, ¥.,, we conclude that |j, | will fall off uni-
formly faster than £~ '+, where € is some positive con-
stant. This is enough to guarantee the existence of the inte-
gral defining £(7,, ). Now consider two surfaces 2, and 2,
satisfying the above criterion imposed on 2. Since V°j, =0,
the integral of j, over 2, will equal the integral of j, over 2,
provided the past and future boundary integrals of j, van-
ish. However, the boundary integrals are assured to vanish
due to the uniform falloff of | j, |. Therefore [y, ] is inde-
pendent of the surface Z.

The fact that requiring ¥,, to satisfy the weak falloff
conditions is sufficient to make the second-order Einstein
method independent of gauge on ¥, is proven in the follow-
ing theorem.

Theorem: Let y,, satisfy the linearized Einstein equa-
tion and the weak falloff conditions in U. Also let ', =
Vap + 2V o &, satisfy these same falloff conditions. Then
¥ 1 =61V a1

Proof’ Let (A1) be the one-parameter family of diffeo-
morphisms on M associated with §°. Because g,, satisfies
the vacuum Einstein equation in U and 7,, satisfies the lin-
earized Einstein equation in U, the second-order part of the
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expression Glg.; + AY.4 1. will equal the second-order
part of the expression ¢« (1)[G[g.s + A¥.a 125 Therefore
we can express the second-order Einstein tensor in U as

1 d?

G(Z)[ycd]ab = Ew P (ﬂ')[G [gcd +/17/cd]ab]

A=0

(3.8)
Now ¢ . (4) commutes with the Einstein operator, hence

G @ { Vcd ] ab

1 d?
=7W@[¢. (A)[8ea] +A@s (A) [Vea 1o

A=0

3.9)
Computing the right side of (3.9) we get
GOVealws = GOV +2V £y Jab
+ GV E Vg + Viebs) e - (3.10)
From (3.10) we conclude that

SVl =€V ]

== (8?7)“1 2G“) {£§'('}/L‘d +V(c§b) )}abtbeaefh .
(3.11)

Now the integrand in (3.11) is divergence-free, hence it is
locally the divergence of some two-form F,, . In fact, we can
find a global F,, as follows. Let

Hcd = £§(7/cd + v(cgb) ) (312)
and define F,, as

Fop= —t,Vo \H , + 1, VHy,,, —1H V1,

“tCV[aHb]c +H[acvécytb] . (3.13)

Then

VoF, = G‘”[£§(ycd + Vb)) ]t (3.14)
Applying Stokes’ theorem, we get

£l —£[Va] =60 [ Fuety. (19

=

To prove that the integral in (3.15) is zero, we first note that
F,, is algebraically dependent on ¥, and its first and second
derivatives, V ,&;, and its first and second derivatives, £,
Vie€s, and V, V&, . All but the last three terms listed
vanish uniformly to the future of U due to the hypothesis.
Letd =, d Z,,...be a sequence of compact two-surfacesin 2,
which are time translates of each other and approach the
future of Z. The theorem in the Appendix implies that there
exists a ¢ >0 such that if the norm of V £,, and its first
derivativeislessthansomeSond X;, then there existsa &' |
that differs from £, by a Killing field and for which both
|€P .| and |V, £, | are less than ¢5 on 3 Z;. Also since
V.V €@ is algebraically dependent on R, “£”, and
V.V &, through the formula

Vavlbg (1)81 = ”‘Rbcadg (i)d -+ 2La[b€1 * (316)
where L. = V,V &, , we could choose ¢ such that
|V, V€%, lisalsoless than c§ ond 2, . Now the integral of
F. e, over 33; [Eq. (3.15)] is unchanged by adding a
Killing vector to &, in (3.12). This is because the integral in
(3.11) depends only on £, through its symmetrized deriva-
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tive. Therefore the integral of F,,e* ,, over d 3, is equal to
the integral of F*” €™, over d 3, where F” , is defined
by (3.12) and (3.13) except that £ , is substituted for £, .
But it is clear that the norm of F* ;e on 33, ap-
proaches zero as i — « . Hence the integral of F.; e, over
d =, approaches zero as i— oo (i.e., as d X, approaches the
future of Z). Therefore £[y,, 1 =&V 0 1.

Q.ED.

IV. MAIN THEOREM

In this section we will prove a result that states sufficient
conditions on ¥, so that £[¥,,] = E®[y,, ]. However, to
state the result we need to introduce a new set of falloff con-
ditions on y,,,, called the strengthened falloff conditions. Let
¥4 be in the Geroch—-Xanthopoulos gauge. Then ¥, is said
to satisfy the strengthened falloff conditions if 7,,,, vanishes
1n the past of o and the quantities ¢! * 972 |}~ 'y, |, £ + 9/

219,07 Y,.|, and ' *+92|¥ ¥, 0~ 'y_,| approach zero
uniformly to the future of U, where € is any positive constant.
The strengthened falloff conditions are slightly stronger
than the weak falloff conditions mainly because they require
that the perturbation also obey falloff conditions on # .
The strengthened falloff conditions imply the weak falloff
conditions.

Theorem: Let 7, be a solution of the lineaized Einstein
equation in U that satisfies the weak falloff conditions and is
gauge equivalent to a perturbation that satisfies the Geroch—
Xanthopoulos gauge conditions and the strengthened falloff
conditions. Then £[y,, ] equals the second-order contribu-
tion to the total Bondi energy flux E@[y,, ]. _

Proof: We begin by choosing our conformal factor (2
judiciously so that subsequent calculations are simplified.
We choose £ so that it is Lie derived by #* and so that the
extension of the timelike Killing field * to # * (which we
still denote as * ), when restricted to £ *, equals n®. With
this choice of conformal factor, it follows that

t’a, =0, (4.1a)

V.t =0, (4.1b)

QN7 =0V, 7= VF+1Q " Fiab on S .
(4.1c)

Furthermore, ¢#* is a Killing vector field for g,, and the
Bondi gauge condition is satisfied. We now proceed to prove

ﬁ—zG(Z)[,VCd ]abtbﬁa
. Q—l,}/ne(v

these claims. Equation (4.1a) is obvious. We next prove that

the Bondi gauge condition, f vanishing on .# ™, is satisfied.

Evaluating (2.1) on # * we get
V nb 1"f 8ap -

Furthermore, since 7°
that on .# * we have

V.=V, tt=5,i". (4.3)

Lowering the index on this expression with g,,, symmetriz-
ing, and using the fact that #* is a Killing field, we get

(4.2)

=¢* on £, there exists a 7* such

V ity = figaBy, (4.4)

on #*. Comparing (4.2) and (4.4) we conclude that
Realyy = gg‘,,, on .# *, which can only be satisfied when f
and #® both vanish on .# *; thus satisfying the Bondi gauge
condition. Furthermore, (4.3), (4.4), and the vanishing of
#® on .# * imply (4.1b). Equation (4.1c) follows the defini-
tion of £, This completes the proof of the claims. For further
reference, let us also denote the timelike three-surfaces of
constant {) in Uby (). We note 2(0) =

Because the second-order Einstein method is gauge in-
dependent, we may assume that y,, satisfies the Geroch~
Xanthopoulos gauge conditions and the strengthened falloff
conditions. Furthermore, because the second-order Einstein
method is independent of surface [y, ] is given by

£ 7] = (877)—‘[ GOV ]t
Z(Q)

where (1 can take any value, except possibly & = 0, where
G [Vealant* € o, will not, in general, be smooth.

We now demonstrate that, as a consequence of the Ger-
och-Xanthopoulos gauge choice, if we view G?[y.; 1.,
Xt € 4 not as a three-form on M, but rather as a three-
form defined on 2 ( Q) thenitis smoothly extendableto.# *.
Using the fact that 7#° is normal to 2(£}), we may write the
integral in (4.2) as

ElFal = =607 [ 8760yt i
()
(4.6)
where €5, is the intrinsic volume element to E(ﬁ) defined
by 71, €*? &, = 3. The minus sign was introduced in (4.6)

because #° is the inward normal. Expressing the integrand in
(4.6) in terms of ¥, and its unphysical derivatives we have

(4.5)

bw{V[a(A c]bVCd) +1A% [aAcc]e + Q- lychcabnd -1 Q'A% ﬁd?’ab
)Yab + 39_27/6

#,7i4¥ 4 + terms proportional to g, }, (4.7)

where A,,,,c represents the combination 2V( byc)a — V. ¥s.. Now the variables K,,, K, , K, M,, and M defined by QO .,

Q- Vabn Q- Var AL,

Q2 and O~ 3v., A% t°, respectively, are smooth on £+ due to the Geroch-Xanthopoulos

gauge choice. Expressing (4.7) in terms of these variables, and using the fact that ¢ is Killing and Lie derives 2, we get

Q-3:G®@ [Vcd ]abt bpa

=1 £,£,(K,K%) — J(£,K %) 8K, + V. (B “Kyut*V,7°) + 375, (KK ") + (1*F,
+ {2Edkbdﬁc + ﬁﬂkc‘iv(akb)d + %fkbdk o + %Kdﬁbkai
—1 Ke K, — 2K K, i + #K K,y + K", (VIi)K,, — iK%
+ Q(terms smooth at &+ involving I?ab,fa,l?, ﬂa,ﬂ’ﬁ i
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KV K,

— 4V, KK, — 1K, aVK®,
K £ﬁkce +zl‘kcd£ﬁkdb}§ctb
#,Q, and their derivatives). (4.8)
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Clearly, (4.8) is smooth at # *.

Next, we evaluate @~ 2G @[y, 1,2 #° on £ *+. Using
the fact that f, v, f,, and V¢ vanish on .# *, we get, from
(4.8), that

ﬁ—-ZG (2)[7/“1 ]abtb;la I Fr
=1££,(KR,K%) —1 (£K)EK,®

+ V. (KKt V7 | - . (4.9)
The last term in (4.9), it turns out, also vanishes. Indeed,
(4.1c) implies that Q~'#V,7#® is proportional to 7° on
# ™. This, together with the fact that K, A’ vanishes on
S, implies that K “K,;¢°V,7° falls off on /™ like 0
Hence V, (K**K,,t°V /) vanishes on .# *. Therefore

ﬁ_sz[?’cd [P | o

=1££,(K,K%) — 1 (£K%) 86K, |, . (410)

Now, if the value of the integral in (4.6), as a function of
Q, was continuous at {} = 0, then we could evaluate £[¥,, ]
by substituting (4.10) into (4.6) and 1ntegl'at1ng over .
To show that the integral is continuous at ) = 0, we invoke
the strengthened falloff conditions. Let ¢5 be some positive
real parameter, and consider the following two integrals, J,
and I,:

1,=(877)—1J~ Q726 P [y oy |t %, (411)
2(Qts<t)

12=(877)—1f Q26 |t iy, » (4.12)
S(f1.0<r<15)

where 2({},t5 <¢) is that region of Z({2) for which ¢> ¢,
and similarly, 2(0,0<t <) is that region of E(ﬁ) for
which 0<z<ts. Clearly, I, + I, = [y, ] for 4540. The
strengthened falloff conditions imply that the integrands in
(4.11) and (4.12) fall off uniformly in U like = +© from
which one can show that for every & > 0 there exists a value
for ¢, such that I, <& for any value of £, including Q = 0.
Furthermore, since the region in U that satisfies 0 < ¢ < ;5 is
compact we have that 7, is continuous in Q for any value of
Q, including Q =0. Since S is arbitrary and 7, is contmuous,
1}_ follows that (4.6) is a continuous function of (2, even at
Q=0
Using (4.10) to evaluating (4.6) on . *, we get

£ 7] = G2 [ (5, @ P 8170

— £,£, (7o) Yoo -
(4.13)
The second term in (4.13) integrates by parts to zero. Mak-
ing use of the fact that €, =&, and £ Q%)
= £, (07 1%,) on S+, we can write §[7,; ] as

£lra] = (32m 7 6@ F)L @7
(4.14)

The expression for §{[v,,] in (4.14) is identical to the
expression for E?[y,, ] given in (2.9). Therefore £[y,, ]
ZEy, . QED.
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FIG. 3. A space-time diagram of
that portion of the Kerr space-
time exterior to the black hole.
F+ and # ~ are the future and
past null boundaries and H and
W are the black hole and white
hole horizons, respectively.

V. SUPERRADIANCE FROM A KERR BLACK HOLE

In this section we use the second-order Einstein method
to demonstrate that, in the framework of linearized gravity,
there are superradiant gravitational modes in the Kerr
space-time.

Consider that portion of the Kerr space-time that is ex-
terior to the black hole as shown in Fig. 3. Let y,, be a
solution of the linearized Einstein equation in Kerr that van-
ishes in a neighborhood of the white hole horizon and let
E® (Vs 1and E@ [y, ] denote the second-order con-
tribution to the total Bondi energy flux evaluated on .# * and
#~, respectively. We say that y,, is superradiant if
E(Z)fut [YGb ] >E (Z)past [Yab ]

Now, the second-order Einstein method has been pre-
sented as a method for calculating E P, [¥,, ] when 7,,
vanishes in the past of some spacelike three-surface inter-
secting .# *. We could also use this method to calculate
E@ . [Va ] When y,, vanishes in the future of some space-
like three-surface intersecting .# —. This particular falloff
condition (i.e., the vanishing of ¥, in the past or future of
some spacelike surface intersecting .#") essentially required
Y4 to vanish in a neighborhood of spacelike infinity. How-
ever, this condition was imposed to make the proofs of our
theorems manageable. We expect that if y,, does not vanish
near spacelike infinity, but instead falls off at an appro-
priate rate at spacelike infinity, then the second-order
Einstein method would actually calculate E @y, [¥.s]

— E? .t [¥a | Wewill assume this is the case. Hence y,,, is
superradiant if its associated total energy flux calculated us-
ing the second-order Einstein method is positive. Also be-
cause the second-order Einstein tensor is divergence-free,
the integral defining £[¥,, ] may be evaluated on the black
hole event horizon, which we denote as H. We conclude that
¥ap 18 superradiant if

(8m)~ IJ;{G @ [Vealt aebefh >0,

where #* is the timelike Killing field in Kerr (even though it
is not timelike on the horizon).

Because Kerr also has a rotational Killing field ¢°, we
may decompose ¥, into modes. A mode is a solution to the
linearized Einstein equation of the form

. = Re{ f,, exp( — iot + imp) }, (5.2)

where ¢ and @ are the time and rotational Boyer—Linquist
coordinates in Kerr, and £, is a complex tensor field that is
Lie derived by #* and ¢°. Since the contribution to the inte-

(5.1)

(w,m)
14
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gralin (5.1) due to each mode that comprises ¥, is indepen-
dent of the other modes comprising 7,,, it is sufficient to
study the value of the integral in (5.1) for each mode. In
order to avoid infinities when evaluating the integral in (5.1)
for a mode we will only integrate over a compact portion of
the horizon that corresponds to one period of the mode in the
timelike direction. We denote this compact regionas / '. Our
project, then, is to discover which modes, if any, superra-
diate.

We start by listing the relevant geometric structures in
the Kerr space-time that we will use. Let 7, be a mode of
frequency @ and azimuthal quantum number m and define
& '[¥as ] by the formula

£ Y] = (sm—‘f GO [Vua |1 (5.3)
B
Also let
P=t"+Qup° (5.4)

be the Killing field that is normal to, and null on, the hori-
zon. ) is a positive quantity sometimes referred to as the
angular velocity of the horizon. Let

Ke=t"+ o/ (mQy —w) (5.5)

denote the Killing field that Lie derives y,,. The surface
gravity, which is a constant, is denoted as «. It is defined by

V. (#%%,) = — i, (5.6)
One other fact we will find useful is that the derivative of ¢,
on the horizon has the form

V., =¢[avb] (5.7)

for some covector field v, . It follows that on the horizon we
get

on the horizon.

v, = — 2. (5.8)
We will demonstrate that, for a mode,
sgn{s ' [7a 1} = sgn{imQy, — w}. (5.9)

Therefore, the mode is superradiant if m{; > . Below we
present three lemmas that we will employ to demonstrate the
validity of (5.9).

Lemma 1: The integral in (5.3) is gauge invariant in the
following sense:

é—'[yab] =§I[7/ab + V(a§b) ]’

as long as £, is of the form
&, = Re{f, exp( — iot + imp)}, (5.10)

where f, is a complex convector Lie derived by #* and ¢°.

The proof that (5.3) is gauge invariant is similar to the
proof of gauge invariance in Sec. III except for the way the
boundary integrals are treated. In Sec. II1 the boundary inte-
grals were shown to go to zero. Here the boundary integrals
cancel each other because of the periodicity of v, and &,.

Lemma 2: There exists a gauge transformation satisfy-
ing the hypothesis of Lemma 1 which brings 7,,, into a gauge
satisfying (5.11) and (5.12) on the horizon:

Yoo ¥ |n =0, (5.11)
Ve |u=0. (5.12)
For the proof of this lemma assume that y,, still con-
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tains its imaginary part. That is, ¥, is given by (5.2) with-
out taking the real part. We will now proceed to find a com-
plex gauge transformation that will bring 7,, into a gauge
satisfying (5.11) and (5.12). By taking the real part of this
expression we produce the desired real gauge transforma-
tion.

Consider the expression

Yo =Va + Va0V ¥, (5.13)
where p is a complex constant. Contracting (5.13) with

¥* ¥, and using (5.8) and evaluating the expression on the
horizon we get

VYV 0 = VUV +PE, (P PV ) —pmﬁ“lﬁ”n(bs- o

Since £, (¥*¥*v.) — Kk¥Y,7,, is nonvanishing (unless
¥4, 7., vanishes) and is proportional to ¥“¥’y,,, we can
choose p such that ¥°¢°y,, vanishes on the horizon. Now
consider a further gauge transformation as follows:

7"ab = 7,ab + V(a (qylb)c"pc)! (515)
where g is a complex constant. Contracting with ¢* we get

7/" ab ¢b = y,ab ¢b + %q£¢ (¢b7’ab )

+ %qva (¢b¢cy’bc ) - q'pby,cb Va W' ( S. 16)

By choosing ¢ so that the first two terms in (5.16) cancel we
get

Y ¥ =1V (VY 1) — a0V o Vot (5.17)

Using (5.8) and the fact that °y’,. = 0 on the horizon, it

follows that 7, %" is proportional to ¥, on the horizon.
Using (5.8) again we find that

Vl’ab'/’b =Y, 7" e (Vd"pb) (VY )/ (k%)

on the horizon. Now consider our third and final gauge
transformation

(5.18)

Yo =V"a + VS Yby» (5.19)
where f'is given by
=175 (V00 (VY,)/ (67) (5.20)

and r is a complex constant. Contracting (5.19) with * and
evaluating the expression on the horizon we get

V' W=7 ¥’ + 1£,W.) = V' ¥+ %r£¢(7’"ab¢b)~
(5.21)

Clearly r can be chosen so that the expression in (5.21) van-
ishes on the horizon. We have transformed 7, into ¥'"'_,, a
gauge in which 3", ¥/* vanishes on the horizon. "¢, =0
on the horizon is a consequence of this particular gauge
choice, the fact that ", is a mode and the fact that "',
satisfies the linearized Einstein equation in Kerr.

Lemma 3: The value of the integral in (5.3) is un-
changed if we substitute — w¢®/(mQy — w) for .

To prove Lemma 3, consider the integral

J = (87) _‘LG @ o [Vea 1K °€ s

which is similar to (5.3) except ¢#* is replaced with K*. We
will show this integral vanishes. Because y,, satisfies the

(5.22)
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linearized Einstein equation we may rewrite J as

1
7= 60 (R 1] =5 B[ 180 K,
(5.23)

where R ®,, [7.41 and R ®[y,, ] are the second-order Ricci
tensor and second-order scalar curvature defined in a similar
manner to the second-order Einstein tensor. Since K* is tan-
gent to the horizon, the second term in (5.23) vanishes. We
now write the first term in (5.23) as

d2
_1d/{ 2L'(V(Mav(,{)bKa

— VP VP KA €)oo | 1z0  (5:24)

where €(4) ;5. and V* , are the volume element and deri-
vative operator associated with the metric g(A1),, defined by

g(/l)ab =8a +/17/ab (525)

with inverse g(4)** . We note that parametrizing the volume
element does not affect the value of J because the fact that the
background Ricci tensor and the linearized Ricci tensor van-
ish implies that perturbations of the volume element contri-
bute in (5.24) to terms third order or higher in A. For the
same reason, we are able to raise the index on the volume
elementin (5.24) with g(4)% . For the rest of this section we
will, by convention, raise and lower indices on tensors para-
metrized by 4 with g(1),,.
Because K° Lie derives y,, we have

VP K ® = 1g(A) ALy, =O. (5.26)

Hence, the second term in (5.24) vanishes. The first term in
(5.24) can be split into a symmetric and antisymmetric part
as follows:

J = (167)

dz

J = (16m) ="
em ™2

L'{V(A)av(l)(bK(/i)a)

+ V(Mav(i)[bK(/i)a]}f(i)beﬂ, I;.=o ’ (5.27)
where K (1), = K °g(1),, and the index on the A-depen-
dent derivative operator was raised with the A-dependent
metric. The symmetric term in (5.27) is zero because K* Lie
derives ¥,, and the antisymmetric term integrates by parts
to zero because of the periodicity of ¥, . Therefore J vanish-
es. Using (5.5) we can rewrite (5.3) as

§'[7as ]

= —o(87) " (mQy, —co)“f G2 [Vea ]¥°E o
-
(5.28)

This proves the lemma.

We now evaluate § '[7,, ] to demonstrate the validity of
(5.9). Inlight of Lemmas 1 and 2 we may assume that ¥, is
in the gauge discussed in Lemma 2. Because ¢° is tangent to
the horizon, the scalar curvature part of the second-order
Einstein tensor vanishes in (5.28). We can write the second-
order Ricci part of (5.28), using the parametrized derivative
operators introduced in the proof of Lemma 3, as follows:
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, d?
dA*?

$' V] = —0(167) "' (mQy — )

XL’{V(A)av(A)(b ¢(/{)a) -+ V(A)av(l)[b ¢(;")al

—_ V(i)bv(l)aw}e(ﬂ)beﬂl |,1=0 , (5.29)
where ¥(1), = ¥’g(1),,. The second and third terms in
(5.29) both integrate by parts to zero due to the periodicity
of ¥, . The first term in (5.29) can be written as

d 2
dA?

é‘,[yab] = _w(327r)_l(mﬂg —Cl))__1

. (5.30)

xf (AVDE,y)€(A) 0
H' A=0

Now, the vanishing of the trace of our perturbation implies
that the first-order change in €(A1) semn Vvanishes. Likewise,
the A dependence introduced in (5.30) by raising the index
of the volume element with g (4 )*® does not contribute to the
A dependence of the integral because our perturbation is or-
thogonal to the normal of the horizon [i.e., raising and low-
ering the index of the horizon’s normal vector field is inde-
pendentof A due to (5.11)]. Therefore, we replace €(1)° .,
with ¢* €_,,, where €y, is the appropriate, unparametrized,
volume element on H. Equation (5.30) now becomes

d 2

[V ] = —0(327) " (mQy — @)~ TE

X L AAVOL, (v ¥

— AL, (Vab)vu)(ail’b)}fefh |/1=o . (5.31)

Because £, (¥,,¥") vanishes on the horizon we may use the
background derivative operator to evaluate the first term in
(5.31) as

d2

dA AV L, (Vo ¥))

= — 29"V &, (Y ¥)-
HAi=0
(5.32)

Here £,,,(ya,,¢”) vanishing on the horizon implies that
V. £,,,(y,,b¢r”) on the horizon is proportional to ¢ r, for
some r,. Therefore (5.11) implies that (5.32) vanishes. Us-

ing
d 1

4 \ywayp — (__)£ b 5.33

(d/i) ¥ i=0 2 v¥ab ( )
we evaluate (5.31) as
;I[Yab]

=w(321r)‘1(mQH—w)_1f (£,7°°) (£4Vas YEopp-

=
(5.34)

Now (£,7"°)(£,7.,) is positive due to our gauge choice
(5.11). Therefore £ [y, ] has the same sign as m{),; — .
We conclude that a mode will be superradiant if mQy > .
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APPENDIX: A KILLING FIELD THEOREM

We prove a theorem that makes precise the notion that if
Va&s, is “small” then £, is close to a Killing field.

Theorem: Let M be a connected compact manifold, pos-
sibly with boundary, with metric g, and associated deriva-
tive operator V, . Also equip M with a positive definite met-
ric A°® for taking norms of tensors, i.c.,

|Tab I = {Tab Tcdh ach bd}1/2.
Then there exists a ¢ > 0 depending only on M, g,,, and A**

such that given a covector field £, with V,, = V&, satis-
fying

sup{| Vo | + Vi Vi [} <6, (A1)
for some ¢, then there exists a £ ', satisfying
sup{|€',| + |V €5 |3 <ce, (A2)

which differs from £,
Vab = V(aglb) .

Proof: For the purpose of obtaining a contradiction sup-
pose there is no such ¢. Then there will exist a sequence
{9 .} of covector fields satisfying

sup{|§ (i)a + ka| + |V[a§ (i)b ] + V[aklz ]l}>19 (A3)

for all Killing fields k, and its sequence of symmetrized de-
rivatives {V *_, }, where V',, =V £, will satisfy

by a Killing field, that is,

lim [sup{|V @, | + |V, ¥, |}] =0. (A4)

We will show that (A3) implies there exists a subse-
quence of {sup{[V®,,|+ |V, ¥V ?,,.|}} bounded away
from zero, hence (A4) cannot hold.

Without loss of generality we may assume that the equa-
lity is attained in (A3) for all i when &, vanishes. Also, since
M is compact the supremum in (A3) is always attained.
Therefore for each £ there is a point p* for which

(1Pl + Vg @y D pi=1.
Let

7'= (£ VuE P Dol
For convenience let us denote the vector bundle that is the
direct sum of the cotangent bundle and the bundle of two-
forms as B. Then 7'eB. Now, the subbundle of B which
consists of all possible pairs of covectors and two-forms hav-
ing norms that sum to 1 form an s° bundle over M that is
compact. Hence, the sequence {7’ } will have a point of accu-
mulation, say 77. Let the base point of 7 in M be denoted p.

We will arrive at our contradiction by arguing that there
exists a neighborhood U,, of 7in Band a6 > O such that if the
cross section (£ ?,,V &, ) of B intersects U,,, then

sup{|V @, | + |V ¥V Py [336. (A5)

To prove the existence of U, and 6 we consider the following
two cases.
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First suppose that there is no Killing field k, for which
(k. Vi.ks )|, = 1. We will argue that there must exist a
closed curve a in M beginning and ending at p such that
transporting 7 around « using the transport equations for
(ga :F ab )

aavagb = aaFab, (A6a)

a*VoFy = a"Repa Gy (A6b)

(where @ is the tangent vector to a) results in a point in B,
say 77, different from 7. Suppose a did not exist. Then this
type of transport, which is called Killing transport, would be
independent of path. Hence we could uniquely construct the
entire covector field £, by transporting 7 over the entire
manifold using Killing transport. Therefore £, must be Kill-
ing by virtue of (A6a) and (A6b). But we have assumed that
7 is not data for any Killing field. Therefore a must exist.

Solutions to transport equations like (A6a) and (A6b)
are continuous in both initial data and coefficients. There-
fore sufficiently small modifications of the transport equa-
tions, of the curve , and of the initial data 7, will not affect
the result that transporting the initial data around the curve
produces a pair of tensors different from the initial data.

We cast this result in a useful form in the following state-
ment. There is a neighborhood U,, of 77 and a § > 0 such that
if W, is a tensor field satisfying

sup{| W, | + [V, W, |} <6 (A7)

then for every point veU, there is a closed curve B(v)
around which we can transport v using

BW) V&, =BW)F, +B°W,, (A8a)
B(v)avanc =B(v)aRcbad§d + 2B(v)av[b Wc]a! (A8b)

and the result of this transport is an element of B different
from ».

But ;a = § (i)a’ Fab = V[a§ (i)b 1* and Wab = V(a§ (i)b)
identically satisfy the transport equations (A8a) and
(A8b).Set W,, =V £, in (A8a) and (A8b) and use
these equations to transport initial data that is attained by
(& .,V €, ) at p around any closed loop. The result
must be equal to the initial data. We conclude that if
(£P,, V&P, ) intersects U, then ¥V, must satisfy
(A5).

Now suppose (k,,V .k, )|, = 7 for some Killing field
k,, and denote 77, = (0,,01,5; )|, as the pair consisting of
the zero covector and the zero two-form at p. Let us connect
every point in M to p by curves. Because M is compact, we
can assume the lengths of the curves measured with 4% are
bounded. Using Killing transport to transport 7, along any
of these curves will result in the zero pair. By continuity of
the transport equations there will exist a § > O with the prop-
erty that if W,, satisfies (A7) and y = (f,, fos )|, is the
result of transporting 7, along one of these curves using the
modified transport equations (A8a) and (A8b), then

(Jfal + 1 fa D]y <1 (A9)

Again because the transport equations are continuous in
their parameters, we can expand the above result to a neig-
borhood of 7, in the following sense. There exists a8 > 0 and
a neighborhood U, of 7, such that if (£,,V,,$, ) intersects
U, and satisfies
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sup{l;al + IV[agb ]|}>1’ (AIO)
then (A5) holds where V ¢, replaces V”,,. We are now
ready to finish the proof. Translate U, by k, to get U,, a
neighborhood of 7. If (£ °,,V &, ) intersects U, then
(&P, =k, Vi, P, —V k) intersects U, Hence
V@, satisfies (A5). Q.E.D.

2769 J. Math. Phys., Vol. 27, No. 11, November 1986

'R. P. Geroch, “Asymptotic structure of space-time,” in Asymptotic Struc-
ture of Space-Time, edited by F. P. Esposito and L. Witten (Plenum, New
York, 1977).

28. Persides and D. Papadopoulos, Gen. Relativ. Gravit. 11, 233 (1979).

R. M. Wald, General Relativity (Univ. Chicago P., Chicago, 1984).

S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

SR. P. Geroch and B. C. Xanthopoulos, J. Math. Phys. 19, 714 (1978).

SW. H. Press and S. A. Teukolsky, Astrophys. J. 193, 443 (1974).

Chris X. Habisohn 2769



Short-time nonstationary character of correlation functions in classical

equilibrium ensembles
C. A. Chatzidimitriou-Dreismann

Churchill College, University of Cambridge, Cambridge CB3 ODS, England and I. N. Stranski-Institute for
Physical and Theoretical Chemistry, Technical University of Berlin, D-1000 Berlin 12, Federal Republic of

Germany

(Received 25 March 1986; accepted for publication 2 July 1986)

Dynamical quantities b(¢) are considered that depend on the canonical variables of a small
number n of particles of a classical N-particle condensed system being in thermal equilibrium.

It is proved that equalities like d 2(b(0)b () )/dt* =

- (i)(O)B(t)) are in general violated, if

the interparticle interactions have a finite range and sufficiently short times ¢ are considered.
This violation reflects the continuous-in-time creations and destructions of s-particle
correlations 7 < s €N, which are due to the thermal motion.

I. INTRODUCTION

In previous work,' we have studied some quantum me-
chanical aspects of the molecular motion in liquids, in the
picosecond time range. In particular, the connection
between (i) the molecular reorientation of small polar mole-
cules and (ii) the corresponding far-infrared (FIR) band
shapes has been treated within the formal framework of lin-
ear response theory (LRT). In these investigations we have
found that the equation

2 . .
%@(0)@(:)) — — (0Y%E), (1)

which seems to hold true very generally in the case of ther-
mal equilibrium, may be violated in the physical context un-
der consideration. [The unit vector &(¢) represents the ori-
entation of some characteristic molecular axis, e.g., the axis
defined by the two nuclei of a diatomic molecule; the brack-
ets represent equilibrium ensemble averages.] The physical
reasons for the violation of Eq. (1) have been discussed in
detail. In particular, van Vliet’s” and van Kampen’s? critical
remarks concerning the standard version® of LRT have been
explicitly taken into account; their importance in the inter-
pretation of the anomalous temperature dependence’® of the
spectral FIR absorption bands has been shown.

Now let us consider a liquid as a classical dynamical
system that contains N interacting particles, N ~ 10?%; the
system is assumed to be in thermal equilibrium. In this paper
it will be shown that Eq. (1) may be (and, in general, is)
violated in the picosecond time range, if standard experi-
mental conditions are considered. This statement appears to
be surprising since

d

dz d . .
a (a(0)b(1)) = (a(0)b(2)) =7 (a( —)b(0))

= — (a(—0b(0)) = — (a(®b(D)) .
(2)
(a and b may represent two arbitrary one- or many-body
dynamical functions,” i.e., they are functions of specific
numbers of generalized coordinates and/or momenta.)

These equations seem to be valid, because (i) the complete
equilibrium distribution function does not depend on time
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explicitly and (ii) the above correlation functions are invar-
iant under time translation. Similar calculations can be
found in many textbooks of statistical mechanics.

1. N-PARTICLE DYNAMICAL FUNCTIONS

For reasons of clarity and simplification, let us consider
in the following a monoatomic liquid (or dense fluid) with
two-body interaction potentials H,(x; x; ) between the par-
ticles / and j. Using the abbreviation® x;=(q;,p;) for the set
of canonical variables pertaining to particle j, the total Ham-
iltonian reads

N N
H(xpxy) =% Hi(x)+ 3 Y Hy(xx) . (3)
/=1 jen=1
Additionally it is assumed that the interactions H, have a
finite spatial range R; i.e.,

H,y(x,%) =0, if |q,—q|>R,. 4)
The corresponding Liouvillian reads’
N
N
Ly=Ly(xypxy) =Y L7+ YL}, (3

with obvious notation. The complete distribution function
F=F(xy,...xy) represents an equilibrium ensemble, and
thus

9 F=L,F=0. (6)
ot
The observables of the system are described by dynamical
functions b of the canonical variables x;. As the particles in
the system are identical, we may restrict our interest to those
functions in which all particles play the same role; these are
the only ones that represent physically relevant quantities.
[ This remark implies the validity of Eq. (10), see below.] In
order to make the presentation self-contained, let us just
mention the following points.’
(i) The general form of a dynamical function reads

N
N
b(Xpexy) =bo+ > bi(x) + XY ba(x;%,)
=1
Je<n=1
+ by (xppenXy) - (N
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Here b, is a function of s variables only, which cannot be
decomposed into a sum of functions depending on less vari-
ables.

(ii) The definition of the reduced s-particle distribution
functions s< N is

!
7 =TJ\%§)_'J‘1X”"" dxy FXpxy) - (8)

Hence, we may express the ensemble average of the dynami-
cal function b completely in terms of reduced distribution
functions'®:

(b )EJ- dx e dxy F(X 150X )0 (X150 Xy)

N
=3 (s!)“del--- dx, b, (X10e0X Mo (X1persXs )
P (9)
(iii) All functions f; and b,, s<N, are symmetric under
permutation of any two variables.'® For example, one has

bs( X ...xj ) — bx( xj X ) . (10)

The particles of the dynamical system under considera-
tion undergo thermal motions. Thus the canonical variables
and the dynamical functions must fulfill the appropriate
equations of motion. As is well known,®

b,= —Lyb,,
x;[t] =exp(—Lyt)x;,

(11)
(12)

and also

bo(x,[t 1, x,[t]) = exp( — Lyt)b, (xy,....%,) , (13)

due to the fact that the time-evolution operator preserves the
algebraic structure of the set of all the dynamical functions. !’
Here the abbreviation x;=x; [0] has been used.

Now let us consider the special case of the dynamical
function B(x,,...)==by (Xy,....xx ), cf. Eq. (7). By definition
one has'?

(B(0)B(1))= f dx o dyy B(Xppon)

«B(x[t],...)  F(Xp5ee05Xpy) s (14)
<B(0)B(t)>zj dxyer dxy [ = Ly{B(xy..)}]

[ —Ly{B(x(1],..)}]

XF(XpyXy) - (15)

From Eq. (14) it follows immediately
2
dit—z. (B(O)B(t)> = fdxl‘" de B(xl,...)

. [ (— I)ZLN{LN{B()ﬁ [z ],)}]]

XF(xpp0sXy) « (16)
Since (i) Ly is a linear differential operator and (ii) F to-
gether with a sufficient number of its derivatives can be as-
sumed to vanish at the boundaries of the system in configu-
ration space and also forp; = + o ,’ one can carry out the
appropriate partial integrations straightforwardly and ob-
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tain from Eq. (15)
(B(O)B(1)) = — J dx - dxy B(x,,...)

: [ —LN( _LN{B(xllt],---)}

XF(x,...%5)}] » (17)
which, with the aid of Eq. (6), proves that
2 . .
ft—zw(owm) = — (BO)BD). (18)

It is easily seen that this equation can be proved also by
starting with Eq. (16), and then by carrying out the appro-
priate partial integrations that bring Ly ‘“on the left” of
B(x,,...).

lll. s-PARTICLE DYNAMICAL FUNCTIONS (s<N)

Now we are in the position to study in detail the validity
of equations like (1), (2), (18), etc. For simplicity, let us for
the moment consider a one-particle dynamical function b.
The second time derivative of the correlation function
(b(0)b(2)) is’

2
2 (b)) = f dtyoe diy F(Xryein)

X 3 510 - (L (Lt [ DN]

i=1
(19)
We also have
(b1 = [ dxy dxy Fet)
N
X 3 [ —Lylbi(x)}]
Jj=1
[ —Ly{bi(x; 12 DY) - (20)

Before the integrations on the right-hand side can be carried
out, however, the variables x; [¢] must be substituted with
expressions depending on the integration variables x;,
J=1,..,N. But it is clear that x; [] is, in general, a compli-
cated function of several variables, which are the “initial
values” in the dynamical problem involving x; [¢]. This is, of
course, due to the interactions L ;,, Eq. (4). Thus, in the
limit #— o0, x; [¢] becomes a function of all the variables x;
(7= 1,...,N). Therefore the following identities hold true:

x; [t 1=g(x;,..; ;) . 21)
The functions g depend parametrically on the particular par-
ticle number j as well as the time ¢.

Now let ¢ be sufficient “small,” in the sense that the
function g(x;,...; j;t) depends on a small number u( ) of
variables, #(j) €/N. The terms

Vi,=Ly{b,(x;t 1)} and W,=L,{V,} (22)

depend then on specific numbers v( j) and w( j) of variables,
respectively. Due to the dynamical couplings which are
caused by the interaction Hamiltonian, one has very general-
ly

u(H)<v(NH<w(j)<N, (23)
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for all j (and for sufficient small # and R,). For the jth sum-
mation term appearing in the right-hand side (rhs) of Eq.
(19), one obtains

.S}Ef dx, dxpy F(xy,.%5) - by(X;)
* LN (LN{bl(xj [t ] )}}
= J dx - dxy F(xy,...xy) - b (x))

"Ly [LN{bl(g(xl""’xu(j) ;503 (24)

The renumbering of the integration variables on the rhs of
this equation is permitted, because of the aforementioned
symmetry properties of the functions b, and Funder permu-
tation of the variables. Correspondingly, the jth summation
term T; in the rhs of Eq. (20) reads

T}Ef dx,dxy F(x,...xy) - Ly{b,(x,)}

Ly Aby(g(xye Xy sy 3 5N} - (25)

From the above considerations it immediately follows that
the factor Ly{b,(x,)} depends on those variables that ap-
pear in the factor L, {b,(g(...))}, too. Thus, those two fac-
tors depend on the v( j) variables x,...,.x, ;. Let m be the
maximum of v(j) and w(j). One is now in the position to
carry out immediately the same number (N — m) of integra-
tions over the variables x,, , ; ,...,Xy, in the rhs of equations
(24) and (25). Thus,

N!
= | e e o

'bl(xl) ‘LN{ij} » (26)
N
T, :mfdxl--- dx,, frn (XiseesX )
'LN{bl(xl)} . ij . (27)

In these formulas, of course, only a part of the complete
Liouvillian L, becomes “active,” since, by definition of the
number m, it is true that

LAV, }=0, for ki>m. (28)
For this reason, the replacement

Ly&L, (29)
in Egs. (26) and (27) is permitted; cf. definition (5).

In order to prove the desired equation T; = —S;, one

would try to make use of the partial integrations that proved
Eq. (18). Because of the linearity of L,, and the vanishing of
f.n at the “boundaries” of the system [cf. the remarks after
Eq. (16)], one obtains

_ N!
S; = —mjdxl"' dx,, V,,
'Lm{fm (xl""’xm )bl(xl)}

1
C M (i, ,
(N —m)! "o

- by(xy) 'Lm{fm (-xl:--->xm)}—Tj . (30)
But, in general, the first term on the rhs does not vanish
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identically. This follows with the aid of the BBGKY hierar-
chy’: in the special case of equilibrium ensembles (df,/
dt) =0, s< N, and one obtains explicitly

Lm{fm}= i dem+l L;m+1{fm+1(x1""’xm+l)} .

i=1
(31)
Thus it follows that, in general S; + T;#0, for each
Jj=1,...,N. Therefore we conclude that, for ¢ #0 (cf. Ref.
13),

2 . .
% (BB £ — (D)), (32)

in opposition to the specific result (18). Q.E.D.

IV. DISCUSSION

From the above considerations one obtains easily the
following generalizations.

(1) The result (32) holds true also in the case of polya-
tomic particles; in this case, however, the interaction Liou-
villians must be characterized with sufficiently more indices.

(2) The explicit introduction of the “reduced” Liouvil-
lians L,, is illustrative but not crucial. This follows easily
from the above Eq. (28) and Egs. (3.4.4) of Ref. 7.

(3) The quantities b can also depend at ¢ =0 on the
degrees of freedom of several particles.

(4) The result (32) holds true also for the “cross-corre-
lation function” {(a(0)b(r)), cf. Egs. (2).

(5) Similar relations concerning many-time correlation
functions {a(0)b(#)c(t + ¢t,)--) may also be affected by the
above considerations, if strict stationarity [asin Egs. (2)] is
used by their derivation.

(6) The violation (32) also holds true for stationary
nonequilibrium ensembles that represent systems in steady
states. This is due to the fact that in the presented derivation
only the conditions df; /dt = 0, s<N have been used. Equa-
tion (31) still remains valid in this case; cf, Ref. 7.

It can be shown that the assumption (4) concerning the
finite range R, of the interactions is also not necessary.'
Here, however, let us merely state on physical grounds that
(i) the repulsive potentials do have a very short R, and (ii)
many theoretical long-range potentials have also a relatively
small R, in condensed matter, due to shielding effects.

The result (32) reflects the continuous-in-time cre-
ations and destructions of s-particle correlations between
each particle j and (s — 1) particles of its environment
s>m + 1; this process is due to the thermal motion. It is
easily seen that, with increasing time, the numbers w( j) and
m will also increase. Thus, for sufficient large ¢,both sides in
(32) will become equal, because (i) it will be m = N or (ii)
the BBGKY hierarchy can be truncated.

These considerations also illustrate the physical reason
for the violation (32) together with the validity of Eq. (18):
The Liouvillian L, acting on f,, s<N, reveals information
concerning correlations in an N-particle system (that are
time independent for equilibrium ensembles, by definition).
On the other hand, the action of L on b(¢) determines the
dynamical function b(z) (which, in general, is not a constant
of the motion). But the partial integrations leading to Eqgs.
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(17) and (30) also interchange the quantity on which L
acts, drastically revealing this subtle difference.’”

ACKNOWLEDGMENTS

I wish to thank the Fonds der Chemischen Industrie
(Frankfurt am Main) and the Churchill College (Cam-
bridge) for the award of the “German Fellowship 1985/86.”
Financial support by the Fonds der Chemischen Industrie
und the Deutsche Forschungsgemeinschaft (Bonn) is grate-
fully acknowledged.

'For areview, see Chap. 3 in E. Lippert, C. A. Chatzidimitriou-Dreismann,
and K.-H. Naumann, Adv. Chem. Phys. 57, 311 (1984).

2K. M. van Vliet, J. Math. Phys. 19, 1345 (1978).

3N. G. van Kampen, Phys. Norv. §, 279 (1971).

2773 J. Math. Phys., Vol. 27, No. 11, November 1986

4R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

8. G. Kroon and J. van der Elsken, Chem. Phys. Lett. 1, 285 (1967).

$See also references cited in Ref. 1.

"R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wi-
ley, New York, 1975).

8The notations of Ref. 7 are widely used in this paper.

9For an excellent presentation, see Ref. 7.

19Cf, Ref. 7, Chap. 3.

YCF. Ref. 7, Chap. 1. This set is called the dynamical algebra.

'?The braces{ } indicate the range of action of each L.

3For smooth interactions, it is trivial to show that both sides in (32) be-
come equal for ¢ = 0. This time point, however, should be excluded from
the context under consideration, because in the case of hard-core particles
a singularity appears in the velocity correlation function; e.g., see I. M. de
Schepper, Phys. Rev. A 24, 2789 (1981).

This proof is more involved and is in preparation.

SMolecular dynamics simulations would be able to show the effect under
consideration.

C. A. Chatzidimitriou-Dreismann 2773



The free energy of the three-dimensional Zamolodchikov model

M. L. Glasser

Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13676

(Received 8 April 1986; accepted for publication 18 June 1986)

Details are given for the reduction of Baxter’s expression for the exact partition function per

site of the Zamolodchikov model to explicit form.

I. INTRODUCTION

In his remarkable exact solution for the free energy per
site of the Zamolodchikov model on a cubic lattice, Baxter'
obtains the expression

k=£E —v,2) V41 —v,2) " Yiexp{(i/4m)G_(v,%)
—G_(1")+ G, (1,7 )+ G, (D)}, (H
where
G, () =L [ln(l +7) _ylniyl dy + const.

The parameters, defined in Ref. 1, are expressible in terms of
the angles 8,, 8,, and 6, of a spherical triangle on the unit
sphere and the corresponding sides a,, a,, and a;. After a
short, but indirect transformation (1) can be put in the form

Ink= —Iny+ (1/7)L

3 0, 0,
% ; [ln cos ( 2)— 77 a, In tan (E'-)] ,

(2)
where
o x sin x
L= J X
# o 1— (v —pucosx)?
u =sin 8,sin 0,, v =cos &, cos G,. (3)

The purpose of this paper is to present the details of a reduc-
tion of (2) to the symmetric form presented in Eq. (23) of
Ref. 1. This result is of independent mathematical interest in
that it is certainly not evident that the integral L is symmet-
ric with respect to the angles 6,, 6,, and 6,.

Il. CALCULATION AND RESULTS

First, by a partial fraction decomposition and integra-
tion by parts

L=ia11n(1—#°°sa1/(1+U))+LL
2 l+pcosa,/(1—v) 2

1=f'1n(1+”°°s"/(1‘”))dx. )
o 1 —pcosx/(1+v)

Next, let

Li=/wAd-v)—JO—v—p)d=v+p) ],
L=/ NVaO+v—=—pmT+v+p) — (1+v)]

or
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Ay =[1—cos 6, cos 8, — 2sin |6, — 0]
Xsin 1(8, + 6;)]/sin 6, sin &,
Ay =1[2cos 1(8, + G5)cos 1(6, — 6;) — 1

— cos 8, cos 8;]/sin 6, sin 6;.

We have the spherical triangle identities?

— 1

tanchotiA=M—cosc, (5a)

2 2 sin 1A cos 1B

inl

tanLBtan—LC=cosc—M, (5b)

2 2 cos 4B cos 14
ﬂll(—‘;g——_ﬂ=siniCcosiBsec-—1—A, (5¢)

sina 2 2 2
sin s 1 1 1
—— =cos — B cos — Ccsc — A4, (5d)
sinag 2 2 2

in the notation of Fig. 1.

With 4 =6,, B=6,, and C=86, in (5a); A =0,
B=6,andC=46,,in (5b);A=6,,B=6,,and C=86;in
(5c); and A =60,, B=6,, and C =0, in (5d); we get the
simpler forms

A, =S0—a) o, sinG—a) (6)
sin(s — a;) sin s

[1_'_(’1: j&cosx)z]
sin x

= A,, the integral in (4) is reduced to
ay 2

+J' ln<1+c°t2u‘)dx, 7
o 1 + cot® u,

tan u; = sin x/(4; + cos x),
u;)/A,;.

By means of the identity

1a2
ﬁ cCOS X = ﬂ.‘f_
1 —+— v 1 + A +

withd, =4,,A_

1+43
I=alln( + 2)
1442

where

1+

sin u; = sin(x —

Now,

FIG. 1. Spherical triangle for Eq. (5).
The perimeteriss=a + b +c.
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J l In(1 + cot® u;)dx
0
=2[a,— §]In}4)
ﬂl_gj §j
—ZJ ln[sintldt—ZJ In|sin ¢ |dt, (8)
0 0

where

sina
= tan~! ___) .
J (/1j + cos a,

Eq. (3) becomes

Equation (8) was not easy to derive, but is easily verified by
differentiating both sides with respect to a,. With the aid of
(6) we have

§1=5—a,,

§2=s.

In terms of Clausen’s function

d(x) = ——2f1n2|sint|dt= i sin 2 ,
o k?

L=La In 1—pcosa/(1+v) sin? s 4 sin®*(s — a,) sin®(s — a;)
2! 1+ucosa,/(1 —v) sin’*(s —a,) + sin’*(s — a;) sin’(s —a;)
+sln s1n(tv—a.1)s1n(s—a2) +a,ln s%n(s—a3)

sin s sin(s — a;) sin(s — a,)

+%[¢(s—al)+¢(s—a2)+¢(s—a3)—¢(s)]. 9

Finally, by means of the identities in (5), the first two factors in the argument of the first logarithm in (9) can be shown to
cancel and the remaining terms can be manipulated into the form

L=i[alln sin(iv—a.z)sin(s—a:‘) +a,n sin(f—a.l)sin(s—a3)
2 sin s sin(s — a,) sin s sin(s — a,)
tayln |[SBEZ @SN =) | pee gy 4 (s —ay) + Bl — a5) —¢(s)} . (10)
sin s sin(s — a3)

By combining (2) and (10) with the further identity”

sin s sin(s — a,)

- . =COt2-1—91,
sin(s — a,)sin(s — a;) 2

we arrive at Eq. (23) of Ref. 1. An alternative proof of this
result starting from the form (1) has been found by Baxter?
by using the properties of the Euler dilogarithm function.
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It is shown that commuting transfer matrix models in statistical mechanics are parametrized
by algebraic varieties having a set of automorphisms deduced from the so-called “inversion
relation.” In general this set of automorphisms is infinite: this shows that for algebraic varieties
of dimension 1, the models are parametrized by algebraic curves of genus 0 or 1.

I. INTRODUCTION

Commuting transfer matrices provide the best known
criterion for exactly solvable lattice models in statistical me-
chanics (or models of quantum field theory). A key role is
played by a special system of algebraic equations, the so-
called Yang-Baxter equations (or star triangle relation or
factorization equations): the underlying reason is that the
(local) star-triangle relation is a sufficient (and, to some
extent, necessary') condition for the commutation of (glo-
bal) transfer matrices.

These Yang-Baxter equations can be seen as certain ho-
mological conditions that describe the structure of the exact-
ly solvable models. A large number of solutions of the Yang—
Baxter equations have been found and recorded.>® One
should, however, note that all these solutions are parame-
trized in terms of elliptic, trigonometric, or rational func-
tions. The few examples that gave some hope to elaborating
more sophisticated structures seem to confirm a somewhat
disappointing situation: the two-dimensional vertex models
for which a uniformization by theta functions of genus g > 1
was introduced do not satisfy the Yang-Baxter equations
despite the fact that a Zamolodchikov algebra does exist for
these models (because of the Frobenius relation on theta
functions)*>; on the other hand, the remarkable solution to
the three-dimensional generalization of the star triangle
equation, namely the “tetrahedron equation,” obtained by
Zamolodchikov and Baxter, turned out to be closely related
with the two-dimensional free fermion Ising model (for
which an elliptic parametrization occurs).®’ The star-trian-
gle relation appears to be a very stringent structure (overde-
termined set of equations) and this fully legitimatizes the
attempts to classify exhaustively these remarkable nontrivial
solutions. Along this line one should recall the beautiful pa-
pers of Belavin—-Drinfeld (in which an exhaustive classifica-
tion of some “classical” limit of the Yang—Baxter equations
related to simple Lie algebras is displayed®) as well as Jim-
bo’s success at “quantizing” this classical limit by introduc-
ing a g-analog of the universal enveloping algebra and an
associated Hecke algebra.® But an exhaustive list of solutions
is still unavailable.

We will not deal in this paper with the (infinite-dimen-
sional) Lie algebra aspects of the problem. The aim here is
rather to suggest an approach to this classification problem
that concentrates on the parametrization of the Yang-Bax-

*) Laboratory associated with CNRS VA 280.
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ter equations in the framework of algebraic geometry. We
shall show that the parameter space of the exactly solvable
models of statistical mechanics is naturally foliated by alge-
braic varieties that are stable under the action of a generical-
ly infinite number of birational transformations. Our prob-
lem then reduces to classical problems of algebraic geometry
(algebraic varieties possessing an infinite set of automor-
phisms, diophantine equations, etc.) for which numerous
results are available.

In that generic case, the existence of an infinite set of
automorphisms does not allow these algebraic varieties to be
of the so-called “general type.” In particular when these are
of dimension 1 it means that the model can be parametrized
by curves of genus 0 or 1 only (elliptic or rational parametri-
zation). The study of these varieties, which are not of the
general type, will lead us to make a distinction between the
varieties obtained by a complete and an incomplete intersec-
tion.

The requirement that the group of automorphisms be
finite very sharply constrains the model: for instance, in the
case of the anisotropic g-state Potts model this imposes a
restriction to the values

(m,neZ).

These particular values have already been singled out by
many authors (Tutte-Beraha numbers, two-dimensional
models with conformal covariance, rational critical expo-
nents, etc.!%1).

The results of that paper are not restricted to two-di-
mensional exactly solvable models. No assumption is made
on the existence of a particular classical limit for the Yang—
Baxter (or tetrahedron) equations.

g=2+42cos2mm/n

Il. THE BAXTER MODEL

Let us recall briefly some basic results concerning one of
the most important exactly solvable model: the symmetric
eight-vertex Baxter model.!? It is parametrized by four ho-
mogeneous variables (a,b,c,d)eP,;, and the Yang-Baxter
equations take the form of six trilinear homogeneous equa-
tions for three sets of pointsin P;: (a,b,¢,d), (a',b',c’,d '), and
(@",b",c",d"). This system of homogeneous equations has
nontrivial solutions if

F(abecd)=F,(ab'c'd’)y=F(a",b",c"d") (1)
and
Fy(a,bed) =F,(a'b'\c’'d’) =F,(a",b"c"d"), (2)

where
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F,=(a®+b*—c*—d?)/ab
and
F,=cd /ab.

The Yang-Baxter equations imply the commutation of the
2V % 2" row-to-row transfer matrices for arbitrary N (X is
the number of vertices in a row), that is,

[Tx(abed), Ty(a',b'c'd)] =0,

when Eqs. (1) and (2) are satisfied.
The integrability of the model leads thus to the follow-
ing foliation of the parameter space:

F,(a,b,c,d) =K, = const,

F,(a,b,c,d) = K, = const.
One recognizes the well-known projective representation of
an elliptic curve as an intersection of quadrics in P,

(Clebsch’s biquadratic). One can introduce the following
elliptic parametrization:

(3)

a = p-sn(v + n,k),
b=psn(n —vk),

¢ =psn(2n,k), 4)
d = pk-sn(2n,k)sn(y — v,k)sn(v + 7.,k),
with

Kl =2 Cn(zﬂ,k)'dn(z”l,k),
K, = ksn’(27,k),

where sn, cn, and dn are the Jacobian elliptic functions of
modulus k. With that elliptic parametrization the Yang-
Baxter equations simply read

v+ +U =1 (5)
In this particular case we have an obvious connection
between the Yang-Baxter structure and the Abelian charac-
ter of the algebraic curve. There also exist exact symmetries
on the model, the so-called inversion relations, ! which cor-
respond to rational transformations on the parameters of the

model. These transformations are involutions and will be
denoted by I and J:

I a—a/(@®—d?), b-b/(b?—=c?),

c—» —c/(b*—=¢*), d— —d/(a*—d?), (62)
J: a—a/(@@—c?), b-b/(b%*—d?),
c— —c/(@*—c*), d—» —d(b?—-d?). (6b)

Here F, and F, are invariant under I and J. With the elliptic

parametrization I and J reduce to
I v—-+29p—v, J: v——2n7—v.
They are conjugate via the ““crossing” symmetry on the mod-
el
ab, v— —v.

These involutions generate an infinite discrete group G of
symmetries of the model isomorphic to the semidirect prod-
uct

Z,6Z (v—>+v+2nm, nel).

This infinite set of birational transformations preserve the
elliptic curve (3) and the modulus of the elliptic functions.
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One should not confuse these transformations with the iso-
genies of the elliptic curve (Landen, Jacobi, Legendre trans-
formations). One of these isogenies, the Landen transforma-

tion k—k; =2Jk/(1+k) can be identified with a
generator of the renormalization group for that model (a
fixed point of that transformation is £ = 1, the critical point
of the model): the group G and the renormalization group
act in an “orthogonal” way.

Finally the Baxter model trivializes on the so-called dis-
order varieties of the parameter space, on which the parti-
tion function reduces to that of an isolated vertex. For this
model these varieties have a very simple expression; one of
these varieties, for instance, reads

a+d=b+ec. @))]
The partition function per size Z is then very simple:
Z=g+d. (8)

Of course these disorder varieties correspond to a trivializa-
tion of the parametrization: equation (7) corresponds to a
relation between F, and F, and a value of the modulus of the
elliptic functions for which this parametrization trivializes

F1=2—2F2:>k= —1 (OrkL=oo).

lIl. INTRODUCTION TO THE GENERAL SITUATION

For the sake of simplicity we restrict ourselves to the ¢-
state IRF model® but the ideas we develop here also apply
straightforwardly to two-dimensional vertex models, three-
(or higher-) dimensional models. In order to fix the nota-
tions let us first recall the definition of the g-state IRF model.
The spin variable associated to each site / of a square lattice
are assumed to take g values: W(o;, 0;, 04, 0;) is the Boltz-
mann weight associated to each of the ¢* spin configurations
around a face with sites i,j,k,/ (see Fig. 1). The model de-
pends therefore on g* homogeneous parameters (xy,..., X; ...,
Xz ). The partition function per site Z is defined by

ZN= z ]:[W(a'i,o-j)a-ksa-l) (aiezq)9 (9)
{o} U
where the product is taken over all the elementary square of
the lattice and N is the number of these squares.

More accurately the partition function (or even the
transfer matrices) are invariant under some “gauge” trans-
formations

D(o;,01) Alo;,0))

W(0,:,0;,0,,0,)—W(0,,0;,0,,07) .
e A D(o;,0,) A(0y,0%)

(10)

The analysis made in this paper forgets these trivial transfor-
mations. There exist two inversion relations I and J. They
act on the Boltzmann weight to give W, and W, defined by
(see Fig. 2)

> W(0,,0,,0,0,) W1(0,,04,0;,0,,) =A-80,,0,,, (lla)

> W(0,,0,,0,0:)* W,(0;,0,,,01,0, ) =A-60,,0,,. (11b)
43

These transformations amount (up to a rotation of the ele-
mentary square) to looking at W, in two different ways, as q
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6, 0
FIG. 1. The Boltzmann weight W(o;, o0;,
W 0., 0, ) associated to each of the g* spin con-
figurations (o;, 0;, 0%. 0;) around a face
with sites i,j,k,l.
q G,

g X q matrices, and taking the inverse of these g° matrices as
(W(0,,0,,0:,0)) > W, 5 (0;,0,) ot W, (0,,0))

Because of this composition by a rotation these transforma-
tions are not involutions as the one previously introduced for
the Baxter model; they are generally of infinite order.

These transformations I and J are both birational trans-
formations
N P (X150 g0 )

Qi (XpyeXys)
where P, and Q; are two homogeneous polynomials of de-
gree g — 1 and g in the x;’s, respectively, with integer coeffi-
cients (+ lor —1).

This model may seem to be too general, depending on a
too large number of parameters. The usual practice corre-
sponds to imposing different symmetries or constraints on
the model in order to restrict the number of homogeneous
parameters of the model (equalities between different x;,’s,
exclusion of some configurations x; = 0, etc) from g*ton.In
the following we will restrict the parameter space to such a
homogeneous space P, _ , with the condition that the (ra-
tional) transformations 7 and J leave that subspace invar-
iant. Heuristic arguments based on the transfer matrix for-
malism enable us to show the partition function per site pre-
sents some automorphy properties with respect to these two
transformations (11a) and (11b) and of course the group G
generated by these two transformations'*:

Z (XX YZ I(x1)y I(x,,)) =4,
Z(XyyeX, Y Z(J(X)), 0 (x,))=A".

=I(x;) or J(x,), (12)

i

(13a)
(13b)

G .
%
w].
o G | =X _
w i, Gm
<, G,
P NG
G 2 G
/
WIW [ = X§
O Gm
G G
L ? T/m

FIG. 2. Pictorial representation of the definition of the two inverse Boltz-
mann weights W, and W,.

2778 J. Math. Phys., Vol. 27, No. 11, November 1986

The group G is, in general, an infinite discrete group. We
now suppose that the model is exactly solvable in the sense
that the Yang-Baxter equations are satisfied for the model.
This leads to the commutation of the row-to-row (and also
column-to-column) transfer matrices for arbitrary size N
(ITx (W), Ty (W')} = 0). The commutation of transfer ma-
trices of specific sizes N leads to a set of algebraic equa-
tions'*'* (see Appendix A for a simpler demonstration
than in Ref. 1):

Foy(xyeX,) =F, n(x1,.00%,), (14)

where

Ua,N (xlr-"rxn )

Fa (x ,...,x,,) = ]
AR Veon (Xp5eX,)

where U, y and V5 are homogeneous polynomials (of de-
greed, 5 ) with integer coefficients. It can be shown that the
algebraic varieties defined by the intersection of the expres-
sions F,, 5 corresponding to the row-to-row and column-to-
column transfer matrices are invariant under the transfor-
mations I and J (see Refs. 14 and 16):

F, v (x1,00%,) = Fy p(I(x1)50 I(x,)) = - . (15)

This is a consequence of the fact that if a Yang-Baxter equa-
tion exists for the Boltzmann weight (W, W',W ") there nec-
essarily exists another one involving W ; and W and in fact
an infinite set of other triplets of Boltzmann weights corre-
sponding to some transformations of the initial triplet
(W,W’',W ") under the action of the group G (see Ref. 14).
In the previous example of the Baxter model this corre-
sponds to saying that Eq. (5) is also satisfied if one replaces
(,v'w”") by  (2nm+02n,m+V.2nm +0v")  with
ny+n,+n;=0.

An integrable model must therefore present the two fol-
lowing remarkable features.

(1) The infinite set of equations (14) corresponding to
the various values of ;¥ must be redundant and equivalent to
a finite set of m equations (m<n — 2) we will denote from
now on by F, (a = 1,...,m) (if this is not the case we are
reduced to the trivial commutation of a matrix with itself).

(ii) The algebraic variety 7~ defined by the intersection
of these m equations (of dimension # — 1 — m) has to be
invariant under the infinite discrete group G of birational
transformationsin P, _,.

Therefore one sees that the exactly solvable models are
naturally parametrized in terms of algebraic varieties that
have (in the general case) an infinite group of automor-
phisms.

IV. RESULTS
A. Algebraic curves

In almost all the examples of exactly solvable models
known in statistical mechanics the algebraic varieties 7~
turn out to be of dimension 1 (i.e., an algebraic curve). The
following result is well-known: the only algebraic curves
with an infinite group of automorphisms are of genus 0 or 1
(see Ref. 17).

In other words, if the group G does not degenerate into a
finite group G, one has to deal with a rational or elliptic pa-
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rametrization. This result can be understood in the following
heuristic way: the main distinction between the curves of
genus O or 1 and curves of the general type of genus g>>2 (for
which one would have to envisage a uniformization in terms
of automorphic functions) lies in that there exists a finite
number of particular points, called the Weierstrass points,
for the curves of general type. (A point is called an ordinary
point if the gap values are 1,2,...,g; otherwise it is called a
Weierstrass point.) The group G that leaves invariant the
algebraic curve must leave invariant these points. One un-
derstands that it is difficult for an infinite discrete group to
leave invariant such a finite set of points. An old demonstra-
tion of Hettner (and also Noether) is based on these ideas. It
is amusing to notice that if we consider a rational point in
P,_, (x,€Q=>F,€Q), the images of that point by the infi-
nite group G are also rational points. We are thus led to an
algebraic curve with a (generically) infinite set of rational
points: Falting’s theorem confirms that the curve has to be of
genus O or 1 (see Ref. 18).

Now that we have a precise characterization of the
curves that can possibly arise in the context of exactly solv-
able models it is useful to study the projective representation
of an elliptic curve (in P, ); the results are the following: the
only case when a curve of genus 1 is given by a complete
intersection are the plane cubic in P, and the previous
Clebsch’s biquadratic in IP5; the other representations are in
P, (n>4) and correspond to incomplete intersections. The
case of incomplete intersection may, at first sight, seem rath-
er academic as far as statistical mechanics is concerned.
However, there does exist at least one interesting example of
model corresponding to that situation: for the hard hexagon
model® the elliptic curve that parametrizes the model is giv-
en by an incomplete intersection of a quadric
F, =const=C,, a cubic F, =const =C,, and a quartic
F,=const=C,inP,,

X3 — X,Xs X X2 4 XsX3 — X X X5
Fl = — 2= s
X2X3 X1X5X3 (16)
2 2 2.2 2.2
X1 X3 X5 + X X3X4 — X4 X5 — X3 X3

F,=
XX3X4Xs

On these expressions one verifies immediately that the inter-
section is incomplete (as it should) because it contains the
spurious varieties x, =x, =x, =0 and x, =x; =x;,=0.
The genus of the algebraic curve defined by this intersection
can be calculated from the formula of addition of the charac-
teristic of Euler-Poincaré:

1 —g=y(0p,) —x(0(—2))
—x(0( = 3)) — y(0( —4)) + x(0( = 5))
+x(O(—6)) + y(0( — 1)) — y(O( —9)),
(17)
with
xlom)=[(n+1)(n+2)(n+3)(n+4)1/4
leading to a rather high genus if there were no singularities.
The g = 1 case of the hard hexagon model corresponds to
two relations between the previous constants C; that raise
the number of singularities to a maximum and thus reduce
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the genus to a minimum (g = 1):
CI’C2 - 1 and Cl + C2 = C3.

B. Algebraic surfaces

The problem of the classification of algebraic surfaces is
much more complicated.?® There exist invariants playing a
role similar to the genus for curves (Kodeira’s dimension,
etc.) One can sketch the classification that way: first come
surfaces of “general type,” which have only a finite number
of automorphisms. This case is excluded when G is infinite.

The surfaces that are not of the general type fall into five
different classes (up to a birational correspondence): (a) the
rational surfaces birationally isomorphic to P,; (b) the ruled
surfaces (I' XP,) (these are surfaces that can be mapped
onto a curve in such a way that all fibers of this mapping are
isomorphic to P,); (c) the elliptic surfaces (fibrations by
elliptic curves); (d) Abelian surfaces; and (e) K 3 surfaces.
TheK 3 surfaces have the property in common with Abelian
surfaces that their canonical class is 0. However, in contrast
with Abelian surfaces there are no regular one-dimensional
forms on them.

These five sets of surfaces can all admit an infinite set of
automorphisms.

Let us now assume that the algebraic variety " is given
by a complete intersection (this corresponds a priori to the
simplest situation in statistical mechanics).

A classical theorem (see Ref. 21, pp. 401 and 402)
shows that complete intersection of dimension 2 has a trivial
homotopy group (7; = 0). Thus the assumption of com-
plete intersection excludes the Abelian surfaces and imposes
that the variety 7" has singularities. To be more specific, this
situation of complete intersection occurs for a cubic or a
quartic in P;, for the intersection of two quadrics in P, corre-
sponding to a rational surface, and for the intersection of a
quadric and a cubic in IP, or the intersection of three quadrics
in Py that correspond to a surface of type K 3.

In the case of a surface of type K 3 any explicit parame-
trization of the surface is, of course, hopeless.

C. Algebraic varieties of dimension> 2

Little information is available concerning the classifica-
tion of these varieties. However, remarkable progress has
been made during the past few years.?! It is possible to define
some invariants that unfortunately play only partially the
role of the genus for algebraic curves (Betti numbers, etc.).
Despite this complexity it is possible to single out varieties of
a “general type” for which the number of automorphisms is
finite.

The varieties that are not of a general type constitute a
jungle, which is, however, fairly well understood in the sim-
plest case of complete intersection.

Thus the situation seems rather unsatisfactory: one
would like to be able to find other algebraic varieties invar-
iant under the action of the group G that would make it
possible (by taking the intersection with the algebraic varie-
ties 77) to restrict the problem to an algebraic variety of
lower dimension (eventually of dimension 1, leading to a

foliation of the algebraic variety by curves of genus O or 1).
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Fortunately such varieties can be obtained taking into
account the fact that the inversion relations correspond (up
to rotations of the elementary square) to taking the inverse
of a set of matrices (see Appendix B). Of course, this ap-
proach applies only for algebraic varieties of dimension >3.
In the case of the Baxter model one can, for instance, exhibit
in this way algebraic varieties defined by an intersection ac-
tually invariant under the group G:

abed /[ (a® — ) (b% —d?)] = const, (18a)
abed /[(a* —d?) (b2 — c?)] = const. (18b)

However, the curve given by the intersection of these two
quartics has, in general, no intersection with the elliptic
curve (3).

V.G IS A FINITE GROUP

The previous analysis is based on the infinite character
of the group G. When the group G is finite this leads to
algebraic constraints on the parameter space that character-
ize the model very precisely. For every element g of G there
exists an integer p such that g” is equal to the unit element of
G. This equality translated on the homogeneous parameters
x; means that the model is restricted to some very particular
algebraic varieties.

Let us now recall the hexagon model, which can be seen
as a subcase of the S.0.S. eight-vertex Baxter model?’: de-
spite the fact that this model has a finite group G, it presents
(as we have mentioned already) an elliptic uniformization,
which can be seen as a restriction of the elliptic uniformiza-
tion of the Baxter model.?®> Nevertheless, it is true that it is
difficult to specify the algebraic varieties corresponding to a
model, with a finite group G, that is not obviously embedded
into a larger model with an already known uniformization.
It is, however, possible, in the case of algebraic curves of
genus g, to give an upper bound of the order of the finite
group G (see Ref. 17): [G]<84¢g — 3.

VI. DISORDER VARIETIES

We have already remarked that the Baxter model trivia-
lizes on a simple disorder variety (7). In fact such disorder
varieties are quite easy to find®* and their corresponding co-
dimension is rather low. For instance, in the case of the 16-
vertex model, there exist disorder varieties of codimension 1
in the parameter space. This should be compared with the
codimension of the parameter space of the exactly solvable
subcase of that model, the Fan and Wu free-fermion model’
and the Baxter model of codimensions 4 and 5, respectively.

For instance let us consider a subcase of the 16-vertex
model that has the two previous integrable models as sub-
cases (but is not integrable in general): the asymmetric
eight-vertex model. The homogeneous parameters of that
model are usually denoted a,a’, b,b’, c,c’,d,and d ' (the sym-
metric eight-vertex model corresponds to a =a’', b="b",
¢ =c',and d =d"). That model has a disorder solution on
the (disorder) variety given by the quartic equation (this
result has also been obtained recently by Giacomini®®)

(a+a')+((a+a)?—4(ad’ —dd"))/?
=b+b)+((b+b")2—4(bb’' —cc))/2 (19)

If the model were integrable, there should occur a trivializa-
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tion of the parametrization on this disorder variety and also
on the images of this variety by the infinite group G generat-
ed by the two inversion relations. It is a simple and instruc-
tive exercise to verify that there does, in fact, exist an infinite
number of such images except in the two already-mentioned
cases of the Baxter model and the free-fermion model
(aa' + bb' = cc’' +dd’), where the number of images of
(19) under the action of the infinite group G is finite. The
checkerboard Potts is another example of an infinite number
of images of a disorder variety under the action of G (see Ref.
26); moreover one has a remarkable and instructive agree-
ment between the exact expressions of the (analytical con-
tinuation of the) partition function on this infinite set of
algebraic varieties and the exact expression of the partition
function on the critical variety where the model is exactly
solvable.?’

The existence of such an infinite set of varieties at first
seems hardly compatible with the exact solvability of the
model. An obvious situation where this set is finite is when
the group G is itself finite. Let us consider the checkerboard
Ising model: this model has an elliptic uniformization and
the modulus of the elliptic functions that occur is given (in
terms of the high-temperature variables ¢; = th K; and the
dual variable

1—¢

L, by Eq. (20):
Tre, y Eq. (20)

4 (e (1 —10)

k=11

A e ) (1 —t2)
(i,j,k,l) = (192’394)

This algebraic expression trivializes on the disorder varieties
of the model, on the dual of these disorder varieties (and of
course when the coupling constant of the model trivializes
t;=0,t = + 1, t*¥=1). From this example it is rather
tempting (if one is willing to bet on the exact solvability of
the noncritical three-state Potts model) to guess an algebraic
expression k associated to that model from the known equa-
tions of the disorder varieties and their images under the
group G (see Refs. 28 and 29).

tF=

(20)

VII. CONCLUSION, PROSPECTS

The exactly solvable models are parametrized by means
of algebraic varieties having a group of automorphisms de-
duced from the so-called “inversion relations.” It is very
constraining for a model of statistical mechanics to ask for
this group to be finite. It is, in general, infinite and this shows
that these algebraic varieties are not of the “general type”
(but this does not prove that they should be Abelian varie-
ties). For algebraic varieties of dimension 1, this sheds a new
light on the occurence of curves of genus O or 1 only for all
the exact models known at the present moment. Of course
this is just a preliminary work and these ideas will be pursued
in forthcoming publications. The ideas we have developed
here also apply, mutatis mutandis, to statistical models in d
dimensions with the difference that the number of inversion
relations that generate the group G grows with the dimen-
sion d. A priori there is no relation between these generators.
Therefore the group G is in general a very “large” one (infi-
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nite discrete of course): is it possible for algebraic varieties to
have such a large group of automorphisms?
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APPENDIX A: ALGEBRAIC CONDITIONS FOR
COMMUTATION

The commutation of two n X n matrices 7'and T’ leads
to the existence of algebraic expressions in the coefficients of
these two matrices F, (T) = F, (T'). They can be seen as
some symmetric functions of the eigenvectors shared by T
and 7"’. We sketch here a simple way to get these F,,’s: Let us
denoteby Cand C’ two matrices that are linear combinations

of powers of Tand T,
n—1 n—1
C= zap-TP, C'= Za[’,-T"’.
p=0 p=0
We have

[T.T’] =0=[CC'] =0. (A1)

Let us denote by C;;, C ;;, T;;, and T'j; the coefficients of these

matrices. We can choose a, and @, some algebraic expres-
sions of the T; and T'; such that

Cln #0,
C1.#0.

C,;=0, j=lL.,n—1,
=0 j=1lL.,n—1,

Equation (20) then leads to
vi: Ci,/C.;=C,,/C,;. (A2)

Similar algebraic expressions can be obtained imposing C
such that

C,=0, j=l..,n—1, C,#0.
APPENDIX B: G-INVARIANT VARIETIES

The characteristic polynomial P,, (1) of an n X n matrix
M and of its inverse matrix M ~! are related:

APy (1/4) = Py ().
We denote by ¢; the coefficients of P,, (1) and obtain
P y(A)=A"4cy A" T A" e+,

An immediate consequence of (B1) is that the expressions
¢, =c;c,_;/c, are invariant under the transformation
MM ~'. These expressions are the ratio of two homogen-
eous polynomials of degree 7 in the coefficients of the matrix

(B1)
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M. The inversion relations 7 and J correspond (up to a per-
mutation of the homogeneous parameters of the model x; )
to taking the inverse of a set of g> matrices M,. One can
associate to each of these matrices the corresponding expres-
sions ¢¢.

Let us consider ¢; the product of the ¢{ and algebraic
expressions 4; invariant under the previous permutation of
the x;; the algebraic variety defined by the intersection of
equations

&, (x,,...,2x,,) = const, A;(X4,...,x, ) = const

is invariant under the inversion relations f and J.
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In one space—and in one time—dimension a diffusion equation is solved, where the first time
derivative is replaced by the A-fractional time derivative, 0 < A< 1. The solution is given in

closed form in terms of Fox functions.

I. INTRODUCTION

The concept of fractional derivatives, expressed as a
convolution with ¢, (see Ref. 1) and the theory of Fox func-
tions>™> are used to solve the following two fractional diffu-
sion equations.

Problem I:

2
e % Tt =, (0+T(x1), xeR.,,

a>0, 0<A<], (1.1)
T(x,0) =0(x), T(0;¢) =0, t>0.
Problem II:
9 T =¢_, (s T(x0), xR,
ox?
a>0, 0<A<1, (1.2)

T(x,0)=0(x), TOHN=—1, t>0.
Observe that problem I and problem II only differ by a trans-
lation in temperature. However, by treating the two prob-
lems separately, we will see the different information con-
tained in the corresponding Fox function solutions. This
reflects relations amongst Fox functions.

For A = 1, the problems reduce to classical diffusion
problems. In this case we have the solutions.

Problem I (A=1):

T(x,t) = Erf((1/2a)t ~V%x), xeR,. (1.3)
Problem II (A=1):
T(x,t) = Erf((1/2a)t ~'*x) — 1, xeR,. (1.4)

The long time behavior in problem I for A = 1 is given by
T(x,ty = (1/aym 2 (xt ='1?). (1.5)

For 0 <4 < 1, we have a nonstandard diffusion, possibly
being due to impurities. We solve problem I and problem II
exactly and discuss the asymptotic behavior.

Il. THE FRACTIONAL DIFFUSION EQUATION

The fractional diffusion equation for both of our prob-
lems is the following integrodifferential equation
(r—7)~*!

dr, xeR_,
) 7, XeR,

(2.1)

a2 _‘ﬁ T(x,t) = ft T(x,7)
Ix? o

where 0 < A< 1. Here we take into account! that
d, (JC)EJCﬂ,’1 “YT)

are distributions in (D ') , and entire in A.

(2.2)
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Both of our problems are invariant under the following
scaling:

>0, x—ox and t—oM, 2.3)
and thus

T(x,t) =F(t —*"*x). 2.4)
This is shown by using the substitutions

y=t"*"?x, z=71"""x (2.5)

in the integrodifferential equation (2.1). We get now an
equation for F(y):
29 Fo) _ 2
ay? AT (=A)

Jw dzyZ/,{z— 1 -—2/)~F(Z)
¥y

2/A1—1—-2
x[l—(l) ] ) (2.6)
z
Introduce the distribution
2
—— (1—-¥)*", O<w<],
g(w) =1AL(—=A4) (2.7)
0, w>1,

then Eq. (2.6) reads
2, d’? [ —1-2/4 Y
a*—F(y)=y dzz F(z)gl=]. (2.8)
dy2 0 ¥4
The boundary conditions are as follows in the problems be-
low.

Problem I:
F(0) =0, F(w)=1. (2.9)
Problem II:
F(0O)= —1, F(ew)=0. (2.10)

lll. SOLUTIONS OF THE PROBLEMS
We first compute the Mellin transform® of Eq. (2.8):

ﬁ(s)sf F(p) y'~ ' dy,
0

@*(s — 1) (s — 2)F(s — 2) = F(s)8ls + (2/2)), (3.2)
with

3.1

((A/2)s)

8(s) = . 33
8 =T i+ /s (33
We then get the difference equation
A L1+ (A4/2)s) %
2(s—1 —2)F(s—2) = F(s).
a (s—1)(s—2)F(s—2) T — A+ (1/2)3) (s)
(34)
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Taking into account the path and pole structure, ex-
plained in the Appendix, the solutions, compatible with the
boundary conditions, are as follows.

Problem I:

(=3 +s/2)T(1 +5/2)

F(s) = 7122y L
T(1—s)I(1 + (A/2)s)

Problem II:

FOrd+2/sIa+s/2)

F(s) = — 7 2(2a)° .
(1 +s)T(1 + (4 /2)s)
(3.6)

We now compute the inverse Mellin transforms: First
let

F(s) = 7 122a)%h (s). (3.7)
Then
F(y) =7~ "2h((1/2a)y), (3.8)
where A(z) is given by the following problems.
Problem I:
4 foo
h(z)=i_ (-4 + 1) (1 4+ 45) z=5ds.
2miJemiw  T(1 —)T{1 + (4 /2)s)
(3.9)
Problem II:
¢ + foo
h(z) = __1__f F(S)F(%+%S)F(l+53)z_sds
2mi Je—iw D1+ 85)T(1 + {4 /2)s5)

(3.10)

Reéplacing s by — s and using the theory of Fox functions
(see the Appendix) we get for our two problems the follow-
ing solutions.

Problem I

h(z) =_Lj F(S)F(%—és)l“(l—.hl,s)z,ds.
L

(3.1
27i Jo T(1 + )1 — (4 /2)s)

The Fox parameters are
m=2) blxéy Bl'_:%,
b2 = 1, BZ = %’
n=1, a =1, a; =1,
b3 = 0’ B3 == 1:

a2=l%;/2,

qg=3,

p=2, a,=1,

and thus

(LD);(1,4/2) ) (3.12)

h =H2l (
@ =H3 2| L, (1130,
Problem II:

1 [ D(=9T@— 4T =) .

h(z) = ——
2riJr T(1 —=s)T(1 — (A4 /2)s)

(3.13)
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The Fox parameters are
m=3, bl"-:o, ﬂ1=l,

and thus
—5(L1),(1,4/2) )
(0y1)9(1’%))(1’1); -/

IV. POWER SERIES EXPANSIONS; ASYMPTOTIC
EXPANSIONS

According to the theory of Fox functions we identify the

following expressions.
Problem I

A(s) =T} —1a)T(1 — is),
B(s) =T'(s),
Cis)=T(+s),
D(s) =T(1 — (1 /2)s).

The poles of 4 are given by
PA)y=1{s=k, k=1.2,.}

and the poles of B by
PB)={s= —k, k=0,12,.}

and thus P(4) A P(B) = ¢.
Problem II:

A() =T(—-T(G -1 -9,
B(s) =1,
C(s) =1,
D(s) =T'(1 —=5)I(1 — (4 /2)s).
The poles of 4 are given by
PA)=1{s=k k=0,1.2,.}
and the poles of B by
P(B) = ¢,

and thus indeed P(4) AP(B) = ¢.
For our two problems we now get the following power

h(z)= —HY (z (3.14)

4.1)

(4.2)

(4.3)

(4.4)

4.5)

(4.6)

series expansions.
Problem I: First notice that u = 1 — A /2> 0. Then
A(s)B(s)
Hil(z)= — Res (————-—zs) 4.7)
2 20 "\ Corne
or explicitly
& 1
h(z) =2 — 1)k
(2) kgo (-1 o
{ 1 rd—k) 2k 1
2k +1T(1 — (A /2) —Ak)
I _T(=3-h z2k+2]. (4.8)
2k 42 I'(1 —A —Ak)
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Problem II: First notice thaty =1 — A4 /2> 0. Then

A(s)B(s)
HR(z)=— $ R (-——z‘) 4.9
2@ =- 2 R\ Cope (4
or explicitly
W@ = —vr+2 3 (=D
k=0 k'
o R
2k +1T(1— (A/2) — Ak)
1L _[(=i=h zz"”]. (4.10)
2% +2 T — 4 — k)

We now determine the asymptotic behavior of our solu-
tions.

Problem I: First observe that § = (1 — A /2)7m = pur
and thus 8 > (7/2)u. Then

A(s)B(s)
H%(2) = R (———zs) 4.11
BO= 2 R\ Cwpe) @1
or explicitly
h(z)=V'm, (4.12)

as |z|—> oo, uniformly on every closed subsector of
larg z| < (7/2)(1 — A /2).

Problem II: First observe that » = 0 and ¢ = m and thus
8 = uw. Therefore we have an exponentially small behavior.
Then

H¥(z2) = — 2mE(ze™) (4.13)
with
a=3 B=2A/)""7 pu=1-4/2
We find
Hgg (Z) zlu—S/Zﬂ — 172 i ( _ l)kAk”—k
k=0
XB ~Kug 1= s Y (4 14)

as |z|—»c uniform on every closed subsector of
|arg z| < (7/2). The coefficient 4, is given by

Ay =2"2u(2/4)V2 (4.15)

V. EXPLICIT SOLUTIONS AND DISCUSSION

From (2.4), (3.8), (3.12), and (3.14) we find the solu-
tion to our problems.

Problem I:
T(x,t)
- 1 _ (1,1);(1,/1/2))
— 12gp21 {2 L —an
=T H23(2at *lap.apon) OV
Problem II:
T(x,t)

1
- _7—1/2H%(3)( F A2
2a

—(L,1),(L,A/2) )
(0,1),(3,1),(1,3); =/

(5.2)
From (4.8) and (4.10) we see that the boundary conditions
are satisfied. From (4.12) and (4.14) we see that also the
initial conditions are satisfied.
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For x >0 we have the following long-time behavior.
Problem I:

1 1

T(x,t) @ —————— — —A72%, (5.3)
D= FT-2/D x

Problem II:

T(x,t) =~ — 1 1 1 4%, (5.4)

*Ta—i/2 4

For the special case A = 1, we have the usual diffusion equa-
tion. From (4.8), (4.10), and (4.14) we get the following
results:

Problem I (A=1):

T(xt)—ii(_l)"i L (—l—t“lﬂx)z“l
7 & k!'2k+1\2a
=Erf(—1—t_'/2x). (5.5)
2a
Problem IT (A =1):
T(x,t) = — 1 + Erf{(1/2a)t — V*x) (5.6)

and the exponentially small asymptotic behavior
t— 1/2

1 1 x?
T(x,t) e — —— xex(— ),
(0 P\ ™%

J7 24

(5.7)

as

x/\/t_——>oo.

We have treated the two problems in a parallel way to exhibit
the richness of Fox functions especially as related to the
asymptotic behavior.

Remarks: (1) The above analysis is also valid for
I<d <2

(2) The fractional diffusion equation has been derived
by Nigmatullin’ for a medium with fractal geometry (po-
rous medium).

APPENDIX: FOX FUNCTIONS?5
The Fox function
H7(2)
_ g (z (@1,01) 5000y (@5 @1 )3 (@ 4 1@ 4 1) 505 (@) )
P (blﬁl),~--,(bmﬁm);(bm+1’Bm+1),---,(bq»ﬂq)
is defined by the contour integral
1 A(s)B(s)

Hmg) =L [ A®BE .40
W= Cope -~

with

A() = [] Ty —Be),

k=1

B(s) = H (1 —a, +a;s),

k=1
q
C(s) = H L1 —b, 4 Bis),
k=m+41
P
D(s) = H L(a;, — ags).
k=n+1
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Here m,n,p,q are integers satisfying

0<ng p, 1<m<y.
For n = 0 we put B(s) = 1, for g = m we put C(s) = 1, and
for p = n we put D(s) = 1. The Fox parameters (a,,...,a,)
and (b,,...,b,) are complex, whereas (ay,...,a,) and
(B1,---B, ) are positive numbers.

These parameters are restricted by the condition

P(A) NP(B) = ¢,
where
PA)={s=(b; +Kk)/B;, j=1,..m; k=0,1,2,..},
PB)={s=(a;—1—-k)/a;, j=1,...ns k=0,1,2,...}
are the set of poles of A(s) and B(s), respectively. The inte-

gration contour L runs betweens = oo + icands = « — I,
where

¢> max {[Imb,|/B},
1< j<m

and such that P(A4) lies to the left of L, and P(B) to the right
of L. From now on we assume that

p= iﬂk_ i a; > 0.

k=1 =1

In Ref. 3, also the case i = 0 is treated. Under these condi-
tions H ;"(z) is an analytic function for z#0, in general
multivalued (one-valued on the Riemann surface of In z). It
is given by

H7Mz2) = — z Res

seP(A4)

(A(S)B(s) z‘)
C(s)D(s) /°

The asymptotic behavior of H ;;*(z) for |z]—c0 is deter-
mined by analytic continuation. Here we give the results for
the two cases.

First let

SE(iﬁj— i aj)ﬂ'.

=1 j=n+1

Case 1 (n>0, §>um/2) Then

(A (8)B(s) z’)

H77(z)~ ) Res D)

seP(B)
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as |z|— o0, uniformly on every closed subsector of
|argz| <8 — . - (m/2).
Case 2 (n=0, g=m):
H; ()= Q2m)" — pgim(a—1/2) fy( zgimt)

as |z|— oo, uniformly on every closed sector (vertex at 0)
contained in

larg z| <pm/2.

Here
1 - —a—k gy (/)
E@)=5— 3 A (Bu')! 7 Pr BT
21Tl,u k=0
where the constants o and 3 are given by

q
a= i a— 3 b +—;—(q—-p+l)

and

and g = m.
The coefficients A4, ,k = 0,1,2,..., are determined by

AG)B(S) ooy —s & 4y
C(s)D(s) B = k;o Fus+a + k) )

In particular

P q
172 — 1 —12 1/2—a by — 172
A0==(277')( Yp—g+ )#a / Hak & Hﬂkk
k=1 k=1

atg = m.
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Spinor propagators in anti-de Sitter space-time
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Expressions are found for homogeneous and inhomogeneous propagators for spinor fields of

arbitrary mass in anti-de Sitter space-time.

I. INTRODUCTION

One of the main problems in high energy physics today
is to understand why quarks and gluons are confined. It is
generally assumed that quantum chromodynamics (QCD)
alone is responsible for confinement, but so far no proof has
ever been given. It is therefore expedient to make models in
which confinement has been built in.

In analogy to models put forward by several authors’ a
model was studied in which this was done by geometrical
means.? Here, quarks and gluons move inside a spherical bag
with anti-de Sitter (AdS) metric, and carry out harmonic
oscillations with a universal frequency equal toc/R, where R
is the radius of the bag. In quantized form this frequency can
be related to the apparent universal level spacing of quarkon-
ium spectra.

In another article the connection between QCD was
suggested via spontaneous symmetry breaking of the confor-
mal symmetry of the QCD Lagrangian to SO(3,2) or AdS
symmetry.>

In order to take quantum effects into account, like gluon
exchange between quarks, etc., we need the use of propaga-
tors. Early work has been done by Fronsdal* for homogen-
eous AdS scalar propagators and Fronsdal and Haugen® for
spinor fields. The massless case for arbitrary spin has been
studied by Fronsdal® and Fang and Fronsdal.” In an earlier
paper, expressions for SO(3,2) symmetric massive scalar
propagators, homogeneous as well as inhomogeneous, were
found, using configuration space methods® (see also Ref. 9).

As is well known, in order to write down a meaningful
Dirac equation in a curved space, one has to define an ortho-
normal vierbein field that cannot be specified by a unique
covariant prescription and is therefore arbitrary to a large
degree. Such a vierbein field must therefore also play a role in
the definition of spinor propagators if these are to be genu-
inely independent of embedding spaces.

In our view, this point has obtained insufficient atten-
tion in the present literature on propagators in curved
spaces.” Meanwhile we want to stress again the importance
of inhomogeneous propagators like the Feynman propaga-
tors, which are vacuum expectation values of time-ordered
field products. Time is here a many-valued reference func-
tion, and the introduction of a covering of AdS space is nec-
essary. Discussion on this subject can be found in Refs. 4 and
8. It is important to note that these propagators are not just
trivial extensions of the homogeneous propagators.® In the
present paper we use the results obtained in Ref. 8 to find
homogeneous and inhomogeneous propagators for spinor
fields in AdS configuration space.

Furthermore, we have to specify implicit boundary con-
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ditions in order to obtain unique propagators.®!° In general
this can be done by taking the solution, which goes fastest to
zero, when a certain invariant quantity approaches minus
infinity.'""'?

In Sec. II we give a review of the scalar propagators
obtained in Ref. 8 and discuss some properties.

In Sec. III we obtain spinor propagators as a function of
the coordinates £ ™ (M = 1,...,5) of five-space, on the hyper-
boloid £ #€£,, = R 2 = const > 0, which describes (a covering
space of) AdS space. The generalized Dirac equation we use
can be seen to arise from a fiinfbein formalism, with trivial
fiinfoein V% = 8% (see also Ref. 4).

In Sec. IV we obtain the spinor propagators for a natural
vierbien by performing a local rotation of the fiinfbein, such
that one of its “legs” points in the radial direction. This rota-
tion can be performed in such a way that the AdS vierbein
becomes independent of time. Strictly speaking, thisis nota
necessity, but it is certainly convenient. For practical pur-
poses, it is better to stick to one choice of the vierbein field for
all propagators independent of the reference point. Al-
though we can use any coordinate system, in order to obtain
a bag structure we choose special coordinates, which are
obtained by performing a central projection.'® This is done
in Sec. V.

1l. SCALAR PROPAGATORS

Consider a five-dimensional space with coordinates £
(M = 1,...,5) and metric

Ny =diag( — 1, -1, -1, +1,+1). (2.1)

Anti-de Sitter space can be visualized as (the covering space
of) the hyperboloid

EvEM= — B +EY+ET=R?>=const>0. (2.2)
Transformations leaving this hyperboloid invariant form the
covering group of SO(3,2). Therefore a winding number
must be introduced, or alternatively we can use a many-val-
ued reference function, which plays the role of time.

Consider the equation

d 2

Ds¢=(D4+ 2)¢=0-

a 5
We shall take as reference point £ = (0,0,0,0,R) and de-
fine the invariant quantity

A=EE°/R2=1—(£5/R?) . (2.4)
We are interested in those functions that are invariant under

transformations leaving the reference point invariant. They
have the form

(2.3)
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Y(RA,n) =R"¢,, (A,m), (2.5)
where 7 is a winding number.

Introduce the angular momentum operator

My =i(§Ma—§;—§N 3_§('?_M_) (2.6)
and

M?=1M MM, 2.7
Then &, (1,m) satisfies

(M?* —m(m+ 3)),, (4,m) =0 (2.8)

The time variable ¢ is introduced by

£*=VRZ+Esin(1/R), (2.9)

§5=\/R +§ COS(I/R)’

and is many-valued in £ ®-space. Because m and — (m + 3)
are interchangeable, we limit ourselves to m> — 3. The ex-
ceptional point m = ~ 3 will not be considered. For the ho-

mogeneous propagators, satisfying (2.8) we have,® for
<1,

G7\ (M) =cos[m(m + 1)n]G G, (£M)
—sin[7(m + 1)nlG %, (£Y),
GZ';) (M) =sin[r(m + 1)n]lG T, (€M)
+ cos[w(m + 1)n]G %, (£M),

(2.10)

where
Gy (M) = e(g“g )[5(/1) (m+1)4(m+2)
XF( m,m+ 2/1)9(/1)]
@2.11)
Gy (EM) = 21:21(2[ (%_) (m+1)(m+2)
><F<_ﬁ,m;‘3;2;i)

><1n|/1|—x(m,/t)],

and y (m,A) is areal analytic function, regular in the domain
|4 | < 1, with appropriate analytic continuations for |4 |>1.
The discrete function &(x) is defined by f* _ 6(x') dx’ and
€(x) is defined by 26(x) — 1.

We can also define positive and negative frequency parts
by

G" =1(G™+iG™). (2.12)
Then
Gy (EM) =eFTmHDGT (o (EM), (2.13)
where
1 1 (m+1)(m+2)
G o (M )_hm4171R [ — 2
XF(——ﬁ, m+3 ;2;/1)
2 2
XIn(—4-,) —x(m,i)] ) (2.14)
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for |4 | <1and
ALe=A+ieE*€°/R?. (2.15)
The inhomogeneous propagators satisfying
(M?>—m(m+3))GT (EM) = —R28D(EMS,, ,
(2.16)
are the retarded and advanced Green’s functions
G = 260(£0G™, (2.17)
adv
and the Feynman propagator
m— (1/2))[G™ + ie(t)G™] . (2.18)

Note that the singularity on the right-hand side of (2.16)
occurs only on the principal sheet of the covering.

In the conformal invariant “massless” case (m = — 1)

we obtain
Gi' (€M) = (1/47%R > [1/ (A — ietE*€7)], for e—0.
(2.19)

To find the propagators for an arbitrary reference point £ &,
we use the invariant forms

A=1—[y/R] (2.20)
and €(7S), where

S=£%5 6763 (2.21)
and y = £ MEq,.

The definition of winding number » can be given as fol-
lows.

(i) n = 0 when £ ™ can be obtained from £ ' by contin-
uous displacement within the allowed domain without
changing the sign of y.

(ii) An = + 1, whenever y changes sign and Ar=0 with
t given by (2.9).

For |4 | <1, we find

Ty (EMEN = 1 = e(¥S) [5(,{)_ (m+1)4(m+2)
XF( m m+3 2;/1)9(,1)]

(2.22)

and (—;{’5) is given by (2.11).
G™, and G7., are obtained from these using (2.10).
We can find the 1nhomogeneous propagators as follows.
Define 7 by (2.9) and ¢, by

£ =R+ & sin(1o/R),
&5 =+R*+E} cos(to/R).

Then ¢ — ¢, can only change sign when A<0, n = 0. More-
over, either G™(£Y; £Y) =0 or £ = £}, which makes
e(t —ty), 6(t—1t,) effectively invariant functions when
multiplied by G ™(£™; £ ). We find

(2.23)

Gro = +0[+£(—1)1G™, (2.24)
adv
Gr=(1720)[G™ + ie(t — t,)G™] . (2.25)
If we define for all propagators
G” (g 4 §0vto) = G(n) (§M; g{) s (2.26)
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then
M2 —m(m + 3)1G(E,t; Epnto)

= —R26%(E—ENS(t—1t,) . (2.27)
Iil. SPINOR PROPAGATORS

Introduce the four-dimensional Dirac matrices

M=y rhr®), (3.1

where y # are the usual Minkowski-space Dirac matrices and
y5 = —iy 'y 23y They satisfy

O™y ™ =29"". (3.2)
Consider the equation

Ds'/"_“?—’MaM;NaN'//:O, (3.3)
and write

Y(RA,n) =R"$,, (A,m) . (3.4)
The ¢, (4,m) satisfies
{RY M3y + [(m — 1)/R ] 7™}

X{Ry ¥ 3y + (m/R)y YxYb(my (Am) =0,  (3.5)
which implies that
Som Asm)={RY ¥ 0y + (m/R)y “Ex 1}, (Am)  (3.6)

is 2 homogeneous spinor propagator if § ,,, (4,m) is a homo-
geneous scalar propagator. It satisfies the equation

{Ry ™3y + [(m — 1)/R 1y M£4}S .y (Am) =0

This result is the same as that found in Ref. 5.

Here a remark is in order. From (3.6) we see that a
differential operation must be applied to a singular function
[see Eq. (2.11)]. However, as has been shown in Ref. 8, the
singular function can always be written as the limit of a dif-
ferentiable function that is an exact solution of the original
homogeneous equation. The correct procedure is to apply
the operator Ry ¥ d,, to this function and then to take the
appropriate limit.

We find the inhomogeneous spinor propagators by us-
ing inhomogeneous scalar propagators. They are given by
the same formula (3.6) and satisfy the equation

(Ry ™8y + [(m — 1)/R 1y ME,)S Ty (EM)
=R2859(E")S,, . (3.8)

Also here a differential operation must be applied to a
singular function that is the limit of a regular function. The
latter satisfies the original inhomogeneous equation, but
with the §-like source function smeared out. The proper pro-
cedure for carrying out the differentiation is the same as for
the homogeneous case.

As an example we give the Feynman propagator for
m= —1,

3.7

1o e My _ 1 [;ﬂgy(ﬂ'—z)_’_?_}SgSﬂ'}
Se € =Tk (A — ietE *€5)? ’
(3.9)

in the limit €—0.
For an arbitrary reference point £ ¥ we find
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S g™ 6
_ 1 [?Mfm —2) +2(/R 2)?“§OM]
47iR 3 (A —ie(t —t)¥S)?

(3.10)

in the limit €—0.

In order to obtain unique propagators, we take the solu-
tion that goes fastest to zero when A— — o, and limit our-
selves tom > — 3.5

V. SPINOR PROPAGATORS FOR A NATURAL
VIERBEIN FIELD

The generalized Dirac equation obtained in Sec. III can
be seen to arise from a fiinfbein formalism, with a special
choice of the fiinfbein:

vi=26y, (4.1)
where

yM=vViy4, (4.2)
and

yi=(>y>yhy>). (4.3)
Here M is the “world index” and A the local index. We make
a rotation of this fiinfbein field, such that one of its “legs”
points in a direction perpendicular to the hyperboloid [radi-
al (R) direction]. Since the square of the Dirac operator in
curved spaces is not simply related to the scalar field opera-
tor the introduction of this rotation is necessary. Therefore
we introduce the transformation matrix

U(g,r) = e~ /Db vgir /2R, (4.4)
where

x =sinh™'(|g|/R). (4.5)
Then

yM=Viyi=UyMU, (4.6)

where V¥ points in the radial direction. Equation (3.7) can
be written as

Ry M [0y + U@y U™") + [(m — 1)/R?1&y, ]

X UES™(E,L) =0. (4.7)
This implies
{—iy “D, + [(m + 1)/R 1}y SUEHS™(E1) =0,
(4.8)
where
;7 #=Frtye (u world index, @ local index), (4.9)
and where the covariant derivative D, is given by
D,=4d,+T,. (4.10)
Here I', is defined as follows:
[,=14,.,0%, (4.11)
with
BDoog =T, ViV — Vo Vs (4.12)
and
o¥=1lyy?],
H. Janssen and C. Dullemond 2788



and I,,, is the affine connection. The matrices ¥ © are the
usual Minkowski-space Dirac matrices satisfying

{y*yf} =29 . (4.13)

Equation (4.8) is the Dirac equation for anti-de Sitter space
whose metric is given by

g =VHEV . (4.14)
The vierbein V' % is given by
Vi=(1+§/R*™V2,
Ve=vi=0, (4.15)
V=18 + (£€7EH [ +E/R*)V? —11}.
We obtain for g#*:
00 _ 1 2R2 --l, 0f . 10=0’
g°=(1+E/R"?) g'=g (4.16)

g'=n'— ' E/RY).
From Eq. (4.8) we see that the “massless” Dirac equation
corresponds tom = - 1, as should be the case. The solution
to Eq. (4.8) can in this special frame be written as

US™(&t) ={ ~ir*D, + [(m+2)/R 1}y UG™ (&),
4.17)

with G "(§,¢) a scalar propagator. The solution for the inho-
mogeneous equation

{— "D, + [(m + 1)/R ]}S™(&0)
= U(E,1)8°(£)6(2) = 5°(§)8(1)

is given by

S™Et) ={iy’D, + [(m +2)/R1YUG™(&,t), (4.19)

where G™(E,¢) is an inhomogeneous scalar propagator.
Consider the Lagrangian

(4.18)

L =9y oy + [(m—1)/R1y e 0™,  (420)
which can be written as
F= gL =
=¢™(—iy*D, + [(m+ 1)/RIW™,  (421)
where
¥ =yU"", ¢ =y°Uy. (4.22)

When quantized they satisfy the following commutation re-
lation:

{WEn, ¢ EH =6E—E). (4.23)

We can write (3.8) as follows for the Feynman propagator
with arbitrary reference point

R(y™dy + [(m— 1)/R 1y &)
XRiO|TY™ (£ )¢ (£ 310)
=R>E(§—§)8(1—1,) ,

which implies

{— "D, + [(m + 1)/R 1}y UED)
X 0| Ty (& *)¢m(£5)10)
=8(E — £0)8(t — 1) U(Eouto)

(4.24)

(4.25)

or
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{—iy*D, + [(m 4+ 1)/R 13i{0| TY'™(£,1)% ™ (£0rt0) |0
=53(g_€0)6(t"t0) y (4.26)
which is consistent with (4.23).

Thus, for an arbitrary reference point £ 5 the solution
for the inhomogeneous propagators is given by

S™(EtEaty) = {iy’D, + [(m +2)/R ]}
X U(g,t)Gm(g,tigoJo) U~l(§o:t0) .
(4.27)

Note that since for m = — | the scalar propagators are not
unique,®'® the massless spinor propagators are not unique
either. Uniqueness can be restored by putting m=% — 1 and
taking the limit m— — 1.

V. SPINOR PROPAGATORS FOR CENTRAL
PROJECTION COORDINATES

We can perform a central projection'? defined by

t—t, £'=x'coshy. (5.1
For the metric g** = ¥ #¥ ;7 we thus obtain

g¥=(1—ar), a=1/R?,

g¥=¢°=0, (52)

g =1 —arr)(' + ax’y),
with vierbein V £
Vi=(1—a)V?, V°=Vi=0,
Vi=(1—ar)"{§ —axx’/[1 + (1 —ar’)'?] 7'},
(5.3)

The anti-de Sitter metric is thus confined to a spherical bag
of radius R in x “-space, which can be used as a geometrical
description of hadrons.>*!? The spinor propagators can be
obtained from the propagators of Sec. IV by performing the
coordinate transformation (5.1). In the flat-space limit
(R - ) we obtain for the massless Feynman propagator

1 7H(x, —x))

Se (X,6:X0,l,) = — — s 5.4

(Xt %ordo) 277 [ (x — x,)? — i€]? >4
which is a solution of

— iy 3, Sr (X,5Xp,t,) = (X —x,)8(t —1,) . (5.5)

This is the correct result.
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The construction of two Lie-Bécklund transformations is given, which are Hamiltonian vector
fields leading to an infinite number of hierarchies of conserved functionals and associated Lie-

Bicklund transformations.

I. INTRODUCTION AND GENERAL

In two recent papers’? we constructed eight [in effect
four, Y *,Y,Z *,Z - (ieZ)] infinite hierarchies of Lie—
Bicklund transformations of the Federbush model.> We
conjectured that the hierarchies Y ;*,Y, (i€Z) are (x,t)
independent, while the hierarchies Z ;¥ ,Z ;- (i€Z) are linear
in x and ¢. These Lie-Bécklund transformations turned out
to be Hamiltonian vector fields*® and the corresponding
Hamiltonian densities were given. In this way we obtained ¢-
independent and #-dependent conserved functionals for the
Federbush model.

Now we shall construct two (x,#)-dependent Lie—Béck-
lund transformations of degree 0, with respect to the grad-
ing, which are polynomial in x, of degree 2 and from which
we can obtain the creating and annihilating Lie—Béacklund
transformations Z ,, by taking the Lie bracket with the
(x,t)-independent vector fields ¥ £, (cf. the Appendix).
Moreover these two vector fields turn out to be Hamiltonian
vector fields and the associated Hamiltonian densities are
given. This will be done in Sec. II. In Sec. III we prove a
theorem from which we obtain an infinite number of infinite
hierarchies of Hamiltonian vector fields, where the
Y, Y, ZYZ; (ieZ) are just the first four of this infinite
number of hierarchies. The Hamiltonian densities of the vec-
torfieldsZ * (i= —1,0,1),Y* (j= —2,—-1,0,1,2) are
surveyed in an Appendix at the end of this paper for reasons
of completeness. In this section we shall introduce the no-
tions needed in Secs. IT and III. All computations have been
carried through on a DEC-system 20 computer, using the
symbolic language REDUCE® and software packages’® to do
the huge computations at hand.

Lie~Bicklund transformations are vector fields ¥ de-
fined on the infinite jet bundle of M, N, J * (M,N), where M
is the space of independent variables and N the space of the
dependent variables. A Lie-Bécklund transformation of a
differential equation is a vector field V' defined onJ * (M,N)
satisfying the condition

Z,(D=I)CD =, (L.1)

where I denotes a differential ideal associated to the differen-
tial equation at hand, while D =7 denotes its infinite prolon-
gationtoJ * (M,N); ., is the Lie derivative with respect to
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the vector field V. Since the vector field ¥ is supposed to
depend only on a finite number of variables, condition (1.1)
reduces to

L, ICD'T for some r. (1.2)

Using this method we computed Lie-Backlund trans-
formations of the Federbush model." It can be shown that
the Lie-Backlund transformations in this setting are just
symmetries in the works of Magri* and Ten Eikelder® where
(generators of) symmetries of partial differential equations
of evolutionary type are described as transformations on spe-
cial types of infinite-dimensional spaces. Suppose that

du

dt
is an infinite-dimensional Hamiltonian system, where £ is
the symplectic operator, H is the Hamiltonian, and dH is the
Fréchet derivative of H. Then to each Hamiltonian symme-
try (also called canonical symmetry) Y there corresponds
by definition a Hamiltonian F (Y) such that

Y=Q 'dF (Y) (1.4)

and the Poisson bracket of Fand H vanishes.** Suppose that
Y,,Y, are two Hamiltonian symmetries, then [Y},Y,] is a
Hamiltonian symmetry and

=Q"'dH (1.3)

F(Y,Y,]) ={F(Y).F(Yp} (L.5)
where {.,-} is the Poisson bracket defined by
{F (Y)),F (Y,)} = (dF (Y}),Y>), (1.6)

where (-,-) denotes the contraction of a one-form and a vec-
tor field.

1l. CONSTRUCTION OF TWO NEW LIE-BACKLUND
TRANSFORMATIONS OF THE FEDERBUSH MODEL

We construct two Lie-Bicklund transformations of the
Federbush model. This model is described by

(i(a, +9,) —m(s) )(;bs,l)
—m(S) l(at _ax) ¢s,2
|¢—s2|2 ¢sl)
= 4, /1( ' ' (s=+1, (2.1)
TN

where the ¥, (x,t) are two-component complex valued func-
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tions. Suppressing the factor 47 (A ' = 474) and introducing
eight real variables u,,0,u,,05,U3,03,14,04 by
U =uy+ vy, m(+1)=m,,
(2.2)
m(—1)=m,,

Y_ = us+ivs,
Yig =Uy+ivy Y_yp =4+ iV,

Eq. (2.1) is rewritten as a system of eight nonlinear partial
differential equations for the functions u,,...,v,, i.e.,

Uy, + U, —mu, =ARp,,

— Uy, — Uy — Myt = ARu,,
Uy — Uy, — M = — AR,
— Uy + Uy — MUy = — AR5u,,

(2.3)
Uy, + Uy — MUy = — ARy;,
— U3y, — U3, — My = — ARG,
Uy — Ugy — MaU3 = AR,
— Vg + Vg — Myti3 = AR u,,

where in (2.3)
|

2 2 2 2
Ry=uj +vy, Ry=u;+v;,

(2.4a)
R3=u§ +U§, R4=ui +U3,
and, for further use,
R12=R1 +R2, R34=R3+R4. (2-4b)

In two recent papers we obtained Lie-Bécklund trans-
formations for this model; results that are surveyed in the
Appendix for reasons of completeness. Motivated by the re-
sults obtained previously,” i.e., the existence of four infinite
hierarchies of Hamiltonian vector fields, two hierarchies
probably being independentof xandz [ Y *,Y ;~ (/€Z)] and
two hierarchies probably being linear inx and ¢t [Z *,Z ~
(ieZ) ]; we now want to search for a Lie-Bicklund transfor-
mation that is polynomial in x,# of degree 2.

We require the vector field to be of degree O with respect
to the grading of (2.3),

deg(u,) = - =deg(vy) =1,
deg(x) =deg(t) = — 2,
deg(d,) = deg(d,) =2,
deg(m,) = deg(m,) =2.

(2.5)

The vector field has the following required structure:

Y (2,0) =-’\72(a]Y2+ +a,m Y ‘+“13”1%Y0+ +am Yt +aY ")+ 2 (B Y, +BmY +ﬂ3m%Y0+
+Bm YT +BY )+ Y S +yom Y ymiY S+ ym Y P Y )

+xCF +tC;r +C4,

(2.6)

where the Y, (i= — 2, — 1,0,1,2) are the vector fields associated to the conserved functionals F (¥ ;) surveyed in the
Appendix; a;, B,,7; (i = 1,...,5) being constant, while C ;*,C,;",C 4" are vector fields of degree 2,2, and 0, respectively.

Substituting (2.6) into the Lie-Bécklund condition (1.2),
£ ICD,

2.7)

and solving the resulting overdetermined system of partial differential equations for the coefficients «;, 5,,¥; (i = 1,...,5) and
the vector fields C ;,C [7,C ;" using (2.4), we obtained the following result:

YTQ,0)=x2 (Y, —imiYs + Y 2,) + (Y — Y2 ,)+13(Y; +miY  +Y5,) +xCF +1C5, (2.8)

where in (2.8)

Ci" =(—2v0, —mu, — AR u)3, + (+ 2u;, —mw, —AR3)d,, + (— 20y + myu, — AR3u,)0,,

+ (4 2u,, + mp, — AR30,)3, ,

C;t = (42w, + mu, +AR3u,)8, + (—2u;, +mw, + AR30,)8, + (—2v,, +mu, — AR34u,)0,,

+ (+ 2u,, + m; — AR3,)0,,

while in (2.6)
Cs=0.

(2.9)

(2.10)

In a similar way,"” motivated by the structure of the Lie algebra, we obtain another Lie-Bicklund transformation, i.e.,
Y7(20) =xX(Y; —ymiYq +Y 7)) +2x0(Y; — Y 2,) +t3(Y; +miYy +Y -,) +xC; +1C5,

where in (2.11)

(2.11)

Cr = (—2v5 —myu, + AR pu3)d,, + (+ 2y, — movy + AR 505)d,, + (— 20,, + myu;, + AR u,)0,,

+ (+ 2u,, + myv; + AR ,04)4,,,

(2.12)

Cy = (+ 205, +mauy — AR pu3)0, + (—2us, + mav, — AR 50,)8, + (— 204, + myus + AR u,)0,,

+ (4 2uy, + myv, + AR ,04)9,, .
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To give an idea of the action of the vector fields ¥ * (2,0) and Y ~(2,0), we compute the Lie bracket with the vector fields
Y Ys,Y* Y ,Ys,Y Z, yielding the following results:

[Y*(2,0,Y ]| =+4+2Z}, [Y(20),Y]=+2Z, [Y*(20),Y,]=0 [Y (2,0,Y;]=0,
[Y*(20,Y*,]=-2Z7,, [Y-(20,Y_,]=-2Z,, [YT(20),Y7]=0, (2.13)
[Y~(2,0,Y*]=0 (= -101).

These results suggest setting
YE(Li)=ZF* and Y*(0,)=Y7F (i€Z).

Now we arrive at the following remarkable fact: the vector fields ¥ *(2,0) and ¥ ~(2,0) are again Hamiltonian vector
fields, the corresponding Hamiltonian densities being given by

F(Y—(2,0))
=x}F(Y; ) —ymiF(Y5 )+ F(Y )+ 2t (F(Y; ) —F(Y 2,)) + t3F (Y ;) + im3F(Y5 ) + F(Y =,))
=x+DF(Y;7)—imi(x+0)(x—OF(Y§) + (x—)’F(Y =) (2.14a)
and
F(Y*(20)=(x+ 0 F(Y;) —imi(x+ ) (x —)F(Y§) + (x —)’F(Y *,), (2.14b)

where the densities F(Y ) (i = — 2,0,2) are given in the Appendix.
This result shows a remarkable resemblance to the results for the Benjamin—-Ono equation.®

Ill. PROOF OF THE EXISTENCE OF AN INFINITE NUMBER OF HIERARCHIES

In this section we shall first prove a generalization of a lemma proved in Ref. 2. The main theorem of this section is a direct
application of Lemma 3.1 to the special cases at hand and leads to the existence of an infinite number of infinite hierarchies of
algebraically independent conserved functionals for the Federbush model. The associated Lie-Bicklund transformations are
obtained from these results by application of formula (1.4).

We state the following lemma.

Lemma 3.1: Let H', (u,0), K], (u,v) be defined by

H,’,(u,v)=f x(u2 +v2) (r,n=0,1,.),

3.1
K7 (up) =J‘m x"(u, 10, — U, q4,) (r,n=0,1,..),
where in (3.1)
w=(Z) u 0= ()
dx dx
and r,n such that the degree of H,,K 7, is positive. Define the Poisson bracket of functionals F,L by
® O8F 8L 6F 6L
=] (v (32)
then
{H|,H}=4(n—nK, (3.3a)
{H\K'}=@mn—r)+2H, , +r(r—1)(r—n—1)H,"? (3.3b)
{H>,H .} =4(2n—nK,*}, (3.3¢)
{H* K }=Qn+1—r)@H 1\ —PH,=") (rnn=0,1,.). (3.3d)

Proof: Relations (3.3a) and (3.3b) are generalizations of formulas given in Ref. 2 and can be proved in a similar way. We
now prove (3.3c) and (3.3b). Calculation of the Fréchet derivatives of H,,K |, yields

SH d \" OH ; ( d)”

={-L) @2xu,), = -2 @2xv,), 3.4
Su ( dx) (2xun) v dx (2xn) (34a)
6K/ d\+' d\, , 6K’ d\*+! d\, ,
=) O o = () () e e

Substitution of (3.4a) into (3.2) results in
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(H2H} = r _ -dd; (2x%,) - (— 1)"(‘%)" (2xu,) + -;7 (2x%u,) - (— 1)”(—%)"(%:)”)

— (=D )"—lf (") (2%%u ,)—(2x' )—(i)"(zxzvl)gd;(zx'un)

dx

dx

- —4.[ (xzu'“'l + 2nxu, +n(n— Du, )(xv, +rx"",)

- (x2Un+1 +2nxv, +n(n— v, _)(x'u,,, + rxr+1un)

o0
1 1
= - J "t (un+1vn_vn+1un)_2'nxr+ (un+lvn_vn+lun)

+n(n - l)xr(vn+lun—l

— Uy V) +0(n— DX (v,u, _ —u,v

w_1) =4Qn—rK,*,  (3.5)

which proves relation (3.3c). The last equality in (3.5) results from the fact that the last two terms are just a total derivative of

nin—Dx"(v,u,_, —u,v,_ ).

In order to prove (3.3d) we substitute (3.4a) and (3.4b) into (3.2), which results in

n+1
@ik =" =L e [0 (L) o) - (- DL o0
e -[ = 0n (2 ) + (- (L) ] (3.6)
—_ u)- (=D — xu, - x'u, .
* ' dx d !
Integration, » times, of the terms in brackets leads to
n+1 n+1
{H}1K,}= 2[ ( d) (x%vy) -(—d— (xv,) +x’v,.+1)+(—d—) (x%u,) -(i (x"u,) +x'un+1)
dx dx dx dx
=2f v, ., +2(n+ Dxv, +n(n+ Do, (20, +rx""'v,)
+ U, +2(n+ Dxu,  +n(n+ D, ) (2x"u, , , +rx""'u,). 3.7
I
Expanding the expressions in (3.7), we arrive after a short Y - —ug vy —vg,u), Y= —3us 05— vs,u3),
computation at Y +(2,0)
LKLY = Qrt L= (AHL —PHITD, (38) =4+ 02, 03, — 3 — 03w +23,),
which proves (3.3d). (3.11)
We are now in a position to prove the main theorem of ¥ ~(2,0)

this section.

Theorem 3.1: The conserved functionals F (Y * (2,0))
associated to the Lie-Bicklund transformations Y * (2,0)
generate an infinite number of hierarchies, starting at the
F(Y )iz, F(Y[) <z hierarchies by repeated action of the
Poisson bracket.

The F(Z ')z, F (Z ) oz hierarchies are obtained by
the first step of this procedure [cf. (2.13)]. Moreover the
F(Y;")izs F(Y; )y hierarchies are obtained from
F (Y 7 ) by repeated action of the conserved functional

F(Zz)=xiF([Y*Q20,Y$,]) (3.9)

(cf. Table I).

Proof: The proof of theorem 3.1 is a straightforward ap-
plication of Lemma 3.1 and the observation that the
(A,m,,m,)-independent parts of the conserved densities as-
sociated to Y I, Y(+2,0), Y(—2,0), (A3), (A4),
(2.14a), and (2.14b) are given by

+
Y, = — vy — v, 15), Yil“*—%(ulxvl—uulh),

(3.10)
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- — x4+ 0 (uh, +vd,) — Hx — )%, +v3,).

Note that in applying Lemma 3.1 we have to choose
(uv)=(uyv,), (uv) = (uy,v,),.., where now (u,uv;)
(i=1,...,4) refer to (2.2)!

Remark: The Lie-Bicklund transformations of degree
0, Yr=Y"(00), Z;S =Y*(1,0), Y*(2,0) and
Yy =Y"(0,0),Z; =Y (1,0), Y ~(2,0) being just the
first few of them, can probably be obtained by the action of
Z %, on the vector fields of degree 1 (cf. Ref. 1), i.e,,

Y*(k0) =, [Z%,,Y *(k + D]

IV. CONCLUSION

By the construction of two Hamiltonian vector fields
Y *(2,0) and Y —(2,0) we construct an infinite number of
infinite hierarchies, the elements of which are all Hamilto-
nian vector fields. The associated conserved functionals are
obtained by the action of the Poisson bracket.
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TABLE L. The Lie algebraic picture of the Lie-Bicklund transformations.
—————— e e e e e

+ . + - : - - . -
YH(1,1) =z Y'(0,i) = Y] Y7(0,1) = Y] YT(1,i) = Zj
zi Zi
zl, zZ,
. -(———- . 4—-——9‘ .
Y*(2,0) Y7(2,0)
Y*(2,0) Y (2,0)

APPENDIX: CONSERVED FUNCTIONALS FOR THE F(Y;)

FEDERBUSH MODEL = — 3k, +1%) + (A/2)Ryy(p, 0, — ;)
We summarize here some of the results obtained in Ref. — m (.0, — w0, ) — A 2RZR
2 that are of interest in Sec. II. We derived the following 3y (240, W2) =R WR,

conserved functionals: + 4m AR (uu; + v,0;) — JmiRy,,
F(*’=f T (+)dx, (A1) F(Y*,)
- . 2 2
where the densities F (*) are given by = — 4 (i, + V1) + (A/2) R (1,01 — 4y
~ ~ 2p 2
F(Y&)=4(R,+ Ry, F(¥Y5)=4R;s+Ry), + im0, — ) — PRGR
(A2) — im AR (uuy + v0,) — ImiRy,,
F(Yir)y= -y (1 /8)R4,R = (A9
1) = —3(uy v, —uw,, ) + 34d¢, Fy;)
~ — i (uy +00,), = — J(d, + V%) — (A/2)R 5ty 04 — U0
FY 2=~} —uw) + (A/DR5R, — imy (03 — u30s, ) — RL,R,
+ dmy (uyu, + v,0,), (A3) — 1mAR 1, (uzuy + v30,) — M3 R,
F(yr-)y=— — — (L/4)R,R -
(Y;) $(uanvy — ug0y,) — (A/4)R R, F(Y-,)
_ ~ Yo (ustty + a0, = — 308, +03) — (A /2R iz (145,03 — sy,
F(Y Z1) = — U0y — ugbs,) — (A/HR 2R, + imy (U304 — u405,) — L °R LR,
+ dmy(u5us + v304), + ImaAR |, (usu, + v30,) — Im3 Ry,
and The t-dependent conserved functionals are
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F(ZFH)=x+DF(Y)—(x—DF(Y*)),

- _ _ (A5)
F(Zi)=x+DF (Y[ )—(x—8F(YZ,),

and

F(ZH)=x+0DF(Y;)—imi(x—nF (Y§),

F(Z*)=—-(x—DF(Y*,)+mx+0F(Ys),
_ _ (A6)

FZ)=x+nF(Y;)—imi(x—F (¥5),

F(Z-)=—-x-0F(YZ,)+mi(x+0F(¥Y,).

The vector fields Y+ (i= —2,—1,0,1,2) and Z>*
(j= — 1,0,1) obtained from (A2)-(A6) by

Y=Q 'dF(Y).
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Gauge theories, the holonomy operator, and the Riemann-Hilbert problem
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The so-called Riemann—Hilbert problem has arisen and plays a major role in the study of many
nonlinear integrable systems, such as the sine-Gordon equation, stationary axial symmetric
Einstein equations, etc. Here it is shown how the Riemann—Hilbert problem arises naturally in
the study of self-dual Yang-Mills fields in Minkowski space via a simple geometric
construction of the holonomy operator on anti-self-dual planes. This Riemann-Hilbert
problem is then converted to a linear homogeneous differential equation that is considerably
simpler to study than the original problem. Finally it is shown that the nonlinear equation of -
Yang for self-dual fields is easily understood from the holonomy point of view.

1. INTRODUCTION

Over the past seven or eight years there has been, for a
variety of reasons, considerable interest in those solutions of
the Yang-Mills equations’? and Einstein equations>* that
are self-dual (or anti-self-dual). The reasons have varied
from the importance of these fields in quantum field theory’
to their use in a quantized version of general relativity.®
Though interest in these uses remains, fresh interest in these
self-dual fields has developed in the past few years because of
the discovery’ that many of the nonlinear equations of math-
ematical physics (e.g., the Bogomolny equation, the sine—
Gordon equation, the stationary axial symmetric Einstein
equations, etc.) turn out to be symmetry reductions of the
self-dual Yang-Mills equations for different gauge groups.

It is mainly for this latter reason that we have reexa-
mined one of the important solution generating techniques,’
which is based on a version of the Riemann-Hilbert (RH)
problem.® (We know of two RH techniques for solution gen-
eration which appear superficially unrelated. The first is
based on the use of “seed” solutions,” the latter is based on
the use of arbitrary characteristic data.'® It is this latter one
we will be concerned with though there is evidence that these
two methods are intimately related.)

In particular we wish to describe in detail the relation-
ship of this RH problem with the holonomy operator asso-
ciated with the connection one-form of the self-dual field.
This brings out clearly the geometry of the situation and the
role played in the RH problem by the characteristic initial
data. We will furthermore show how, from the RH problem,
one can easily derive a simple linear differential equation
(the Sparling equation) the solution of which solves the RH
problem and provides a generating function for the self-dual
Yang-Mills field.

In Sec. II we introduce our basic notation for gauge
fields, define the closed loop parallel propagator (or holon-
omy operator), introduce the theory of complex null cones
and the associated a and S planes, and finally give a brief
discussion of the Riemann~Hilbert problem. In Sec. ITI we
continue the discussion of the holonomy operator now asso-
ciated with certain particular loops in the anti-self-dual S5-
planes, and relate this to a RH problem. This RH problem is
converted, in Sec. IV, to a linear partial differential equation,
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which appears to be considerably simpler to solve than the
original RH problem. In Sec. V we show how one can formu-
late self-dual Yang-Mills equations in terms of the holon-
omy operator associated with certain loops in the (self-dual)
a planes as well as how to construct the YM field itself, with
no use of potentials, from the holonomy operator. In the
conclusion we discuss the prospects for solving these equa-
tions for different gauge groups.

Il. NOTATION

We consider on Minkowski space M a trivial n-complex-
dimensional vector bundle B=M X C" associated with
some gauge group. A choice of the global vector fields e,
(4 = 1,...,n) as a basis set is made. Covariant differentiation

is defined by
Vies =Vai'ep (2.1)

and parallel transport of vectors V' = V“e, from point 1 to2
along a path P is given by

VAx?)GE (x9,x5,P) = VE(x3)
with

2
G=Pexpf ¥, dx°,
1

(2.2)

(2.3)

P indicating the path-ordered integral and with the matrix
indices suppressed. The holonomy operator 4 4 (x,,P) is a
special case of (2.3), involving a closed path Pbeginning and
ending at x9, i.e.,

h=Pexp § v, dx°. (2.4)

The gauge fields are defined by

Fab =Va7b _Vbra - [ya’yb] (2'5)
with the dual given by

Fi =W — g€ F<, (2.6)
where €, is the alternating symbol with €5,,; = — 1.

If

F3, =iF, (2.7)
or
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F* = —iF,, (2.8)

the fields are, respectively, self-dual or anti-self-dual.

We wish now to study the Minkowski space light cones
or more accurately some of the properties of their complexi-
fication.

Consider a point x* and its light cone, the points of
which can be described by

y*=x*+ (L), (2.9)

where [ “(é‘,Z‘ ) is the null tangent vector to the null geodesics
on the cone. The complex stereographic coordinates (£,)
parametrize the sphere of null geodesics while 7 is an affine
parameter along the geodesics. A convenient form for /¢ is

148 = 1200+ ¢5H1

XL+ LD, (E+ D)€~ ), (—1+LD].
(2.10)

Note the important point that / * is a real null vector when ¢
is the complex conjugate of £, but even when £ is indepen-
dent of £, we still have that /,/° = 0, but now for complex /.
Notationally in this case we will replace & by £.

If we now allow r to be complex and £ - ¢ then Eq. (2.9)
defines the complex null cone C, of the point x°. The points
y?in general live in complex Minkowski space M_. We would
like now to concern ourselves with certain features of these
complex cones.

There are two families of two-complex-dimensional
submanifolds that span a specific C, . They are defined from
(2.9) as follows.

(i) a planes are the set of points determined by varying
both 7 and & keeping x* and ¢ fixed.

(ii) B planes are determined by varying » and { with x°
and £ fixed.

It is easy to see that both @ and /3 planes have a linear
structure and hence are really planes.

We will refer to specific a or £ planes associated with,
for example, £, or £, by @, or Bg,. The intersection of an o,
and B; plane for the same C, is simply the generator (£,{) of
C.. When we are dealing with a different cone, e.g., C,, we
will use (7,7) to label its generators and a, and B 5 to label
its @ and S planes.

Both the a and S planes are totally null in the sense that
any pair of vectors in either an @ or § plane have a zero
Minkowski space scalar product. The a and S planes are,
respectively, self-dual and anti-self-dual in the sense that any
pair of vectors in the a or S plane, when skewed together
yield, respectively, self-dual or anti-self-dual tensors. [See
(2.7) and (2.8).]

These facts are easily checked by varying (r,£) and
(r$), respectively, in (2.9) obtaining for the a plane

dy* =drl®+ rn°[dE /(1 + E6)] (2.11)
and for the g plane

dy® =drl®+rm°ldE /(1 +ED)], (2.12)
with

= d
“=gl°=(1 — 19,
m®=8l°=(1+§5) ax
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=a a__ 2, 0 a
m®=dl°=(1+ &) P 1°, (2.13)
a 2
3¢
where (/%m®) and (/°,m®) are, respectively, two indepen-
dent tangent vectors in the & and 3 planes. One easily checks
that [,/°=1°m"=m°mn, =1°m, = m°m, =0, showing
that the planes are each totally null. Furthermore, the pair of
two-forms [ ,m, ; and [;,m, | are self-dual and anti-self-
dual, respectively. (The n° which has a zero scalar product
with all the others except/ °n, =, is given here for later use.)

[We point out that the description of the & and 8 planes
in terms of fixed (x°,¢) and (x%£) is highly redundant. Any
point X° in the same plane could have been used in the de-
scription of the same plane. There, however, does exist an
important nonredundant description leading to what is
known as twistor theory.'"'? The set of all & planes in M, is
known as twistor space, while the S planes form dual twistor
space. The use of any prior knowledge of twistor theory will
be avoided.]

We will conclude this section with a brief discussion of a
special case of the RH problem.

First consider a holomorphic function a(z) given on an
annular region in the neighborhood of the equator of the
Riemann sphere (or extended complex plane, CU{x})
with a(z) having singularities in both the northern and
southern hemispheres and a(z) #0 in the annular region.
The problem then is to “split” a(z) in the annular region
such that

a(z) =Gy (2)Gs(2), (2.14)

with G, and G holomorphic in, respectively, the northern
and southern hemispheres. The solution is quite simple and
in fact is given by

nazla+a$lazla+(1+§g-)2 la,

Gy (zy) =exp§ ?log(—a))dz,

clET iy (2.15)
Gs(zg) =exp 10—g(a—)——dz,

c (z—2zg)

where the path integral is taken along a curve C in the holo-
morphic (or annular) region surrounding the singular re-
gions with z,z¢ being, respectively, points to the north or
south of C.

The proof of (2.15) is a simple application of the
Cauchy integral theorem applied after taking the logarithm
of (2.14).

We are now interested in a generalization of (2.14) to
the case where a(z) is a holomorphic matrix valued function
and the two “splitting” functions Gy (2) and G (z) are also
matrix valued. Though theorems for the existence of G, and
G are known, there does not appear to be any known meth-
od of, in general reducing this problem to the form of a sim-
ple quadrature asin (2.15). An important special case where
this can be done is when the matrix a(z) is in either upper or
lower triangular form.

In the next section we will show how the holonomy op-
erator for self-dual fields applied to curves on the S planes
(anti-self-dual) leads immediately to the matrix version of
(2.14) where the a(z) is the characteristic data for the fields.
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ill. HOLONOMY AND THE RIEMANN-HILBERT
PROBLEM

We continue our discussion of the complexified null
cone and in particular study the intersection properties of
two separate cones and of their @ and £ planes.

We first consider a fixed reference or data cone C, based
on an arbitrary but fixed point Y°, given by

Y=Y+ RI*D). (3.1)
It will be on Cy that characteristic data will be given. In
addition we consider the cone C, based on an arbitrary real
field point x* in the interior of C; given by

ye=xt4+rl(n,7). (3.2)
For the present the only two cones we will be concerned with
are Cy and C,. Their associated @ (and B planes) will be
denoted by a, and «,, respectively (and B; and ;). The
intersection of C, and Cy is determined by

Y =y (3.3)

Since points of Cy and C, are determined by (R,{ ,f ) and
(rm,%), respectively, (3.3) determines a relationship
between the triplets of the form

; = g(xaa Ya’r977977),
E=E(xY ),
R = R(x%Y*rm,1).

Equation (3.4) can in fact be explicitly determined. Defin-
ing

3.4)

w=x°—-Y° (3.5)
Uw* )=l (n,7)wf, (3.6)
M m,7q)=m, (n,7)w’, (3.7)
M(we i) =m, (n,7)w", (3.8)

one can by direct calculation find from (3.1), (3.2), and
(3.3)

S=(qM - U)/(M + Ujp), (3.9)
&= (M — U)/(M + Up), (3.10)
R=U(1+ (M/U)(M/U)). (3.11)

We could easily have found r = r(7,7,w") but it is not need-
ed. One can go further and show, using (2.10) and (2.13)
that (3.9) and (3.10) really have the simple form

E=LWhT) = — (u+ o)/ (& + vi),
E=¢w ) = — (u+an)/ (o +vy),

(3.12)
(3.13)

with u=w’—w?, v=uw’+w’, w=w'+iw? and
& = w'! — iw? and inverses
n=nw’) = — (u+ o)/ (d +vd), (3.14)
7 =qWw%) = — (u+ &)/ (0 +v§). (3.15)

These relationships are very important. For example,
we see immediately that if we are given the two  planes (or
two S planes) a cand a,, (or B zand B ),they have a unique
intersection point given by (3.13), (3.15),and (3.11) [or by
(3.12), (3.14), and (3.11)]. Or from (3.12) given the S
plane 3, there is a unique a plane @, which it intersects.
The intersection is not at a point but along a curve.
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Consider the following construction which is basic for
what follows.

On Cy choose two /3 planes S z, and B; ,which are arbi-
trary but fixed for now. On the cone C, let 8; determine a
variable S plane that intersects B; and Bz on the generators
(n,,77) and (7,,%) of C,, with, from (3.14),

m=nwE), 1,=nw%%,). (3.16)

We now form the following triangle, starting at x°, two legs
are the generators (77,,7) and (7,,7) ending at p, and p, on
Cy, with the base B being the unique curve on C, deter-
mined by (3.12) and (3.11), connecting p, and p, (see Fig.
D).

We will refer to this triangle as A(x,7).

If we consider self-dual Yang-Mills fields then parallel
propagation around closed curves, as for example A(x,7),
lyingin a B plane, is trivial, i.e., the holonomy operator is the
identity. The reason for this is that the self-dual F,, when
projected onto the anti-self-dual B plane vanishes so that the
connection, in the plane, is integrable.

Defining the parallel propagator from the point x°,
along a generator (7,%), to a point p on Cy, by

P
G = G(x*n,7) =Pexpf V. dy° (3.17)
and the parallel propagator from p, to p, by
P2
a=a(iny,m,) =Pexpf ¥, dy°, (3.18)
Py

we have that the holonomy operator

h (x%A(x,7)) = G(x*m,7)a(@;mm,) G~ (X7, 7).

(3.19)

Since & = I for self-dual fields we have
G 5 (N Gs(7) = a(if;m,m2), (3.20)
Gy =G(x*;7), Gs = G(x"757). (3.21)

Comparison of (3.20) with (2.14) shows that if we
identify 7 with z then, at least formally, (3.20) is a RH prob-

3(\“.“*0-

(n®)

Cxt

FIG. 1. The Bplane 4, through x“intersecting the two B planes B; and B;,
on C,, at the points p, and p, yielding the triangle A(x,%).
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lem for the determination of G(x%m,%) for a given
a(;91,72)-

The function a(#;7,7,) is determined from the (holo-
morphic) characteristic data, namely the components of the
connection on C, via (3.18). The values of 7, and 7, (or
equivalently £, and ,), along with the choice of characteris-
tic data, determine the singularities of a as a function of 7.
We will assume that these singularities occur when 7 is in a
neighborhood of both

5 = fis=— 1/, (3.22)
5= = /m,. (3.23)

This occurs when the YM field is regular on finite regions of
Cy and when Y “is a sufficiently large timelike displacement
from x°. Geometrically this means that a(#;%,,7,) is singu-
lar when the B plane is parallel to either the B; or 5
plane; the intersection points p, and p, both being then at oo.
When Y “ tends to timelike infinity Eqs. (3.14) and (3.15)
simplify to p = — ¢ ~'and 4 = — ¢ ~'. [The assumption
(3.23) does not appear to be very restrictive. ]

If we consider 7 and 7, as two points of the Riemann
sphere, then in the annular region between them, a (%,1,,77,)
is holomorphic in 7 and we do have in fact a RH problem
with

Gy =G(x* ), Gs=G(x*nx1)
as the splitting matrices. Note that since Gy is to be holo-
morphic in the region far from 7y = — 7, !, it must be ho-
lomorphic in the region antipodal to 75, namely in the region
f7=%,. (Two points, on the Riemann sphere,  and 7’ are
antipodal if 7 = — %~'.) We then have the important re-
sult that G(x%7,7) is to be holomorphic in both variables 5
and 7 in the region 7 =~ 7. This becomes our boundary condi-
tion for the differential equation derived from the RH prob-
lem in the next section.

We see that we have a variation on the usual RH prob-
lem. Instead of having the data being given with fixed singu-
larities and having the two “splitting” functions G, and G,
we have the situation where the positions of the singularities
are variable and determined by the value of %7. Thisleads to a
single “splitting” function G(x%7,7) holomorphic in the
two variables (7,7) in the antiholomorphic strip 77 = 7. The
two usual “splitting” functions G, and G arise by choosing
two fixed values for 7, i.e., %, and 7,.

This new point of view towards the RH problem allows
us in the next section to derive a simple linear differential
equation for the G(x*,7), which is considerably simpler to
study than the original RH problem.

To conclude this section we mention for use in Sec. V
that from knowledge of G(x°m,7) it is a simple matter to
calculate the Yang-Mills connection. This is done by differ-
entiating (3.17) with respect to x° yielding

1°V,GG "' =1y,1° (3.24)
which becomes, after some manipulation'®
Ve=G,G '+ dhl, —hm, (3.25)

with
h=1%%(G,G")
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and
V.G=G,.

One can rewrite Eq. (3.25) in a somewhat simpler form,
which will be useful to us later. We note that the left side of
(3.25) 1is only a function of x%, and therefore we can use
different values of %7 and 7 on the right side. Thus (3.25) can
also be written as

Ya(x*) =G, G '+ h'l, —h'm, (3.26)
where the prime means, replace (#,7) by (7',7’). By multi-

plying (3.25) by /* and m?®, respectively, and (3.26) by / **
and m’® we have

Yl *=1°G,G ™", y,m*=mG,G ",
,Val'a=llaG’raGl—1’ 1/am'"=m'“G,’aG'"1.

By choosing (%',%') = (9, — 7:7_1), (3.27) can be rewritten
as

(3.27)

Yl pip) =1%(9,7)G ,G ',
Yam(,7) = m*(9,7)G,G ~},

(3.28)
'}’ana(n;i]) = na(n’ﬁ)G,’aG’—l’
Yame(n,7) = m*(9,7)G,G' ™!,
where [%n°m®m® form a null tetrad system
I°n, = —m°m, =1, with all other products vanishing,

[ This result follows from (3.27) becuase! (5, — 7~ ') and
m’“(7,~") are linear combinations of n*(n,7) and
m®(7,7).] [See (2.13).]

Equation (3.28) can be solved for v,, i.e.,

¥e = (1*G,G ~"n, — (m*G,G ),
+ (*G,G ), — (*G,G ~')m,,

where we have defined G = G(x*y, — ﬁ“‘).A
One can by a gauge transformation make G = I'in which
case we have (in a particular gauge)

Ye = °G,G n, — (m°G,G "m,.

(3.29)

(3.30)

IV. THE RIEMANN-HILBERT PROBLEM AS A
DIFFERENTIAL EQUATION

Returning to the RH problem (3.20) written as

G! (xa,ﬂpﬁ ) G(X“,‘Ih,’ﬁ) =a (ﬁ;"]p"h)a
we wish to convert it to a differential equation for G(x%,7,7).
Though this can easily be done, it turns out that the resulting
equation is simpler if, via (3.12) and (3.13), we use £ and I
as the basic variables and ask for an equation for G(x*£,£).
Equation (3.20) then has the form

G (xLENG(xLE,) = a6 nE,). (4.1)

We obtain the differential equation by taking the £, deriva-
tive of (4.1), evaluated at §, = £,, i.e.,

—G GG IG=agy ¢ ;.
From (3.18) and (2.11) we have

° s 5
“.z,,|;=zz=f=”"71%=7“ma(§’§m“+§§) !

(4.2)

and thus (4.2) becomes
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9:G = — GARLD) (4.3)
with

3:G=01+¢5HG,;
and

A=y,mR. (4.4)

Equation (4.3), a first-order homogeneous linear partial dif-
ferential equation well known in the literature'®" and re-
ferred to as the Sparling equation, is our sought for equation.

One seeks solutions of the Sparling equation G(x°,£,£)
holomorphic in the strip £~¢. These solutions solve the
original RH problem.

We, however, must say a bit more about a(¢; £.,&,) and
A(R,£,£). Our notation has suppressed the fact that they are
both dependent on x4, the field point. It is, in fact, this depen-
dence which forces G to be also a function of x°. We first
point out that we can always, for self-dual fields, make a
choice of gauge such that on the data surface Cy, we have
7.1 “(&E) = y,m(£.€) = 0, the only nonvanishing compo-
nent on Cy bemg v.m°. Though this choice of gauge is not
necessary, it does make the exposition simpler and hence-
forth will be used.

It is easily seen from (3.18) and (4.4) that 4(R,£,Z) is
the component of the connection on C, which is tangent to
the curve B connecting p, and p,. Here 4, which is our free
characteristic data given on Cy, is to be thought of as an
arbitrary (spin-weight — 1) function of R,§,§‘. If we, how-
ever, use (3.11) with (3.14) and (3.15), we obtain a rela-
tionship

R =R L), (4.5)

i.e., that value of R on the intersection of C, with Cy, which is
to be used in (4.3). We thus have

ARLL) =ARW LD LE)=A(x"— Y 5D,
(4.6)
which is the appropriate form to be used in the Sparling
equation.
For completeness we give the form for (4.5), namely
R=wl(—& %) 4.7
with
= — (u+ )/ (& +vD).
In the very important case of Cy becoming null infinity,
ie, when Y°> timelike infinity and %= —¢
= — Z’ =1 Eq. (4.3) is shown easily to be the usual Spar-
ling equation for G(x%7,7), i.e,
8,G = — GA(x°L, (,7),m,7%). (4.8)
V. FURTHER COMMENTS ON THE HOLONOMY
OPERATOR

We saw that the triviality of the holonomy operator
h = I on the B planes led to the RH problem (3.20). A natu-
ral question is what use is the holonomy operator (which we
will refer to as /) on the a planes.

The closed paths we use on the «,, planes are the direct
analogs of the paths we used on the 8, planes.
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From a field point x* on @, we construct a triangle
A(x,n) with two legs given by the generators ( 7/,17,) and
(7,7,) from x° to p{ and p} on Cy, and the base B being the
unique curve on Cy, connecting p; and p; on e,

The holonomy operator around A (x,7) (startmg from
a point on Cy ) is simply given by

h(x,m301%2) = G ~1(x°1,41,) G(x%117,), (5.1
which, in general, is nontrivial. Note that there is no contri-
bution to 4 from the curve B since by our choice of gauge
y.m*(&,£) = 0. Note further that / is gauge invariant, i.e.,
from G—g(x)G, we have h—sh.

h(x,m; 71,71,) is an interesting and important variable.
Directly from 4 alone one can calculate the Yang—Mills
field. Furthermore h satisfies equations equivalent to the
self-dual YM equations. In other words, the nonlocal holon-
omy operator A contains all the information about the gauge
field.

One can look at 4 in two ways; we can first consider it as
afunction of the seven variables (x°7,7#,,7,) and second, for
some fixed values of (,%,,%,), consider it simply as a func-
tion of x° alone. From the first point of view one can derive a
generalized RH problem and its “localized” differential
equation analogous to the Sparling equation. The second
point of view leads to a simple second-order nonlinear differ-
ential equation for #(x®) obtained in a different context by
Yang,'* which replaces the usual self-dual equations.

To elucidate these claims we begin by writing the RH
problem for two 3 planes, £ and B,

a(fmn2) = G 7 (X7, G(x,7,,7:),
a(fumm2) = G =1 (xm12) G (X,7,7,),

and the holonomy operator / on two a planes a, anda, ,
ie.,

(5.2)

X7 G(X,1,7,),
-! (xyﬂb'f}l )G(x,”}zﬂ?z)o

I;(x’ﬂliﬁv’"?z) =G
h(x,7:7:,7,) =G

(5.3

By inspection of (5.2) and (5.3) we see that G can be elimin-
ated yielding an expression involving on # and g, i.c.,
a(’a:;”'h:"?z)i’("h;;?n"—h) = 7’(772§;71,77J2)a(’~72’771’72)’ (54)
which can be thought of as a generalized RH problem in two
variables 7, and #,, given a(#,7,,7%,). By differentiating
(5.4) with respect to 77, and 7, at 7, = 7, and 7}, = 7, one
obtains the differential version of (5.4), namely
0H + [HA) +84=0
with the infinitesimal holonomy operator H given by

(5.5)

= +ni) 2
87]2 fa="h

[For simplicity here we have tacitly assumed that Cy is null
infinity as in (4.8).] As in the case of the Sparling equation
versus the RH problem, (3.20), it is easier to study (5.5), a
linear inhomogeneous differential equation, than (5.4). B

For our final result we derive Yang’s equation on 4
thought of as a function only of x°. We fix, in (5.1}, , #,,
and 7, = — 7, ' and write (5.1) as

h(x*) =G ~'G. (5.1)
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In a straightforward fashion we compute

fu=(h"h,), (5.6)
using
(G,G6™MH,=(G,67Y,—-[G,G ,G,G™'] (57
obtaining
fo=G"H(G,6™",~(G,6™",
+[G,6 46,6116 (5.8)

Though £, is #not skew on a and b and is not the Yang-Mills
field, it does contain all the Yang-Milis field information as
we now demonstrate.

Using either (3.29) or (3.30) one can show that (in a
particular gauge) the three nonvanishing self-dual compo-
nents of the YM field are

F,l°m*= —f,1 °*mb,

F, (I + m°m®) = — f,, (I °n® + m*m®), (5.9)

F,n°mt = — f,, m°n®.
(Note that on the right side the placement of the indices are
important.)

Furthermore one can calculate

F,, (I °n® — m°m®) = — f,, (I “n® —m°m®), (5.10)
which must vanish by virtue of the fact that / “n®! — m!%m?®!

is anti-self-dual and F,, is self-dual. This leads to the simple
differential equation for A

(A%, — (h'hy,)s =0, (5.11)
where we have introduced coordinates u,v,w,7 by
. 0 d . 0 d
[ =, Bf—=—,
ax" 3u ax“ av (5. 12)
. 9 J _, d a
m = mt— = —

ax ow’  ox* Iw
Equation (5.11) is the Lorentzian version of an equation
derived by Yang' for Euclidean self-dual fields.

Vi. CONCLUSION

In a future paper we will show how, for the gauge groups
SL(2,C) or SU(2), it is possible to solve in closed form, i.e.,
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by quadratures, the RH problem (3.20) or the related Spar-
ling equation (4.3). This means, at least in principle, one can
calculate by quadratures any of the symmetry reductions of
the SL(2,C) self-dual equations and in particular the sta-
tionary axial symmetric solutions of the Einstein equations.
It appears likely, but at the moment unproved, that our
method of integrating the SL(2,C) RH problem or Sparling
equation can be extended to other groups.
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Seventy-five years ago Cartan invented spinors by mapping C 2 onto isotropic (null) vectors in
C?. In recent work this map was extended and it was shown that bispinors are isomorphic to a
class of Yang—Mills vector triplets F, = E, + /H, which satisfy the following SU(2) XU(1)

gauge invariant constraint: F, « F, =s° §;,, where s* = IF, + F, (k summed from 1 to 3). Thus

bispinors have inherent SU(2) X U(1) gauge symmetry. In this paper it is shown, using the
extended Cartan map and the gauge symmetry of the constrained Yang-Mills fields, that all
the Fierz identities reduce to a single equation. Moreover, this equation includes not only the
75 identities recently derived by Takahashi [ Y. Takahashi, J. Math. Phys. 24, 1783 (1983)]
but an additional 75 which come from interchanging gauge and vector components. It is
further shown that the Fierz identities for bispinors can be generalized to any multiplet,
YeC?', consisting of 2"~ spinors (n = 1 for spinors, #n = 2 for bispinors, n = 3 for bispinor
doublets, etc.). The generalized identities can also be used to show that the 2" ~! spinor
multiplets are isomorphic to multiplets of constrained Yang—Mills vector fields.

I. INTRODUCTION

A bispinor V= (£,7*)eC* consists of a spinor £ and a
conjugated spinor 7*. We have shown in recent papers'
that bispinors could be mapped isomorphically onto spinor
pairs ¥ = (£,7)eC * or equivalently onto a set of Yang-Mills
vector triplets (see Fig. 1),

F.=E, +iH, (k=123 and E,,H,eR?), (1.1)
which satisfy the following constraint:

F, - F, =5%,, (1.2)
where

s =1F, *F,. (1.3)

The isomorphism between the bispinors and the Yang-
Mills vector triplets satisfying (1.2), revealed that the bi-
spinors have an inherent SU(2) X U(1) gauge symmetry.
The gauge group SU(2) acts on the Yang-Mills triplets
(F,, F,, F;) by formal rotations of the F,. However, the
equivalent action on the bispinors is noncomplex linear,
which obfuscates their inherent gauge symmetry.® In this
paper we use the gauge symmetry of the Yang-Mills vector
triplets to simplify the Fierz bispinor identities recently de-
rived by Takahashi.”

The map from bispinors ¥ to constrained Yang-Mills
vector triplets F, we called the Cartan map.® We defined the
Cartan map to be the bilinear map B¢ from C*X C* into
C*® C* given as follows (see Sec. IT):

B2 (Vy) = V*r.0%, (1.4)
where

a =0, 1, 2, 3 = Lorentz indices,

K =0, 1, 2, 3 = gauge indices,

¥, y = spinor pairs,

W* = conjugate of ¥ (see Sec. II),
o” = Pauli spin matrices,

Tx = gauge matrices.

For each spinor pair YeC 4, we define
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Fg =iBg (V,¥). (L.5)

Writing F§ = (F%,Fy), wedefine F, withk = 1,2, 3 as the
Yang-Mills vector triplet and s = F{ as the scalar corre-
sponding to ¥. (F, and F¢ identically vanish.)

The complete set of 15 Fierz identities derived by Taka-
hashi® can be combined into a single gauge symmetric for-
mula as follows:

Be(Yx)BP(y'\¥') = C%ZBY (¥, ¥)B°(y'x), (1.6)
where C 25 is the tensor'® whose covariant components are
given by

Copyrs = 8uy8ps + 82585y — 8ap8ys — i€apyss (L.7)
where

8.s = Lorentz metric tensor,
€.5y5 = permutation tensor,
¥, ¥, v, ¥’ = spinor pairs.

DIRAC PINOR
BISPINOR ¥ zAikov N
BIJECTION
¢ 3
n* n
CARTAN CARTAN
MAP - MAP
ISOMORPHISM F] ISOMORPHISM
-
Fy
-
F3
YANG-MILLS
TRIPLET
(1SOTROPIC)
FIG. 1. Isomorphisms.
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The operation * denotes the formal Clifford algebra multipli-
cation defined on formal quadruplets @5, g, and Ag
(K=0,1,2,3) as follows for A = ¢eu:

Ao =&k Uk

‘ (1.8)
A = dotbr + i po + €1y P, 1y

(see Sec. II).

Since the Lorentz indices « and the gauge indices K are
symmetric in formula (1.4), interchanging them in (1.6)
leads to a second gauge symmetric formula given as follows:

B, (W,y)oB, (y,\¥') = CiEBS (VW) By (X' x)s (1.9)

where C %€ is the same tensor'' defined in (1.7), i.e.,
CJKPQ=gJPgKQ+gJQg.KP_gJKgPQ_i€IKPQ’ (1'10)

and the operation © denotes Clifford algebra multiplication

with respect to the Lorentz indices (that is, for four-vectors:
p% q% r*eC* such that r = pog, then
P=p¢"+p"q
r=p°q+q°p + ipXq)
(see Sec. II).

We first derive formulas (1.6) and (1.9), and then show
that the 75 nongauge symmetric identities relating bispinor
observables obtained by Takahashi'? are specific cases of for-
mula (1.6). We further show that these identities, which
pertain to a single bispinor, can also be reduced to a single
gauge symmetric identity.

The Fierz identities (1.6) and (1.9) can be easily gener-
alized to any multiplet,

YeC? (1.12)

(n=1,2,3,...) consisting of 2"~ ' spinors. The case n = 1
(spinors) is discussed in Sec. II. Fierz identities (1.6) and
(1.9) are for the case n = 2 (spinor pairs). Special cases of
the Fierz identities for n = 3 (spinor pair doublets) were
used in the SU(2)XSU(2)XU(1) model of color-
electroweak interactions. '

To facilitate extending the identities to any n, we consid-
er first the case n = 3. The Cartan map for n = 3 is defined to
be the bilinear map B % from C®Xx C?®into C*®C*eC*
given as follows'*:

B% (W) = — W*r,t.0%,
where W, yeC® and

(1.11)

(1.13)

a =0,1,2,3 = Lorentz indices,

J,K =0,1,2,3 = gauge indices,

W* = conjugate of ¥,

o” = Pauli spin matrices,

Tx,lx = gauge matrices.
Then for n = 3 formula (1.9) becomes the following Fierz
identity using the formal tensor C "2 defined in formula
(1.10):

By (W,y)oBgy (X',W')
=1CIRC I NB 3R (W, W) Bys (¥'x)- (1.14)

Since the Lorentz indices a and the gauge indices Jand K are
symmetric in formula (1.13), interchanging them leads to
further identities.
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As an application of formula (1.14) for n = 3,1et WeC®.
Define

F5y =By (V,Y). (1.15)

Writing F$,, = (F 9, F,,) we obtain ten Yang-Mills vec-
tors Foo and F,,,,, and six scalarss; = F and r,, = F3,,. The
remaining components of F$,, vanish. From (1.14) and
(1.15) we get the following formula for the scalar invariants
of the nonet F,,,,:

ij * Fkn = _P2 5jk 5mn +sjsk (smn + L ajk

+ (€pSp ) (€mng?q)s (1.16)
where p* = 5,5, = I 7.

Using the method discussed in Sec. II, the generaliza-
tion of (1.14) to the cases n > 3 is a straightforward induc-
tion on the products of the formal tensor C f2, which gives
the following formula for » > 1:

BJI wdy (W,X)OBKI Ky (X"\l")
=2 [chg - crR]

XBS,..o, (W¥)Bg. ..o, (X0);

where ¥, y, ¥', y'’eC*" and the Cartan map B, _x _ from
C¥XC?¥into C*®--® C* (n factors) is defined by

(1.17)

By ..k, (W) = (= D)"W*r Vg Vg,

(1.18)
) (n—1)

where the 7, V,...,7¢ are the gauge matrices.

The generalization (1.17) also leads to the following
isomorphisms between 2"~ ! spinor multiplets ¥ and con-
strained Yang-Mills vector fields:

Fo o, , =By i, (1,9). (1.19)

The constraints may be derived from (1.17) in the same
manner that (1.16) was derived from (1.14).

For every n, the Yang-Mills vector fields F, . x,_,
satisfy a vector Dirac equation'® derived from the corre-
sponding spinor (multiplet) equation using the Fierz identi-
ty (1.17). Furthermore, the vector Dirac equations are more
general than their spinor versions. Indeed, spinor multiplet
fields cannot be defined generally for space-time mani-
folds'®; whereas the vector fields Fy ., _, are defined on all
space-time manifolds. Thus, it is the Fierz identity (1.17)
that allows us to pass from spinor multiplets (which do not
have curvilinear components) to vectors which are fully co-
variant with respect to all coordinate transformations.

n—1

Il. FIERZ IDENTITIES

By definition a spinor is a two-dimensional complex vec-
tor; i.e., an element of C 2. Let

§ 1 2
&= [ eC
&
denote a spinor. The conjugate spinor £ * is defined as

§*=[_§2-1],

where the bar denotes ordinary complex conjugation. The

(2.1)
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map £—€ * is called spinor conjugation. Since

gor= -
spinor conjugation is a bijection.

The Pauli matrices, denoted 0%, wherea =0, 1,2, 3, are
the 2 x 2 Hermitian matrices acting on spinors £€C 2 defined
by

10 ,__[o 1]
"D‘[o 1]’ =l ol

0 —i 1 0
N R
o [ i O] 0o -1
We often use the following notation:
o= (c,0%0%), o= (0%0).
Let p®eC * have the components
=%, p=(p,p%p").
Then by definition (2.2)
P+p P - IPZ]
agh — [ ; .
P P!+ ip? P°—p
Then 2 X 2 matrices (2.3) satisfy the following rule for mul-
tiplication. Let p®, ¢g°cC*, then

(2.2)

(2.3)

(p®™) (qPo?) =r"o?, (2.4)
where 7"eC * has the components
P =p°¢", r=p"q+q°%+ipXq (2.5)

Writing » = pog, formula (2.5) defines an associative multi-
plication on C*, which makes C* a Clifford algebra.

In order to obtain Lorentz covariant expressions we
must consider products of the form pog, where

=" —q) =4q,. (2.6)
Substituting (2.6) into (2.5) we get
[ p°31° =p°q., [p°4]1~ =4¢°%p —P°q—ipXq. (2.7)

That is, if p®, g°eC * transform as Lorentz four-vectors, and
if we denote

s=[pog1°% F=[pog]~,
then s is a Lorentz scalar and F =E + /H is a Yang-Mills
vector.
The Cartan map is defined to be a bilinear map from
C2x C?into C* as follows:
E1m2 — 21y
£ — &7
i€+ &2m2)

— &2 — &
where £,7€C? are spinors. From (2.1) and (2.2), formula
(2.8) may be written as

b(Em) = —E*o"7. (2.9)

From (2.8), the Cartan map b: C2X C?*—C* has the
symmetry property

b(&m) = —b(n.d) (2.10)
and from (2.9), the following conjugation properties:

BEM) =bE* %), BER) = —b(&n*).
(2.11)

b*(&m) = 2.8)
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Moreover, from (2.4), (2.5), and (2.9), the Cartan map
commutes with the matrices (2.3) as follows:

b(&, pPo®n) = pob(&m). (2.12)

In addition, from (2.8) a straightforward derivation shows
that the Cartan map satisfies the following identity for all £,

n,§',n'eC?:

b(&Em)ob(y' ") =2b°(&E" )b (7' ). (2.13)
Formula (2.13) shows that the image of the Cartan map is
closed under the operation of Clifford algebra multiplica-
tion. Equivalently, using (2.10), we have

b(EMOB(E ') =2b°(£E ) b(n,7). (2.14)
From (2.14) we derive Lorentz covariant equations. Using

(2.7) and denoting b* = (b°%b) we can expand formula
(2.14) in component form as follows

26°(E£b° (") = b (Emb, (£'7),
2b°(£,£)b(,m") =b°(Emb(E' )

—b(EMdE )

+ (&) Xb(E" 7). (2.15)

Formula (2.14) gives us all possible Fierz identities for spin-
ors. Fierz identities for bispinors will now be derived as a
straightforward~generalization of (2.14).
Abispinor ¥ = (£,7*)eC * consists of aspinor £eC ? and
a conjugated spinor n*eC 2, Associated with the bispinor
¥ = (&,m*) is the spinor pair ¥ = (£,7), where =
— (n*)*, and the conjugate spinor pair ¥* = (5*, — £*).
Note that ¥ = ¥**. The map ¥—¥ and ¥—W¥* are bijec-
tions. The Cartan map (2.8) can be extended to spinor pairs
(bispinors) as follows: For each K =0, 1, 2, 3 the Cartan
map is defined to be the bilinear map from C*X C*into C*
given by’
be(&v) — b (k)
be(§x) —b%(n,v)
i[b*(Ex) +b*(nv)]
—b%(&v) — b ()
where ¥ = (£, ) and y = («, v) denote spinor pairs and b *
is defined by (2.8). Note that the extended Cartan map
(2.16) can be rearranged as follows:
b*(&k) = — (i/2)(B§ +iBY),
be(nwv)= — (i/2)(B§ —iB%),
b*(&v) = —B5 —Bg),
b%(nu) = —i(BS + Bj),
where we have denoted
B¢ =B (Vy).

The SU(2)XU(1) gauge generators, denoted 7,
where K =0, 1, 2, 3, are the 4 X 4 Hermitian matrices acting
on spinor pairs ¥ = (&,17)eC* defined by 7, = identity ma-
trix,

T_[o 12] T_[o —i12]
Y, ol” " li, oI’

_[12 O]
T3 = 0 _12 ’

Bx(Yy) = ) (2.16)

217

(2.18)
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where I, is the identity of C2 We often use the following
notation:

T = (T, T2T3)y T = (70,71 )5

with k = 1, 2, 3. Using the gauge generators 7, formula
(2.16) may be written as

B2 (¥,y) = V*roy. (2.19)
The B¢ = (B%, By ) have the following symmetries:

B3 (W) =B3(1,¥), Bo(¥,x) = — Bo(y,¥), (2.20)
BY (V)= — B (x,¥), B (¥.x) =B, (y,¥),
with k = 1, 2, 3. It follows from (2.20) that B9 (V¥,¥) and
B, (¥,¥) vanish. Similar to (2.10), we define

B(¥,y) = B(y,¥). (2.21)
Then the B ¢ satisfy the following conjugation properties:
B(Up) =BW*y*), B ) =B(¥y*. (222)

From (2.13), (2.16), and (2.17), we derive the follow-
ing Fierz identity for spinor pairs (bispinors):

B, (¥,x)°B (v, ¥') = CIZBL(W,¥) B, (¥',x),
with

C/kPe — g JPgKQ +g JQgKP —g JKgPQ —ie’kPe (2.24)
where!'®

JK,P,Q0=0,1,2,3,

g ¥ = formal Lorentz metric tensor,

(2.23)

€’*PC — formal permutation tensor,
¥, ¥', v, Y’ = spinor pairs.

[We may substitute B for B in the Fierz identity (2.23) to
obtain Lorentz covariant equations similar to (2.15).]

We may also define a Clifford algebra product with re-
spect to the gauge indices K, rather than using the Lorentz
indices « as in formula (2.5). Thus, consider quadruplets:
dxsttx,and A, with K =0, 1, 2, 3, then A = ¢ou is defined
by

Ao= bk tixs Ar =dolx + i o + iekpq¢p Hq-

(2.25)
This associative multiplication makes the quadruplets a for-
mal Clifford algebra. [In order to obtain formal Lorentz
expressions we use products of the form ¢ei, where
A= (o — i) similar to formula (2.6).]

Using the symmetry between the Lorentz and gauge in-
dices in formula (2.19) we immediately obtain from (2.23)
the following Fierz identity:

B*(Wx)BP(y'\WV') =CEBL (Y ¥)B°(y'x)
with

Caﬁy& = gaygﬂé + gabgﬁy - gaﬂgyé - ieaﬁy&’
and where g5 is the Lorentz metric tensor and €, is the
permutation tensor.'®> [We may substitute B for B in the
Fierz identity (2.26) to obtain formal Lorentz equations. ]

As an application of formulas (2.23) and (2.26), let
WeC'* be a spinor pair. Define

(2.26)

(2.27)
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& =BL(¥*W), F=iB%(¥V). (2.28)

Thens = F§ is ascalar and F, is a Yang-Mills vector triplet.
From (2.20), F, and F¢ vanish. The j¢ are a quadruplet of
real Lorentz four-vector currents. Then (2.23) and (2.26)
give, using (2.22) and (2.28),

Js%ix = CI@FYFy, j4” = CEFF®. (2.29)
}Jsing the facAt that F§ = (s,0) and F§ = (0,F,), and also
J& =Jjoa and j§ = — jr,, We get from the first equation of
(2.29),

JiJka = |s|2gJK’ (2.30)

which shows that e§ =j%/|s|, for K=0, 1, 2, 3, form an
orthonormal Lorentz basis for R *. Also, from the first equa-
tion of (2.29) we get

F, =s(ee, —ele, + iegXe, ). (2.31)
From the second equation of (2.29) we get
ese Pk = g%, (2.32)

which again shows that the e§ form an orthonormal Lorentz
basis. Also from the second equation of (2.29) we obtain the
following equation which is equivalent to (2.31):

(2.33)

where F ¥ = (F,, — iF, ) are the antisymmetric tensors as-
sociated with the Yang—Mills vectors F, . Given that the e}
are orthonormal, formula (2.33) reduces to (2.31) and is
equivalent to all 75 equations derived by Takahashi.?

FP=s(efef —efel +ie, e5eh),
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Starting from a Lippmann-Schwinger-type equation, which is very similar to that of quantum
mechanical multiple scattering theory, Zeller and Dederichs [Phys. Status Solidi B 55, 831
(1973) ] have developed the effective medium theory. This theory has found wide application in
understanding the mechanical behavior of disordered solids. However, unlike the problem in
quantum mechanics, this equation of the random elasticity is only approximate since this is a
linear response theory. So, it is proposed in this work for the first time to go beyond this
approximation to treat nonlinear properties of such solids of which the third-order elastic
constant is a generic. Again, so far as the nonlinear elastic behavior of these solids is concerned, no
work has been done except the simple Voigt- and Reuss-type averaging. Both are extreme
approximations and are, moreover, known to lead to violation of the equilibrium condition. The
salient feature of the present calculation is to get an exact formal solution of the problem in terms
of an appropriate Green’s function in a closed form. The result obtained is quite general and may
be adopted to treat nonlinearity in any tensor property of disordered materials. Finally several
approximations, including a self-consistent solution, have been discussed for obtaining the

effective nonlinear static mechanical susceptibility.

I. INTRODUCTION

It is becoming increasingly evident that the different
theoretical methods' ™ developed for calculating the macro-
scopic elastic properties of disordered materials, though
highly instructive and ingenious, are basically intuitive and
hence are rather difficult to apply. Even in the case of the
most effective and rigorous technique involving the vari-
ational procedure® an educated guess is essential for the
choice of the trial functions. On the other hand, as empha-
sized by Gubernatis and Krumhansl,® starting from the local
stress—strain relation a rigorous theoretical formulation of
the problem seems to have been inhibited so far by the diffi-
culties of solving the resulting differential equations with
randomly fluctuating values of the coefficients. However,
the same equation being cast in the framework of an integral
equation formalism is amenable to iterative or perturbative
methods of solution.

The above idea has been used by many authors™® for
calculating various effective properties of a macroscopically
homogeneous medium with fluctuating values of the same
property on a microscopic scale. In particular Zeller and
Dederichs®'? have developed an interesting and theoretical-
ly satisfying formulation of the problem for the effective elas-
tic properties of disordered materials. They have quite suc-
cessfully exploited the idea of an effective medium whose
mathematical formulation is algebraically equivalent to that
of the quantum mechanical scattering theory. Recently Mid-
daya, Sarkar, and Sengupta'' have applied the method to
discuss the elastic properties of noncubic polycrystals. Oper-
ationally a self-consistent effective medium solution implies
that the average scattering by the crystallites composing the
solid is zero, when they scatter independently. This idea has
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been employed in different areas of condensed matter phys-
ics that contain some disorder.'? In the case of elastic proper-
ties, the idea has been somewhat as follows. The strain, at
any point in a specimen, is not determined alone by the local
stress at the point under consideration. The strains from oth-
er parts of the solid, due to different values of the elastic
constants at those parts generated owing to the microscopic
inhomogeneity of structure, propagate to the given point.
Then solving the relevant equations self-consistently we ar-
rive at the effective elastic constants corresponding to which
the fictitious medium is called the effective medium.

It is, however, to be noted that all the applications envi-
saging the idea of the effective medium have so far been con-
fined to only the linear response regime; namely, the second-
order elastic constants, the second-rank dielectric tensor,
and similar linear response susceptibilities of thermal and
magnetic properties of disordered materials. The main pur-
pose of the present investigation is to extend the idea of the
effective medium approach to the nonlinear domain. The
particular case that we shall treat is the case of the third-
order elastic constants, which is a generic for all static non-
linear susceptibilities. Specifically the theory of Zeller and
Dederichs® will be employed for the calculation. The solu-
tion of the resulting integral equation may be suitably adopt-
ed to treat nonlinearity in the other physical properties also.

In the next section we develop the general theory includ-
ing the nonlinear response. It is shown that under some phy-
sically valid assumptions the exact formal solution for the
effective tensor of the third-order elastic constants is ob-
tained. Then the different approximate methods of solution
and a self-consistent solution of the final equation have been
discussed.

In the last section we discuss the results and their possi-
ble applications.
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Il. THEORY
A. Strain distribution

In order to calculate the third-order elastic constants of
a polycrystal the usual method"® has so far been to assume
either the constant strain (Voigt average) or the constant
stress (Reuss average) throughout the specimen. The iso-
tropy observed is satisfied by one of the above averages. Both
are extreme approximations and they are not theoretically
consistent either, because in both cases the equilibrium con-
dition is violated at the boundaries of the crystallites. Some-
times a mean of the above two averages is calculated (Hill
average), which, of course, does not correspond to any de-
fined stress—stress relation. So, it is imperative, for any the-
ory that tries to go beyond these approximations, to take into
consideration the basic equilibrium equation to determine
the actual strain distribution among the crystallites. In the
following discussion we make such an attempt.

Since the nonlinear part of the response cannot be con-
sidered separately from the linear part, we relate the total
local stress and strain fields by the following relation:

0, (r) = Cyy () 4§ Ciigimn (1) €4y ()€, (1), (N

where o; and €, s represent the stress and the strain, respec-
tively. The second-order and third-order elastic moduli ten-
sors, Cy,; and Cj,,,, and the corresponding compliances
Sx; and S;;,... are in general functions of r. For disordered

4 1

mjaterials tjhese quantities will vary in a statistical manner on
a microscopic scale. We shall specialize our calculation in
subsequent work for a polycrystal for which the statistical
distribution will refer, in particular, to grain orientation. The
term “grain” is used generically to mean even dislocations,
cracks, voids, and similar other irregularities. Our purpose is
similar to what Zeller and Dederichs have achieved with Eq.
(1) neglecting the second term on the right-hand side of the
equation; namely, to establish a connection between the en-
semble averaged stress and strain fields (defined as (o) and
(€)) for macroscopic homogeneous materials through the
following sets of nonlocal second- and third-order elastic
constants defined as follows:

(o;(r) = f dr' C iy (rr') (€ (1)

+%fdr’ C Gtmn (LX) (€1 (1)) (€, (1))
(2)

It should be emphasized that Eq. (2), as it may apparently
seem, does not imply the approximation

(€€} = (€) (e),

which decouples the combined effects of fluctuation and
nonlinearity, which will, of course, be evident from the de-
tailed calculation given in Egs. (11)-(17).

Equation (2) should be interpreted as follows.

The strain field e(r) is rapidly varying in the sense that it
changes value from one crystallite to another. The strain
fields (€) and €° [the strain field corresponding to the non-
fluctuating part; see Eq. (11) ] on the other hand are slowly
varying. For a given distribution of elastic constants, how-
ever, one can map both the ¢ field and (€) field from €°.
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Symbolically writing this nonlocal integral relation as
€=Je°
where J is an integral operator, we get
(€) = (J)e
Using the above expression for € we get from Eq. (1)
o= COJe® + 1 CPJJe%"
and
(o) = (CPT)e® + CPIT )€
={(C2T) (J)"Ke)

+HCOT) () "HI) " Ke) (e),

where C ?=C,, and C®=Cy,,.,.

It is precisely the above result that is given in Eq. (2) to
indicate just the fact that (o) and (¢) are related by nonlocal
integral relation.

As emphasized in Ref. 9, the nonlocality of C,ﬁ, and
C;{,m,, are not very important. Therefore, Eq. (2) can be
replaced by a local stress—strain relation with the constant
effective tensors C * and C **

(U.y(l'» = Cij"u(sz(l’)) + 4 C ftmn (€ (1)) (€, (1)),

(2'a)
where
Ch, = f dr' Co(rx") (2'b)
and
C fimn = f dr’ C iy (1,X'). (2'¢)

If we neglect the second term in Eq. (2') we retrieve the
relation of Zeller and Dederichs.® The present treatment will
yield two sets of effective elastic constants. Of them the sec-
ond order will be identical with that of Ref. 9. The only thing
known about the disordered system is the statistical distribu-
tion of Cy,; (r) and C,,,, (r). The equation describing the
equilibrium condition is obtained by taking the divergence of

Eq. (1),

div(g,; (r)) =0, (3)
which written explicitly gives
div(Cipi€xt + 3 Cittmn €t €mn ) = 0. (4)

This equation satisfies the equilibrium condition regarding
the displacement vectors s,. The boundary conditions are
given in the form of either the surface displacements or the
surface forces.

For obtaining the solution of the above equation we split
both the fluctuating tensors Cy, (r) and Cy,,, (r) into a
constant part and a fluctuating part as follows:

Cyut (1) = C%y + 8Cyy (r)=C?
and

Cijklmn (l') = Cg'(l)clmn + 5C1{jk1mn (l‘)ECG). (5)
Now introducing the displacement vectors we write Eq. (4)
in the following form:

(Cirt (03511 (D)), + 3 Cittmn (O)Si 11 Spmpn )1, =0, (6)
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where
ad

1 3’}
Now considering both the fluctuating parts of the second-
order and the third-order elastic tensors, as well as the con-
stant part of the third-order elastic tensor as the inhomogen-

eous terms in the above equation, we give below the above
equation with the homogeneous and inhomogeneous parts

a%, F Os,,
—* + 2 ]sc, —k
dr; ar; + or; [ et (1) ar,
1 ds, Os,, ]
—C; —_— =0.
g Comn O 5

0
ijkl

(6")

The solution of the homogeneous equation is solved by intro-
ducing the Green’s function

Cgkl gkpw-(l‘,l") = _5IP 6(1’—[”)- (7)

This part of the equation remains the same as that given by
Zeller and Dederichs. The boundary conditions also remain
unaltered, namely g,, (r,r') =0, for all r on the surface or
there are no surface forces. Then for the given surface displa-
cements s we obtain from Eq. (6)

s, = 53 (r) +fd"' 8 (6,X) [(BCy0 (r')sc 1, (X)),

+ 3 C Rt 5t (K8, (£)), 5

+ 3 (OC Gt (F')81c 1 (1), (D), 1, (8)

where s (r) is the displacement field corresponding to the
constant part of the elastic constant, C°. By partially inte-
grating the above equation and then differentiating we get
the resulting integral equation for the strain tensor:

€, (r) = e"kq (r) + Jdr’ Gl (X" )C 5 (Y €4, (1)
1 ’ ’ 00 ’ ’
+ > ar’ Gy (0,8 )C i1 €41 (T)E,,, ()

1 7 ’ 4 ! ! !
+ ?fdr Gy (1,0)0C [y (X ) €4 (X)€E,,, (1)

with )

quij = - %(gkiqu +gqi|kf)
and

(10)

-9

g ar; .
The terms G,,; and €;, depend neither on the fluctuating
quantities nor on the constant nonlinear part of the elastic
constants. An excellent discussion of the fundamental Eq.
(8) excluding third order is given in Ref. 14. Introducing
short notation, Eq. (9) may be written in either of the fol-
lowing forms:

€ =€ + G86Ce + } GC ®ee + 1 G5C 'ec
or (1)

€ =€+ G5Ce + } GCee.
It is to be remembered that the integral Eq. (9) is the basic
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equation for most of what follows. We have, however, sup-
pressed the r dependence and the tensor indices in Eq. (11)
for subsequent manipulative purposes.

Let us now have recourse to an iterative method of the
solution of Eq. (11). The iteration immediately leads to the
following two sets of infinite series in terms of which the
solution is given by

e=€’+G(C+ECGSC+8CGECGECH -+ )€
+1G(C® +3CPG8C + 6CPG8CG 8C
+10C®PG 8CG 8CG 8C + -+ 0 )€%°

+ higher-order terms. (12)
The different type of product operators will have the follow-
ing meaning. In general the r-dependent quantities
are G(rr'), CPrr) =CPr)érr), C®rr)

= C®(r)8(r,r'), and the fundamental tensors are of rank 2,
4, 6, etc. The products are defined as follows:

(G8Ce), = f dy Gy (1)8Ckm (Ve (¥),  (138)
(G8CG6Ce),; = f dx f dy G, (2,x)6Cy,,,, (X)
X G ronpg (X,¥)8C,,, (V)E (¥), (13b)

(GC(3)€€)ij = fdy Gijkl (X,Y)Cl(c?rzznop (Y)emn (Y)eop (Y);
(13¢c)

and

(GC™G 8Cee),; = f dx j dY Gyt (2,X) Biipunop Emn€ops
(13d)
where

Bklmnop = C I(c?lzmab (X)Gabcd (x’y)accdop (y)’ ( 136)

etc. It is further important to note that in the second series in
Eq. (12) the same quantities occur in mixed order in differ-
ent terms. The order may be interchanged provided the
Voigt symmetry of each term is ensured. This happens be-
cause the terms involve products of tensors of ranks 6 and 4.
So, in any application of the above formula each term has to
be properly symmetrized. There is no such problem with the
first series where the symmetry is automatically satisfied.
Now, the above two series may be summed up to yield an
exact formal solution in closed form. This is possible since on
repeated interation of Eq. (12) no terms other than those
indicated in the series representing the coefficients of €” and
€°¢® will be generated. So for obtaining the second- and the
third-order elastic constants the cubic and and higher-order
terms in €° are neglected and we write

€ =€+ GTe’ + } GT '€, (14a)
where

T'=86CH—-G6C)! (14b)
and

T'=Cc®I—-GéC)3 (14c)
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and the previously defined multiplication rules for operators
apply. The unit operator 7 is defined as

Ly (r,r’) =18y 8y + 6,8, )6(r —r'). (15)
It is interesting to note that in Eq. (14) the terms linear in €°
incorporating the fluctuations in the second-order elastic
constants remain unchanged, while the higher-order term
involves both the fluctuations of the second order and the
whole of the third-order elastic constants. A knowledge of 7'
and T' completely specifies both the linear and the nonlinear
susceptibilities. In order to avoid the rather unwieldy expres-
sions in the algebra, a shorthand notation is often used to
represent the above formulas by diagrams. The associated
diagram for calculation is shown in Fig. 1. Next we shall use
Eq. (14) to derive the effective elastic constants of the medi-
um.

B. Effective elastic constants

In order to get the expression for the effective nonlocal
elastic constants C j§,=C *" and C3j,,,,=C " we re-
quire the macroscopic strain given by Eq. (14). Thus we get

(e) =€° + (GT )€’ + L(GT")e’%". (16)

The macroscopic stress is given by [averaging Eq. (1) ]

(0) = (C%¢€) + K(Cee), (17)
which in terms of the effective elastic constant is
(0) =CPM(e) +1CP(e) (e). (18)

To find expressions for C ¥ and C ®’*% in terms of the 7-
matrices we have to solve for €° in terms of {€). Iterating Eq.
(16) in the reverse order we get retaining terms up to second
order in macroscopic strains

€= +(GT)) (&) — I+ (GT))*(GT") (¢ (e).
(19)

Next separating the constant and the fluctuating parts of the
elastic constants Eq. (17) may be written as

(o) =C%€) + (6Ce) + L C%(e€) + 1(5C e€). (20)

Then with the help of Egs. (14) and (19) we get the macro-
scopic stress (o) in terms of {(¢) and the 7" matrices. Com-
paring this final expression with Eq. (18) we finally arrive at
the following expressions:

COM=C°+(T)U+(GT))™" 1)
and
E=¢ +5 € « x x
€= vt b Lt
€= ——T-——-+3(——T——T——--)—i-e(—L—L T——-9+———oc
P s G =y 8C= 1, LT, et

FIG. 1. Diagrammatic representation of integral Eq. (12) for the total
strain field. Each vertex (intersection point of different lines ) implies opera-
tor multiplication. The symbols are not unique.
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COT = CO((I+GT)*I +(GT))?
—(TY(GT"YUI +(GT))?
+{TU +GT) " 'GT"YUI + (GT))™?

+{(T"T+G)"HUIT+(GT))™% (22)

where Eq.(21) is identical with that obtained by Zeller and
Dederichs and Eq. (22) is the new result giving the effective
third-order elastic constants. While writing Eq. (22) we
have used the following notation:
T'=C®I—-G8C)*=C®I+GT)*+T"
=C%I—-G8sC)*4+T"

and

T"=6C'I-G8C)3 (23b)

Equations (21) and (22) provide the complete solution for
the effective nonlocal second-order and third-order elastic
constantsif (7T ), {(GT ), {T'"),and {(GT"') can be computed.
But all these quantities may only be approximated and the
nature of the material will supply the necessary guidance.

(23a)

C. Method of evaluation and different approximations

In this section we discuss some methods for obtaining
the effective elastic constants from Eq. (21) and (22) as-
suming different models of the solid. As shown in Ref. 6 the
elastic stiffness constants may be decomposed without any
loss of generality into the sum of contributions from differ-
ent grains (i.e., in general it may include pores, vacancies,
dislocations, etc.; the only assumption is that there is a distri-
bution of species)

5C= 6C°9%(r), (24)

5C'=Z5C'“6"(r), (25)
where 6 “(r) is a step function whose value is unity whenr is
in the arth grain and zero otherwise. Here 5C ® and 6C “ are
both constant fourth-and sixth-rank tensors, respectively.
Hence forth we drop writing the step function explicitly; the
presence of a will imply it. We now indicate some approxi-
mations of increasing accuracy.

1. Voigt average

The simplest application of the above theory will lead to
results already known."'*'? In particular if the disorder refers
to different orientation of the crystallites in a specimen and if
we make the assumption that the strain everywhere is the
same, i.e., € = €® we find from Egs. (21), (22), (23a), and
(23b)

C* = (C(Z))Voigt
and
C** = (C(S))Voigt’ (27

where (C?)y and (C®)y,,, are simple volume average
of the elastic constants. In this approximation both the en-
semble averages (5C ) and (5C’) are zero, i.e., there is no
fluctuation in the medium. From a certain point of view the

(26)
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above results may be seen as the correction to the effective
elastic constants of lowest order in 6C and §C’. Similarly
with constant stress approximation we get the known result,
namely, the Reuss average. As has been indicated earlier
these approximations, however, lead to certain difficulties
regarding equilibrium equation.

2. Self-consistent solution

In order to keep the discussion general we briefly indi-
cate the method of the self-consistent solution of Egs. (21)
and (22). Although the T-matrices have been extensively
used in the quantum mechanical problems connected with
the disordered systems there have been only a few attempts
to tackle problems related to classical mixtures. A particu-
larly illuminating discussion in the case of the continuum
problem is given by Zeller and Dederichs'* and in another
case of network problems by Kirkpatrick.’® Recently
Hori,"” in a series of papers, has treated the problem of classi-
cal mixtures of dielectrics. He has given a critical discussion
of the T-matrix expansion. Following these works we define
the following two matrices for a single grain a in analogy
with the 7" and 7" matrices for the whole system:

t, =8C*+6CGt, =6C*“(I—GSC*)™!
and
t! =8C*+86CGt" =8C(I—GS6C*) 73, (29)

where 8C’s are given by Eqs. (24) and (25). Then the well-
known T-matrix expansion as in the multiple scattering the-
ory becomes

(28)

(30)

T=Y1t,+>3 Gt +>Y> t,Gt;Gt,

a#f a#B#Ey
and

T"=Yti4+33teGt; +>53 1t Gty Gy,
* a#B a#B#y
(31)

where each sum is taken where no two successive subscripts
are equal. The Green’s function depends on the statistical
information about the shape, the orientation, and the rela-
tive position of the grains. So averaging the terms other than
the first one in Egs. (30) and (31) will include intergranular
correlations even for the statistically independent grains.
Now, if we assume that the intergranular correlations are
small, all the higher-order correlative terms are neglected.
This is the usual procedure of truncation, which is found to
be a good approximation.

Although the f-matrices in Eqs. (30) and (31) appear
formally similar, they are quite distinct both physically and
operationally. Both, however, refer to scattering from the
same grain and give rise to intragranular scattering. While
the former refers to the scattering of stress due to fluctuation
of the same tensorial property, namely, of second-order elas-
tic constants, the latter envisages scattering the stress due to
fluctuations of both the third-order (sixth-rank tensor) and
the second-order elastic constants (fourth-rank tensor). In
the latter case also, both the scattering occur from the same
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grain and hence the grainwise decomposition of terms in the
new T ”-matrix has been possible. The difference in character
of the two types of T-matrices is seen in a more transparent
way from the related diagrams shown in Fig. 2. The second
diagram of Fig. 2 clearly projects the correlated character of
the two types of fluctuations. The absence of fluctuation in
the third-order constants immediately leads to a vanishing of
the ¢ ”"-matrix and that of in the second order to a vanishing of
both.

After the grainwise decomposition and using the above-
mentioned approximations let us write

(T)=(7), (32)
(T"y=(1"), (33)
where

=%t and =312,
a 124

where all the higher-order intergranular correlations are ab-
sent. We may now substitute values in the equations for the
effective elastic constants, but we have not yet specified the
C°and C”® on which 7, 7", and G depend. There are several
prescriptions possible. For example, if we have this plausible
choice, namely,

C0= (C(z))Voigt’ C00= (CO))Voigta G= (G)Voigt’ etc"

we have the approximation analogous to the average 7-ma-
trix approximation (ATA ) in the theory of disordered mate-

rials®'%; when

C@eff _ (C(Z))ATA
and
C(3)eﬂ‘ — (CB))ATA! (35)

the ATA averages the strain field by single grain inclusion.
Further refinement of the solution may be possible if we
look for a self-consistent solution by taking advantage of the
free choice of C ° and C %. This is equivalent to absorbing the
effects of the higher-order terms excluding intergranular

(34)

- PN S
o= P+ 77, + TNt o
¢ B R
RS - T, tenmn T 10 igETy Yo
I
6c’=

(a)

<tare, <tr=1
(b}

FIG. 2.(a) Diagrammatic representation of Egs. (28) and (29), which rep-
resent two types of the single grain T-matrices. The recipe for calculating
the diagrams is as follows. (i) The different points r,,r,,... are represented
by nodes on the horizontal line. (ii) The propagator G(r,,r,) is assigned to
the solid line connecting r, and r, as in the previous figure. (iii) The crossed
vertex with a following dotted line is the elastic constant operator in the
second order and the same with a following wavy line is the elastic constant
operator in the third order. (iv) Finally one has to take the operator product
of all the Green’s functions and the elastic operators to evaluate the dia-
grams. (b) The definition of the ensemble average of a single grain 7-matrix
inFig. 2(a). A circle followed by a dotted line and a wavy line, respectively,
is used to denote average for the second-order and the third-order cases.

Middya, Basuy, and Sengupta 2811



scatterings. Since Tand T ” are functions of C° and C° and
C %, a self-consistent solution is achieved by the following
implicit coupled equations:

(ry ={r"y =(r") =0,
where
(2G*? +2G*7) = (7), (36)

which finally deliver the nonlocal self-consistent (SC) val-
ues of the second-order and third-order elastic constants,

C(Z)eﬁ‘= (C(Z))SC — CO’ (37)
C(3)eff= (C(S))SC — COO. (38)

Equations (36) are the central result of the self-consistent
approach corresponding to which the medium is an effective
medium.

The local effective second-order elastic constants (C *)
and third-order elastic constants (C **) can be obtained by
using Egs. (2'a),(2'b), and (36). The method of solving Eq.
(36) on a computer may be developed following the strategy
outlined by Gubernatis and Krumhansl® for the second-or-
der elastic constants, which is, however, much more com-
plex in the present case.

lil. DISCUSSION

In this investigation we have found out the strain distri-
bution, including the nonlinear part for a macroscopic ho-
mogeneous material with microscopic inhomogeneities. A
formal solution of the problem has been obtained in Eq. (14)
by the introduction of a 7'-matrix. This solution has been
utilized to get an expression of the effective third-order elas-
tic constants of the medium. Equation (22) is quite general
and may be applied for the calculation of the nonlinear sus-
ceptibilities in a variety of situations including homogeneous

2812 J. Math. Phys,, Vol. 27, No. 11, November 1986

mechanical mixtures. A particularly important area of ap-
plication will be that of single crystal aggregates, namely,
polycrystals, which are real materials used in practical situa-
tions, which we shall consider in a future communication.
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