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The paper considers endospectral trees, a special class of graphs associated with the production 
of numerous isospectral graphs. Endospectral graphs have been considered in the literature 
sporadically (the name was suggested very recently [M. Randic, SIAM J. Algebraic Discrete 
Meth. 6, 145 (1985)]). They are characterized by the presence of a pair of special vertices that, 
if replaced by any fragment, produce an isospectral pair of graphs. Recently Jiang [Yo Jiang, 
Sci. Sin. 27, 236 (1984)] and Randic and Kleiner (M. Randic and A. F. Kleiner, "On the 
construction of endospectral trees," submitted to Ann. NY Acad. Sci.) considered alternative 
constructive approaches to endospectral trees and listed numerous such graphs. The listing of 
all such trees having n = 16 or fewer vertices has been undertaken here. It has been found that 
relatively few endospectral trees have novel structural features and cannot be reduced to some 
already known endospectral tree. These few have been named "irreducible endospectral trees." 
They are responsible for the occurrence of a large number of isospectral trees, leading to, when 
one considers trees of increasing size, the situation that led Schwenk [A. J. Schwenk, in New 
Directions in the Theory of Graphs, edited by F. Harary (Academic, New York, 1973), pp. 
275-307] to conclude that "almost all trees are isospectral." 

I. INTRODUCTION 

Collatz and Sinogowitz1 were the first to report that 
different graphs can have all graph eigenvalues (spectra) the 
same. Their finding remained dormant for a number of years 
until the late 1960s and the beginning of the 1970s when 
there was a rediscovery of isospectral graphs in physics2 and 
chemistry.3 At first there was considerable interest in "hunt
ing down" isospectral graphs,4 followed by observation of 
intriguing properties of selected isospectral graphs, which 
allowed several constructive approaches to be developed. 5 

Herndon6 and Zivkovic, Trinajstic, and Randie indepen
dently observed the presence of special vertices in some iso
spectral graphs, called by Herndon6 "isospectral points," 
and called by Zivkovic et aU "active sites." The term of 
Herndon appears a better term, being more specific, and will 
be adopted here. These vertices, appearing in pairs (in more 
general situations several vertices or several pairs may ap
pear), have a property that when they are used for adding an 
arbitrary fragment the exchange of the sites (which pro
duces different graphs) will leave the characteristic polyno
mial the same. In Fig. 1 we illustrate one such endospectral 
tree, a graph having n = 9 vertices, studied in some detail by 
Schwenk.8 The positions 2 and 5 are the isospectral points, 
or as we prefer to call them here (vide infra) endospectral 

points. Any fragment (another graph) attached to either 
vertex 2 or vertex 5 will produce a pair ofisospectral graphs. 
The simplest is the case of attaching a single edge to either 
vertex 2 or vertex 5, also illustrated in Fig. 1. The isospectral 
points thus can produce numerous isospectral graphs. Iso
spectral points also can occur in different (already isospec
tral) graphs as illustrated in Fig. 2. Again adding the same 
fragment at the given sites (each time to a different graph) 
will produce isospectral graphs as shown in Fig. 2. We find it 
useful to differentiate the two cases, that of Fig. 1, where a 
single graph has been used to give two isospectral graphs and 
that of Fig. 2 where two different graphs have been used, in a 
somewhat analogous way, to produce two isospectral 

a) This work is dedicated to Professor Allen J. Schwenk as an acknowledg
ment of his many contributions to spectral graph theory. 

FIG. 1. Schwenk's tree and a pair ofisospectral graphs produced by attach
ing a single edge to endospectrai points. 
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FIG. 2. A pair of isospectral graphs having isospectral points (shown as 
circles) and the property that when a fragment (here a single edge) is at
tached to either of the two points another isospectral pair is produced. 

graphs. Hence, we refer to the former as endospectral graphs 
and its "active" points are termed "endospectral points," 
while those of the two isospectral graphs capable of generat
ing additional isospectral graphs by additions to the selected 
"active" points, we call "isospectral points." This narrows 
the term originated with Herndon to cases of the spectral 
points appearing in different (isospectral mates) graphs, 
while the term "endospectral points" is reserved to such 
points occurring within a single graph. The distinction is 
particularly useful when both types of graphs are discussed; 
if no confusion is possible, the term isospectral points can be 
used, if desired. Finally the reader should be reminded that 
there are isospectral pairs of graphs that have no isospectral 
points at all, just as there are graphs that are not isospectral 
and yet have special points (termed "unusual") 9 character
ized by the property common with endospectral and isospec
tral points: having the same count of self-returning walks 
and same coefficients for associated eigenvectors. In Table I 

TABLE I. The number oftrees (N), number oftrees having vertices of the 
same code (D), percent N /D, number of pairs of endospectral vertices 
(EV), and the number of endospectraJ trees (ET) for n = 9 to n = 16. 

n N D % EV ET 

9 47 1 2.1 1 1 
10 106 3 2.8 0 0 
11 235 13 5.5 3 2 
12 551 44 8.0 4 4 
13 1301 133 10.2 11 7 
14 3159 364 11.5 18 13 
15 7741 1107 14.3 42 25 
16 19320 3012 15.6 72 45 

Legend: n-number of vertices, 
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N-number of trees (acyclic graphs, restricting the maximal va
lency to 4), 
D-number of isocodaJ vertices, 
%-percent of trees having isocodal vertices, 
EV -number of pairs of endospectral vertices, 
ET -number of endospectral trees. 
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we give the count of occurrence of these unusual points in 
trees, as found in another study of Knop and collaborators. 10 

Table I gives the percentage of trees having these special 
structural features, showing a rapid increase in the number 
of such cases with the increase in the size of trees as measured 
by n, the number of vertices in a tree. 

Endospectral graphs are of interest for construction and 
possibly characterization of isospectral graphs. If structural 
conditions for isospectrality can be fully understood one 
could revive (conditionally) use of the characteristic poly
nomials for representation of graphs. Equally, study of endo
spectral graphs should help to resolve some problems in 
graph's spectra (e.g., occurrence of common eigenvalues), 
which in tum are of interest for the problem of graph recog
nition. In physical chemistry, in the study of structure-prop
erty correlations, isospectral graphs may signify molecules 
with same (or similar) properties, while the chemical phys
ics isospectral networks necessarily point to lattices that will 
have some statistical constants (e.g., the dimer converings) 
the same. 

II. ENDOSPECTRAL TREES 

Besides the tree of Fig. I, studied by Schwenk, several 
additional trees have been reported in the literature, see Fig. 
3 (Randic, II Jiang, 12 and Randic and Kleiner13

). Jiang was 
first to report on a single constructional approach using alge
braic properties of trees that produced more than a dozen 
endospectral trees having less than 20 vertices. Thus for the 
first time one could examine a collection of such graphs, in
stead of individual cases. Among trees, the only known cases 
are the tree of Schwenk,8 the tree of Godsil and McKay,I4 
and that of Randic. 11 Work of Jiang stimulated a search for 
alternative constructional approaches to generate additional 
endospectral trees. Although endospectral trees appear to be 
rare, success in constructing additional trees raises the possi
bility of finding still others. One cannot be sure, unless the 
constructional approach involves an exhaustive search, 
which the schemes ofJiang and Randic-Kleiner do not, that 
all the endospectral trees of a particular size have been 
found. It is highly desirable to arrive at the complete list of 
endospectral trees of a particular size. The only sure ap
proach at this moment is an exhaustive search for the endo
spectral graphs, preferably with the use of a computer. In 
this paper we report such findings. We have undertaken a 
systematic computer-assisted search for all endospectral 
trees having n = 16 or fewer vertices. In all, we screened 
618 050 trees to report some hundred endospectral cases. 
Subsequently we have analyzed the derived endospectral 
trees and found that only about a dozen of them can be con
sidered as "essential," i.e., nontrivially related. These struc
turally interesting trees we call irreducible endospectral trees. 

III. COMPUTER SEARCH FOR ENDOSPECTRAL TREES 

The basis for the computer-assisted search for endospec
tral trees is the available program designed for enumeration 
and construction of all trees. 15,16 The program and the algo
rithm have been described fully elsewhere17 so we will men
tion only the main features of the approach. The first step in 
generating trees is to devise a unique code for trees. There are 
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n = 9 Schwenk (1973) 

n = 12 Randie (1980) 

n=11 Jiang (1983) 

and many other cases 

n = 12 Randie a Kleiner 
(1984) 

and many other cases 

FIG. 3. Some of endospectral trees previously reported in the literature. 

several alternative schemes that generate graphs. 18
-

21 The 
program used here has been developed and implemented at 
the Computer Centre at the University of Dusseldorf. 17 Let 
us illustrate the code used on Schwenk's tree (Fig. 1). The 
code consists of a string of digits separated occasionally with 
a colon or a slash. For the graph of Schwenk one obtains 

943/3:7/311110100 . 

The first entry is n, the number of vertices, and the second 
entry is the ordinal number for the graph (among all graphs 
having a same n). For example, if one desires to construct all 
trees having n = 9 vertices, use of the particular algorithm 
will give Schwenk's tree as the 43rd output. The numbers 
between the slashes /3:7/ are labels of the vertices that are 
endospectral. The labels are implied by the last string of dig
its, each position in which corresponds to a single vertex. 
One starts with a vertex having the highest valency, which 
assumes labell, and its valency is the first digit of the string 
(n-tuple). For every vertex but the first, one records not its 
valency v but v-I, valency decreased by 1. To proceed to 
the selection of the second vertex one erases vertex 1, which 
partitions the tree into three disjoint components, each of 
which has to be examined. We will assume here that the 
codes for these smaller components are known (if not they 
can always be constructed as a separate task). Having codes 
for the fragments one concatenates these partial strings into 
a single code. In order to have a unique code one selects the 
combinations that make the final code lexicographically 
maximal. Each vertex of the tree is thus mapped onto one 
component of the n-tuple. The approach can be extended to 
rooted trees and even polycyclic graphs built of regular hex
agonal cells. 22

•
23 The listing of the program and discussion of 

its logical functions has been published. 17 An important 
component of the program is the subroutine PLTREE, which 
plots trees. Hence the output is graphical as well as digital, 
which is an important advantage, not yet common to graph 
generating programs. The subroutine PLTREE transforms 
the representation of a tree as an n-tuple graphically by 
drawing the Ariadne thread described by the n-tuple. It 
spreads the thermal edges uniformly in all directions. Other 
edges take the directions given by the mean value for the 
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angles of the terminal edges reachable through the chain of 
intermediate edges from the branching site. In the full draw
ing, vertices are shown as full circles (in fact they are drawn 
as small octagons, but these are too small to be recognized 
necessarily as such). In the present work a minor modifica
tion is made by enlarging the circles indicating the endospec
tral points. The output is shown as Fig. 4, which shows all 
endospectral trees having from 9 to 13 vertices. 

IV. RESULTS 

Most of our results are shown graphically starting with 
Fig. 4, which shows all endospectral trees having n = 9 (the 
graph of Schwenk) , n = 11, and n = 12, as plotted by a com
puter. Observe that there are no endospectral trees having 
n = 10 vertices. Also observe that among the three outputs 
for n = 11, we have only two distinctive trees, labeled as 
# 185 and #218. Moreover, the tree # 185 is related to the 
Schwenk's graph #43: it can be viewed, as derived from the 
former, by adding a single edge at both endospectral points of 
Schwenk's graph. It follows from the analysis of Schwenk 
that such a process will necessarily leave an endospectral 
graph endospectral. Moreover, both the old endospectral 
points as well as the two new points will have the endospec
tral property. We conclude therefore that such augmenta
tion of a graph does not introduce an important novelty and 
will be referred to as trivial, and will be of no further interest. 
Hence, we have only one endospectral tree with n = 11 ver
tices, the tree #218, reported by Godsil and McKay. 14 Ob
served, that although the tree of Schwenk and the tree of 
Godsil and McKay both have the endospectral points at the 
same distance they are not simply related. Even though they 
have some common structural features, they both have the 
same central parts (the part between the endospectral 
points) and one of the end parts the same, but they differ in 
the other thermal group. 

A. Endospectral trees having n = 12 vertices 

The lower part of Fig. 4 shows endospectral trees on 12 
vertices, in all, four different trees. None of these trees can be 
related to either Schwenk's tree or the tree of Godsil and 
McKay, because they have an odd number of vertices! The 
reduction and the augmentation process previously men
tioned increases or decreases the number of vertices by an 
even number. The trees cannot be reduced, because there are 
no endospectral trees on n = 10 vertices. Except for the tree 
#389, the endospectral trees on n = 12 vertices have been 
reported previously in the literature: #435 by Randic and 
Kleiner13 , #533 by Randict4, and #539 by Jiang. 12 Graph 
#435 is particularly interesting; the two endospectral ver
tices are adjacent to one another. Hence the two "halves" of 
the graph obtained by disconnecting the endospectral ver
tices balance one another when it comes to the count of self
returning walks. Hence, the two "halves" are "exchange
able," if considered as components oflarger graphs. Let us 
illustrate one such case. We show in Fig. 5 the tree of Godsil 
and McKay on 11 vertices, which we augmented by adding a 
single edge at both endospectral vertices. The derived tree 
has as one of its end groups the terminal portion of the endo
spectral tree #435 with the adjacent endospectral points. 
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) ... .. 

9. 431 3c 71311110100 

~ ~ ~ 
11. 1851 1c 4132121100000 11. 185/ 8c10/32121100000 11. 2181 2. 5131121110000 

k >y ~ 
12. 3891 31 91411210101000 12. 4351 2. 31322110110000 12. 5331 3. 9/311121101000 

> .•... , 

12. 5391 3. 8/311111210000 

FIG. 4. Computer printout of all endospectral trees having n = 9 (one case); n = 11 (two trees, one having trivial extension); and n = 12 (four cases) 
vertices. 

We now perform a "surgery" by replacing the end of the 
augmented graph in the middle of Fig. 5 by the other endo
spectral "half' of the tree #435. This produces a tree on 
n = 15 vertices, which we expect to be endospectral, and 
indeed the graph is found in the computer output under the 
number # 7194. Another more apparent procedure of pro
ducing novel endospectral trees from graph #435 is that of 
the insertion of any symmetrical fragment between the two 
endospectral points. In Fig. 6 we show several so-derived 
endospectral trees. Tree #435 is the smallest endospectral 
tree having adjacent endospectral points, and at the same 
time the smallest nontrivial endospectral tree having endo
spectral points with valency greater than 2. 

The previously unreported endospectral tree #389 has 
its endospectral points at a distance 3: 
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A comparison with Schwenk's graph is instructive: #389 
can be viewed as structurally related to the Schwenk's tree by 
having additional branches L1 and L 2• It thus appears that 
adding L 1 near one of the endospectral points is "compensat
ed" by adding the other (larger) fragment L2 near the other 
endospectral point. Observe that the fragments L 1 and L2 are 
not in a general way equivalent, but just in the particular 
environment dictated by the other points in #389. How
ever, if the above "balancing" act of the two fragments L1 
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FIG. 5. Construction of endospectral graphs from a parent structure. 

and L2 is valid, it ought to hold also if we double the number 
of L segments. That is, we anticipate that the tree 

L2 

0 12 

L1 
l1 

also will be endospectral. Here instead of LI we have 2XL1 

andinsteadofL2 wehave2XL2, resulting ina treeonn = 15 
points. By examining our computer output we find the above 

FIG. 6. Simple constructions of numerous endospectral trees all derived by 
insertion of a fragment between two adjacent endospectral vertices. 
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tree is endospectral tree # 3190, thus verifying the validity of 
our speculation. We may refer to the two vertices used for 
the substitution as restricted sites, by which we want to indi
cate that qualified fragments (like LI and L 2 ) may be at
tached here without upsetting the endospectrality of the par
ent (unsubstituted) graph. It is of interest to compute the 
n-tuples for the three graphs #43, #389, and #3190: 

Schwenk's tree #43: 311110100, 

this work #389: 411210101000, 

this work #3190: 511310101010000. 

The above codes can be written in a condensed form as 

#43: 3(1)2(1)(10)2(0), 

#389: 4(1)2(2)(10)3(0)2, 

#3190: 5(1)2(3)(10)4(0)3, 

which clearly suggests the existence of a family of endospec
tral trees having codes 

(k + 2)( 1)2(k) (10)(k + 1 )(O)k, k = 1,2,3, .... 

B. Endospectral trees having n = 13 vertices 

In Fig. 7 we show all endospectral trees having 13 ver
tices. In all seven different trees, some appear two or three 
times in view of the presence of trivial endospectral points. It 
is not difficult to identify the trivial cases: #684 and # 1138 
can be derived from Schwenk's graph #43, while # 1120 is 
similarly related to Jiang's tree #218. Finally # 1136 can be 
derived by insertion of a (symmetric) vertex between the 
adjacent endospectral points of #435. This leaves only three 
nontrivial cases, #658, #1191, and #1264, the last case 
already reported by Jiang.24 

C. Endospectral trees having n = 14 vertices 

Five of the 13 endospectral trees (Fig. 8) immediately 
can be identified as trivial by simply observing that they per
mit more than one pair of sites for the endospectral vertices. 
Ofthese # 1423, #2165, #2835, and #2962 have a pair of 
bonds attached to an existing endospectral point in smaller 
endospectral trees (#435, # 389, # 533, and # 539, respec
tively), while #2932 is derived from #435 by insertion ofa 
symmetric fragment. Inserted pair of vertices, can also act as 
isospectral points. In the case of #2632 we also have an 
insertion of two vertices in a symmetrical fashion, thus this 
case also can be discarded as having no structural novelty. 
We are left with seven nontrivially related graphs: #2450, 
#2890, #3004, #3080, #3105, #3120, and #3126. The 
pair #3105 and #3120 are intriguing, they differin a single 
detail, i.e., the linkage of one of the endospectral terminal 
groups to the central portion off our vertices in a chain. We 
find tree #3105 is particularly interesting; if one erases ei
ther of the endospectral points one obtains as one fragment 
Schwenk's tree on nine vertices. 

v. LARGER ENDOSPECTRAL TREES 

We have seen from examining cases n = 13 and n = 14 
that the number of trivially related endospectral trees grows 
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~ ~ ~ 
13. 6581 611014220011101000 13. 6841 11 414213110000000 13. 6841 8111/4213110000000 

r--.. l'e \---
13. 11201 21 513212211000000 13. 11201 9111/3212211000000 13. 11361 21 413212110110000 

~ ~ 
13. 11381 11 413212110100100 13. 11381 8111/3212110100100 13. 11381 911213212110100100 

13. 11911 4111/3211121000100 13. 12641 6,11/3112111100100 

FIG. 7. All endospectral trees having n = 13 vertices (seven different trees, several having trivial extensions). 

fast. In the remainder of the paper we will therefore no lon
ger consider such cases. Besides the graphs derived by add
ing a fragment at endospectral points of a smaller endospec
tral tree, which forms one class of trivial extensions, we also 
have the cases of insertion of symmetrical fragments between 
initially adjacent endospectral points, which form the other 
class of simple augmentation of endospectral trees. When all 
the above are discarded, out of 25 endospectral trees with 
n = 15 vertices we are left with 11 trees (shown in Fig. 9): 
#4557, #4598, #5094, #5233, #6355, #6470, #6533, 
#7252, #7583, #7607, and #7638. The question is 
whether any of these 11 can be derived, perhaps by some new 
structural procedure, from smaller endospectral trees. We 
have already seen how trees #43, #389, and #3190 with 9, 
12, and 15 points, respectively, form afamily of endospectral 
trees; each next member in the family to have to increase the 
size by 3. Are there other such (nontrivially) related endo
spectral trees? By examining the trees reported in this paper, 
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we find that comparison of the following may be of interest: 

# 1264 with 13 vertices and the code: 3112111100100, 

#2890 with 14 vertices and the code: 32121000111100, 

#5233 with 15 vertices and the code: 421111001210000, 

#6811 with 16 vertices and the code: 5211110012100000. 

The regularity in the codes starts to become apparent, and 
we are anticipating these endospectral trees to be members of 
another family of endospectral trees. The above graphs are 
shown in Fig. 10, which suggests that the centrally located 
vertex allows certain substitutions. The above codes appear 
somewhat scrambled: we see that the correct digits are there, 
but for the first two members of the family they are in some
what permuted order. We will see that this is not an error in 
the programming and the coding, but follows from the fact 
that endospectra1 trees # 1264 and #2890 are also the lead
ing members of additional families of endospectral trees. The 
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14. 14231 11 2143200001101100 14. 1423/ 6114/43200001101100 14. 2165/ 2. 6/42001221010000 

14. 21651 3112142001221010000 14. 24501 21 5141131120000000 14. 26321 2. 4132221101100000 

14. 28331 11 4/32121200011000 14. 28351 9113/32121200011000 14. 28901 5.10/32121000111100 

14. 29321 21 5132112110110000 14. 29321 31 4/32112110110000 14. 29621 11 6132111212000000 

14. 2962111113/32111212000000 14. 30041 3110/32111110011010 14. 30801 5.12/31211110110100 

14. 31031 21 3131121111010100 14. 31201 21 6/31112111100100 14. 31261 21 6/31112110101100 

FIG. 8. All endospectral trees having n = 14 vertices (13 different cases). 
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15. 45571 41 9/422100011110100 15. 45981 6110/422001200111000 15. 50941 31121421121100101000 

15. 32331 4111/421111001210000 15. 6355/ 3113/411220010110100 15. 64701 3111/411122101010000 

15. 65331 31 81411112210010000 15. 72321 5111/321210010111100 15. 75831 5112/312111211001000 

15. 76071 51131312111112000100 15. 76381 21 81311211211100000 

FIG. 9. Nontrivial endospectral trees having n = 15 vertices. 

problem to consider is as follows: Which fragments qualify 
for the substitution at the central vertex of the parent 
# 1264? It appears that any fragment substituted at the cen
tral vertex will not upset the inherent endospectrality of the 
parent skeleton. In Table II and Fig. 11 we illustrate the 
above for all possible families that can be constructed re
stricting the size of graphs to n = 16. The two portions of the 
graph # 1264 are, however, not equivalent (i.e., exchange
able) because they have a different number of vertices. We 
anticipate that the above illustration is but a special case of a 
more general situation that we will state as a proposition. 

Proposition 1: Endospectral trees that have a vertex lo
cated in the middle of the two endospectral vertices at which 
a branching occurs will remain endospectral, irrespective of 
the fragment at the branching site. 

The proof of this proposition can be argued along the 
following lines. The two "halves" of the midsection are iden
tical, except for the relative orientation with respect to the 
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endospectral points. We assume two items: endospectral tree 
with a midpoint and endospectral tree, the same as above, 
except for an additional branch (an edge) at the midpoint. 
The second endospectral tree ensures that at the midpoint 
there is a 1: 1 correspondence between any walk starting at 
one endospectral point and ending at the midpoint. Reach
ing the midpoint in this way, one can ignore the "history" of 
the walk, and clearly from there on the two walks starting at 
different end points will have counts identical to those of any 
longer walks extending into the substituted fragment. In 
searching for additional structural families of endospectral 
trees, one has to exercise some care and not rush to suggest
ing novel relationships without carefully examining all con
tributing terms. For example, if we consider the parent tree 
#1264, 
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~ #1264 

~ #2890 

~ #5233 

~ #6811 

~ #7252 

~ #13863 

~ #17792 

~ #18405 

FIG. 10. A sequence of endospectral trees having the same "end" groups 
and suggesting a presence ofa "central" (symmetrical) vertex at which an 
arbitrary fragment can be attached. 

and recognize the special role of the central vertex, we ought 
not to forget that this property of the central vertex is tied to 
the presence of the particular ending segments. One may 
speculate that the tree derived from a symmetrical insertion 
of two vertices adjacent to the central vertex also will be 
endospectral, and a parent of yet another family of endospec
tral trees. However, the derived tree is not endospectral, be
cause now the central part of the tree requires different end 
groups (if such exist and can be found). This is the reason 
why we underlined endospectral in our proposition. Hence 
an endospectral graph has to be taken as a whole. Sometimes 
one can replace one end group with another, but this does 
not necessarily mean that analogous constructions valid for 
one family will hold for the other. An illustration is provided 
by comparison of # 1264 having 13 vertices and #7638 hav
ing 15 vertices. The endospectral tree #7638 can be viewed 
as derived from # 1264 by changing one of the end groups. 
The graph has a midvertex, but is not the source of another 
family of endospectral graphs because by inserting a single 
branching edge at the central site we produce a tree, 

TABLE II. Regularity in the codes for a family of structurally related endo
spectral trees. 

n Graph # Code 

13 1264 3112111100100 
14 2890 32121000111100 
15 7252 321210010111100 
16 18165 3212120010110100 
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that is not endospectral. This need not be surprising because 
in # 1264 the end groups balance each other creating the 
special central site, but clearly, such balance is going to be 
upset by changing only one of the end groups. 

Finally in Fig. 11 we illustrate a number of nontrivial 
endospectral trees having n = 16 vertices. They reveal addi
tional interesting structural features. Two trees have adja
cent endospectral points (of valency 3) and therefore can 
produce families of endospectral trees analogous to those 
previously discussed for 12-vertex graph #435. 

VI. SOME OPEN QUESTIONS 

We have not exhausted all useful comparisons. It is pos
sible that additional structural relationships will emerge, be
coming more visible when the search of construction for 
larger endospectral trees is continued. The main finding of 
our work is that endospectral trees are rather rare, if one 
discards trivial cases, and limits oneself to "sporadic" rather 
than "families" of such trees. It is conceivable that few struc
tural requirements, if not a single one, may typify numerous 
endospectral trees. We have not succeeded in pinpointing 
such a structural element, but with continuing interest in 
endospectral and isospectral graphs we may have a more 
complete picture of the structural characteristic of these 
graphs. There are still a number of open and not yet consid
ered questions, which eventually may help in resolving other 
such questions. For example: Is there a single constructional 
approach that would cover all cases? Can we write any "cen
tral" portion of a graph (tree) and then find "end" groups 
that would make the tree endospectral? Are there trees with 
more than a single (nontrivial) pair of endospectral vertices? 
In the case of cyclic graphs (Fig. 2), we have cases of two 
(and more)isospectral points. Can endospectral points be 
terminal points (of valency I)? Can endospectral points 
have different valency? In all the cases considered here (in
cluding trivial cases also), the endospectral points always 
have the same valency: In nontrivial cases valency 2 or 3 (in 
trivial augmentations higher valencies) can occur. Do endo
spectral (and isospectral) points come inpairs? Or is it possi
ble to have a triplet of such points? Are there endospectral 
trees (and for that matter isospectral trees) in which there 
are no vertices of valency 2? Are endospectral trees responsi
ble for all cases of isospectral trees, "sporadic" cases merely 
being the intersection of different families if isospectral 
graphs? Some of these questions may be easier to answer 
than others and not all are of equal merit. Schwenk25 an
swered the first two questions: endospectral points necessar
ily have a same valency. Since u and v are endospectral this 
implies that Ch (G - u;x) = Ch (G - v;x), it must be that 
G - u and G - v have equally many edges. Therefore, u and 
v must have the same degree. Concerning terminal endo
spectral points, when they occur in a tree T, their neighbors u 
and v are necessarily endospectral in the tree 

Knopetal. 2609 



                                                                                                                                    

16.110941 21 3/4222101012000000 16.128951 311114212210000110100 16.134521 4113/4211220020001000 

16.135641 3113/4211200112001000 16.147751 21 6/4200121200120000 16.14898/ 611414200112200200100 

16.16384/ 811314112200112001000 16.164361 21 5/4112121010110000 16.166771 21 6/4111212110010000 

16.16786/ 21 714111121210100000 16.175171 21 3/3221200120001010 16.186901 31 9/3211200011111010 

16.1904~1 5112/3121120011011100 16.191641 31 613112112101011000 16.191881 31 8/3112111121010000 

16.192781 41 9/3111112111010100 

FIG. II. Nontrivial endospectral trees having n = 16 vertices. 

2610 J. Math. Phys., Vol. 27, No. 11, November 1986 Knopetal. 2610 



                                                                                                                                    

T' = T - u - v. Hence, the terminal endospectral points 
can be viewed as trivial. This case is already illustrated in 
Fig. 4 on #185, Fig. 7: #684, #1120, #1138; and Fig. 8: 
#2163, #2835, and #2962. 

One of the reasons for a study of endospectral trees is 
that they possibly can give some insight into the properties of 
endospectral cyclic and polycyclic structures, the topic that 
is of importance in attempts to characterize isospectral 
graphs in general. Ifwe succeed in characterizing isospectral 
graphs, then the role of the characteristic polynomial in the 
comparative study of graphs may be resurrected. Among the 
numerous (endless?) list of graph invariants, the character
istic polynomial, graph spectra, moments, random walks, 
and in particular, self-returning random walks are very im
portant. They are all intimately connected, some being ex
pressed in integers (a result of a counting process), others 
are analytical. A complete understanding of these funda
mental invariants is clearly prerequisite for the study of any 
other composite quantities. Considerable progress was made 
in the last few years in this area: methods for fast (computer
assisted) construction of the characteristic polynomials are 
available,26-30 alternative representations (via Chebyshev 
polynomials31-33 have been explored, factoring of the char
acteristic polynomial (for trees only34 but some extensions 
are considered for graphs in general35 ) have been studied, 
which factoring is not the result of the symmetry of the 
graphs. Finally the concept of "characteristic equations" has 
been introduced. These are the equations that determine the 
coefficients of the characteristic polynomial. It was found 
that in most cases even isospectral graphs have a different set 
of characteristic equations,24 although the existence of some 
pathological (highly symmetrical polycyclic) structures, to 
which Schwenk36 drew attention, make the characteristic 
equations nonunique. Revival of interest in the characteris
tic polynomial and related topics may provide some answers 
to the above questions as well as to other closely related 
questions. For example, a number of questions concerning 
graph spectra, such as the occurrence of common eigenval
ues,37 inclusion of spectra of a smaller graph in a larger 
one,38.39 the excessive "degeneracy" (i.e., multiplicity of 
roots), all tied to nodal characteristics of graphs remain for 
the most part unresolved, although some partial results have 
been offered. 40 We hope that study of endospectral graphs 
may directly or indirectly help to resolve some of the prob
lems mentioned. 
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It is shown how all zeros of weight-l 6j coefficients arise as particular cases of a four-parameter 
family of such zeros. The parametrization is given explicitly. 

I. INTRODUCTION 

A Racah operator is a linear operator acting on a parti
cular abstract Hilbert space, and gives rise to the Racah coef
ficients. See Biedenharn and Louck 1 for a full discussion, 
together with motivation for the importance of their study. 
Considerable interest has been shown in the nontrivial zeros 
of the Racah coefficients because these determine vector 
spaces belonging to the null space of a Racah operator, and 
accordingly give structural information concerning the op
erator itself. 

One method of classifying the zeros of the Racah coeffi
cients has been given by Brudno.2 Here, it is observed that 
the explicit expression for each of the coefficients, as given by 
Racah,3 is an alternating sum, and the author bases his clas
sification on the number of nonzer~ terms occurring in this 
sum. This is shown to be equivalent to a classification by 
weights of the corresponding Racah operator by Brudno and 
Louck.4 

We introduce notation for the 6j coefficient ti~;}, 
which up to sign is equal to a Racah coefficient. The coeffi
cient is given by a polynomial function in the arguments 
a,b,c,d,e,/, which represent angular momentum quantum 
numbers; an explicit realization of this polynomial is given in 
Biedenharn and Louck,l p. 142. The domain of definition of 
a,b,c,d,e,fis that they must be non-negative integers or non
negative half-integers satisfying the triangle condition on 
(a,b,e), (a,c,J), (b,d,J), (c,d,e) [wherethetrianglecondi
tion on (p,q,r) is that - p + q + r,p - q + r,p + q - rare 
all non-negative integers] . An alternative notation for the 6j 
coefficient is the 4 X 3 array of Bargmann5 

{

d+f-b c+f-a c+d e} 

fd
a b e} = a + f - c b + f - d a + b = e 

c f d+e-c b+e-a b+d-f' 
a+e-b c+e-d a+c-f 

The smallest entry in the Bargmann array is called the 
weight of the corresponding 6j coefficient and is equal to the 
number one less than the number of terms in the alternating 
sum, as mentioned above. 

A nontrivial zero of a 6j coefficient is now defined to be a 
sextuple (a,b,c,d,e,f) of non-negative integers or non-nega
tive half-integers, such that all entries in the corresponding 
Bargmann array are non-negative integers. Since coeffi
cients of weight-O possess no nontrivial zeros, then nontri
vial zeros of 6j coefficients have corresponding Bargmann 
arrays with every entry a positive integer. 

The first interesting case is that of weight-l coefficients 
having two terms in the alternating sum expression for the 
coefficient. This has been studied by Brudno and Louck6 

(see also Lindner7
•
8 for a more general statement) with the 

following results. If ti~;} = 0 and is of weight 1, then by 
applying a symmetry if necessary, it follows that there exist 
integers X, Y,Z, U, V, W satisfying 

X 3 + y 3 +z3 = U 3 + V 3 + W 3
, 

X+ Y+Z= U+ V+ W, 

with 

{a b e} 
d c f 

= {leX + U - 2) 
l(X - U) 

!(Y+V-2) 
!(Y - V) 

(1) 

1(W-Z-4)} 
!(W+Z-2) . 

(2) 

They give a one-parameter solution to Eqs. (1) (actually in 
the form given it is represented as a parametrization homo
geneous in two parameters), due to Gerardin (see Dickson,9 

pp. 565 and 713) in 1916. Bremner lO studies the Diophan
tine system (1) further, and produces some two-parameter 
solutions. 

It is the object of this paper to show how all solutions of 
the system (1) may be described in terms of a three-param
eter solution. In particular, it follows that all nontrivial zeros 
of weight-l 6j coefficients arise as particular cases of a four
parameter family, which we give explicitly. 

II. A FIRST PARAMETRIZATION 

In Bremner, 10 it is stated that for a nonrational variety 
V, the problem of determining all rational points on V is in 
general a very difficult problem. However, using an observa
tion of the second author of this paper, it turns out that the 
system (1), representing geometrically a cubic threefold, is 
actually a rational variety and, accordingly, a complete de
scription of its rational points is readily forthcoming. 

In (1), substitute 

Y=X+a, U=X+Y, 

Z=X +/3, V=X +8, 

W=X+ (a+/3-y-8). 

The equations reduce to 

(3) 

2613 J. Math. Phys. 27 (11). November 1966 0022-2466166/112613-03$02.50 @ 1966 American Institute of Physics 2613 



                                                                                                                                    

2X [Y + ~2 + af3 - ar - a~ - f3r - f3~ + r~] 
= (a + f3)2(r +~) - (a + f3)(r + ~)2 

- af3(a + f3) + r~(r + ~). (4) 

We solve Eq. (4) for X, and then backsubstitute into 
Eqs. (3). 

simplifying to 

Multiplying throughout by the denominator to ensure 
polynomial expressions [the system (1) is homogeneous], 
there results 

X: Y:Z: U: V: W 

=a2( -f3 +r+~) -a( -f3 +r+~)2+ (r+~)(f3-r)(f3-~) : 

a2(f3-r-~) +a( _f32+y+~2) + (r+~)(f3-r)(f3-~) : 

a2( -f3 +r+~) +a(f32- (r+~)2) + (-f32(r+~) +f3(y+t52) +rt5(r+t5) 

a2( -f3 + r+~) + a( _f32 + 2{3(2r+~) - (3r+ ~)(r+ ~») 

+ f32(r +~) - f3(r +~) (3r +~) + r(2y + 3r~ + 3152): 

a2 ( - f3 + r + ~) + a ( - f3 2 + 2{3( r + ~) - (r + ~)( r + 315») 

+ f32(r +~) - f3(r + ~)(r + 3~) + ~(3y + 3rt5 + 2152): 

a2( f3 - r - 15) + a (f3 2 - 4f3( r +~) + (3Y + 4r~ + 3~2») 
+ (-f32(r +~) +f3(3y + 4r~ + 3~2) - (r + ~)(2y + r~ + ~2»). (5) 

This furnishes a parametric solution to ( 1), ostensibly in four parameters. However, by homogeneity, one can divide through
out by, say, a 3 to see that (5) is really a three-parameter solution inf3 la, ria, and Ma. Nonetheless, it is preferable to leave 
the parametrization in homogeneous form. 

We now claim that any solution of ( 1) occurs as a special case of the parametrization (5). This is obvious, because the 
inverse transformation to (3) gives 

a: f3: r: ~ = Y - X: Z - X: U - X: V - X, 

and hence a solution (Xo'Yo,Zo,Uo, Vo, Wo) to (1) arises from the parametrization (5) using the parameters 

(a,f3,r,~) = (Yo-Xo, Zo-Xo, Uo-Xo, Vo-Xo)' 

To sum up, the parametrization (5) provides a complete description of all the solutions to Eqs. (1). 

III. A SIMPLIFIED PARAMETRIZATION 

By means of the transformation (2), one now recovers a complete description of all nontrivial zeros of weight-1 6j 
coefficients, as follows. 

From (2) and (5), we obtain the parametrization of a zero coefficient as ti~;}, where 

a = Ha2( -f3 + r +~) + a( _f32 + f3(3r + 215) - (2r + ~)(r + ~») 

+ f32(r + 15) - f3(2r + ~)(r + 15) + r(Y + 2rt5 + ~2) - 1], 

b = Ha( -13 2 +f3(r +~) - ~(2r+ ~») +f3 2(r +~) - f3(r + ~)(r + 2~) + ~(2y + 2r~ + ~2) - 1], 

c = Ha2( 13 - r - 15) + a( -f3(r +~) + (Y + 2r~ + ~2») + (f3~(r +~) - ~(Y + rt5 + ~2»)], (6) 

d=Har( -f3+r+~) +f3r(r+ t5 ) -r(Y+r~+~2)], 

e = Ha2( f3 - r - 15) + a( - 2{3(r +~) + (2Y + 3r~ + 2152») +f3(r + ~)2 - (r + ~)(Y + rt5 + ~2) - 2], 

/= Ha(f32 - 2{3(r +~) + (Y + rt5 + 152») + (-f3 2(r + 15) + 2{3(Y + rt5 + 152) - (r + t5)(y + 152») - 1]. 

Now the triangle conditions on (a,b,e), (a,c,J), (b,d,J), (c,d,e) reduce to the inequalities in terms ofX,Y,Z,U, V, Wgiven by 

W - Y> 0, U + V> 0, W - X> 0, U - Z> 0, X + Y> 0, V - Z> O. 

These in tum give the inequalities in terms of a, 13, r, {j; 

2614 

(-13 +r+O)(a( -f3+r+t5) +f3(r+t5) - (Y + rt5 +152 ))>0, 

(-a-f3+r+O)(a( -f3+r+o) +f3(r+~) - (Y+ro+o2))>0, 
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( /3 - r)( /3 - 8)( - a + r + 8) > 0, 

(-a -/3 + r+ 8 )( -/3 + r+8)( -a + r+8) >0, 

(/3-r)(a( -/3+r+8) +/3(r+8) - (Y+r8 + 82 ))>0, 

(/3 - 8)(a( -/3 + r+ 8) +/3(r + 8) - (Y + r8 + 82»)>0. 

(9) 

(10) 

(11 ) 

(12) 

If we suppose 

a( -/3 +r+8) +/3(r+8) - (Y+r8+82) <0, 

then it follows from (7), (8), (11), and (12) that 

- /3 + r + 8 < 0, (13 ) 

- a - /3 + r + 8 < 0, 

/3 - r<O, 

/3 - 8<0, 

whence from (9) and (10) that 

a - r-8<0. 

(14) 

(15) 

(16) 

(17) 

But (14) and (17) imply /3>0 whereas (13), (15), and 
( 16) imply /3 < 0, a contradiction. 

Accordingly, we must have 

a( -/3 +r+8) +/3(r+8) - (Y+r8 + 82»0, 
(18) 

with 

- /3 + r + 8> 0, 

- a - /3 + r + 8> 0, 

/3 - r>O, 

/3 - 8>0, 

-a + r+8>0. 

Now (19), (21), and (22) imply that 

/3 = p + q + r, r = q + r, 8 = p + r, 
for p, q, r> 0. 

Then (20) gives 

a = r-s, s>O, 

and (23) is automatically satisfied. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Further, condition (18) becomes, on using (24) and 
(25), 

(26) 

Thus we may rewrite the parametrization (6) in terms of the 
(positive) parameters p,q,r,s as follows: 

a=Hpq(p+r) +rs(q+s) -1], 

b=Hpq(q+s) +rs(p+r) -1], 

c = !( p + s) (pq - rs), 

d = !(q + r) (pq - rs), 

e=H(p+q+r+s)(pq-rs) -2], 

j=Hpq(r+s) +rs(p+q) -1]. 

(27) 

Then, subject to the inequality (26), the 6j coefficient with 
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I 
arguments a,b,c,d,e,j given by (27) is a zero coefficient of 
weight 1. Conversely, any nontrivial zero of a 6j coefficient 
of weight 1 arises as a particular case of the parametrized 
form at (27); indeed, the parameters giving rise to a zero 
weight-l 6j coefficient {~~;} are given by 

( p,q,r,s) 

= ( - a - c + f, - b - d + f,b - d - f,a - c - j). 

We remark that Eqs. (27) admit the relations 

a+c-j=p(pq-rs), 

b+d-j=q(pq-rs), 

- b + d + j= r(pq - rs), 

- a + c + j= s( pq - rs), 

a+b+c+d+l=(p+q+r+s)M, 

a+b-e= (p+r+s)rs, 

giving the precise connection between a,b,c,d,e,jandp,q,r,s. 
For numerical examples, we may, for instance, specify 

q = s = 1, p = r + 1. Then 

a = !r(2r + 5), d = !(r + 1), 

b=~(r+ 1){2r+ 1), e=!(2r+ 1), 

c=~(r+2), j=r(r+2), 

where r is an arbitrary integer. 
Cases r = 1,2,3,4 give the zero coefficients 

{~ : !j, [: ~ !j, 
[~ 1~4 115}' e~6 ~ ;4} 
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Generalized 6j symbols for G2 in which all four triangular conditions involve the seven
dimensional irreducible representation (irrep) (10) are multiplicity-free. Algebraic 
expressions depending on the highest weights of the accompanying irreps are found by using 
generalizations of the Racah-Wigner algebra. A rule is given for generalizing the SO(3) phase 
factors. The results are applied to finding algebraic expressions for a class of isoscalar factors 
for SO(7) ::JG2• 

I. INTRODUCTION 

It has been realized for many years that the apparatus of 
the quantum theory of angular momentum, as represented 
by the Racah-Wigner algebra for the group SO(3), can be 
very extensively generalized to other groups. An apprecia
tion of this fact is apparent in the early work ofWigner, 1 but 
it is only within the last 20 years or so that specific examples 
have been described. The generalizations to finite groups 
were initiated by Griffith,2 and a substantial tabulation of 
the 3j and 6j symbols for the crystallographic point groups 
has been recently provided by the book of Butler.3 Hecht4 

developed the Racah-Wigner algebra of SO (5) for applica
tions in nuclear physics, while a few special cases of general
ized 6j symbols for SO(5) have been listed in connection 
with the Jahn-Teller effect. 5,6 The unitary groups have been 
the subject of many articles because of their relevance to 
particle physics as well as nuclear physics. References in 
those areas can be found in the work of Draayer and 
Akiyama7 and of Haase and Butler.s 

A major problem facing any extension of the Racah
Wigner algebra from SO (3) is the appearance of multiplicity 
difficulties. A given irreducible representation (irrep) r of a 
group G may occur more than once in the decomposition of 
the Kronecker product r' X r". This enormously compli
cates the calculation of general expressions for the 6j sym
bols for the group G. What is more, all isoscalar factors (that 
is, factored parts of generalized Clebsch-Gordan coeffi
cients) involveirreps of both G and a subgroupH ofG, and it 
can well happen that a given r contains a particular irrep of 
H more than once. The attention that has been paid to cop
ing with these difficulties has tended to obscure the fact that 
many types of problems are multiplicity-free or almost so. In 
the limited regions where multiplicity complications are not 
encountered we might expect to be able to develop formulas 
for 3j and 6j symbols as well as for their higher nj forms. The 
absence of multiplicity difficulties enables us to give defini
tions of the 6j symbols in terms of recoupling coefficients 
that exactly parallel the corresponding definitions for 
SO(3). That is, the equation 

{ ~I ~2 ~3} 
14 is 16 

= (-I)j,+j,+j.+j, [(2j3+ 1) (2j6+ 1)]-112 

X ((jlj2) j3,j4,j5Ijl (j2j4) j6,j51 
is replaced by 

{
rJ r2 r3} 
r 4 r5 r6 

= ( _ l)q>(r,) +q>(r,) +q>(r.) +q>(r,) [D(r
3
)D(r

6
) ]-1/2 

X(rlr2)r3,r4.r5Irl(r2r4)r6,r51, 
where D( r) is the dimension of the irrep r of G. Only the 
form of the phase factors ( - 1) q>( n remains to be settled. 
Of course, the recoupling coefficient itself conceals phase 
choices that are implicit whenever a sequence of coupled 
irreps is written down. These can be determined only for 
specific bases, a task that is distinct from the issues facing us 
at the moment. 

Some work in generalizing the SOC 3) 6j symbols to oth
er groups G has been recently carried out for the groups 
SO (n) (where n > 3).9 The stimulus to do so was provided 
by the Jahn-Teller effect for an electronic state coupled to 
two vibrational modes, each belonging to the irrep (10) of 
SO (5). (Here and throughout this article we label an irrep 
by its highest weight.) Excitations of a particular mode only 
involve irreps of the type (wO), and these are particularly 
easy to handle. By evaluating matrix elements of selected 
tensor operators in a boson basis and relating the results to 
the standard Racah-Wigner formalism in which a 6j symbol 
for SO(n) appears, it proved possible to obtain explicit ex
pressions for such multiplicity-free 6j symbols as 

{
(WO"'O) 

(10 .. ·0) 

(20···0) 

(w + 1,0···0) 

as a function of w. 

(w + l,1O ... 0)} 
(210.··0) 

To demonstrate that the method can be generalized to 
other groups, formulas were given9 for all G2 6j symbols of 
the type 

{
CwO) (10) U' } 
(10) (wO) U" ' (1.1) 

where U' and U" of G 2 range over the five acceptable irreps 
(w + 1,0), (wI), (wO), (w - 1,1), and (w - 1,0). We fol
low Racah 10 in using an acute-angled coordinate system to 
specify the highest weight (W I W2 ); the connection to the la
beling scheme (a la2) of McKay and Patera 11 is given by 
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TABLE I. Highest weights (w,w2 ), Dynkin labels (0,02)' dimensions 
D( U), eigenvaluesg( U) of Casimir's operator G for G2, and irreps g; L of 
SO(3) for the embedding (l0)--.§J 3' 

(w,l<I2 ) (0,02 ) D(U) 12g(U) L 

(00) (00) 1 0 S 
( 10) (01) 7 6 F 
(11) (10) 14 12 PH 
(20) (02) 27 14 DGI 
(21) (11 ) 64 21 DFGHKL 
(30) (03) 77 24 PFGHIKM 
(22) (20) 77 30 SDGHILN 

WI = a l + a2, W 2 = a l • In order to make our notation clear, a 
few examples are given in Table I. Having tabulated, then, 
the 25 algebraic expressions (1.1), we are led to ask whether 
other formulas can be found. There are grounds for opti
mism because, for the general irrep (WI w2 ) of O2, the Kron
ecker product (W IW2) X (10) decomposes according to 

(W I W2 ) X (10) 

= (WI + l,w2) + (WI + l,w2 - 1) 

+ (W I,W2 + 1) + (W IW2) + (W I,W2 - 1) 

+ (WI - l,w2 + 1) + (WI - l,w2) , (1.2) 

a direct sum in which no given irrep appears more than once. 
Thus all O 2 6j symbols of the types 

{ 
(WIW2) (10) (WSW6)} {(WIW2) (10) 

(10) (W3W4) (10) , (W3W4) (10) 

(WSW6) } 

(W7W S ) 

(1.3 ) 

are multiplicity-free and should therefore be susceptible of 
algebraic evaluation. The products (W IW 2 ) X (11) contain 
(w I w2 ) twice in the general case, and so the replacing of any 
irrep (10) by (11) (or by any irrep of higher dimensionality 
for that matter) opens the way for multiplicity ambiguities. 
In spite of this limitation, it should be of considerable inter
est to study those 6j symbols of the type (1.3), since (10) is 
the first nontrivial irrep of O2, as can be seen from Table I. It 
is the aim of the present paper to make a start on that pro
gram and to show how our knowledge of some O 2 6j symbols 
makes it possible to calculate general expressions for some 
isoscalar factors for SO(7) :::)Oz' 

II. PHASE 

In the absence of multiplicity complications we can take 
the formulas of angular-momentum theory for SO (3) as giv
en, for example, by Edmonds IZ and simply replace every 6j 
symbol by the corresponding generalization to Oz. That is, 
the sixj's are replaced by six U's. The dimensional factors 
2j + 1 that appear in the formulas are replaced by D( U), 
where 

D(U) = tin (WI + W 2 + 3) (WI + 2) (2wI + W 2 + 5) 

X (WI + 2W2 + 4) (WI - W 2 + 1) (wz + 1) . 
(2.1) 

Reduced matrix elements of a SO(3) tensor T(k) become 
reduced matrix elements of a Oz tensor of the type T( U) • 

Only one problem remains: how do we find the analog of 
( - 1)1'? We want our 6j symbols for Oz to exhibit all the 
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symmetries of their SO ( 3) counterparts-a phase-free inter
change of columns and an equally phase-free interchange of 
pairs of arguments in the upper and lower rows of the 6j 
symbol. Studies of the properties of generalized 6j symbols 
with multiplicity labels attached indicate that the general 
phase problem is highly complex.3

•
l3

-
IS It is natural to hope 

that we can escape the morass of that analysis, or at least 
evade its more intricate aspects. After all, we are making two 
specializations: one to O2 and a second to multiplicity-free 
Kronecker products. 

Wigner's celebrated analysis l6 of simply reducible 
groups is of value here. Irreps gj ofSO(3) are classified as 
even or odd according to whether they occur in the symmet
ric or antisymmetric parts of Kronecker squares g k X g k' 

where k is integral. This evenness or oddness is represented 
by the phase factor ( - l)j. Because O2 is not simply reduc
ible a given irrep U' sometimes occurs in both the symmetric 
and the antisymmetric parts of U 2

; however, a glance at the 
table of special cases 17 indicates that every irrep (10) and 
everyirrep (II) occur in theantisymmetric part of U 2

, while 
(00) and every irrep (20) occur in its symmetric part. To see 
why this might be true in general, consider the embedding 
02:::)SO(3) for which (1O)--+g3' Suppose that we intro
duce the commuting SO (3) tensors Tt) and T1k

) that act in 
identical but distinguishable spaces A and B. We can write 

(Ti,k)T1k» (L) I (U
A 

UB )(OO)S) 

where the second ket indicates that U' and U" are coupled to 
those various irreps U; that contain g L of SO (3). The sum 
in Eq. (2.2) runs over U', U", U;, and the multiplicity label 
r. Now, we have 

(2.3) 

I(U~U~)rU;L) = (-1)PI(UBU~)rU;L), (2.4) 

where p = 0 or 1 according to whether rU; occurs in the 
symmetric or antisymmetric part of U' XU'. Since (00) nec
essarily occurs in the symmetric part of U 2

, 

I(UAUB){OO)S) = I(UBUA){OO)S). (2.5) 

The replacements (2.3)-(2.5) are made in (2.2). Next, we 
exchange the labels A and B. For the original equation (2.2) 
to be recovered we must have 

E(U',U',rU;) = (_l)L+P'2:(U',U',rU;). (2.6) 

Thus the only kets I (U~ U~ )rU;L) that can be generated 
by equations of the type (2.2) correspond to even L + p. 
Almost all irreps U; of O2 contain irreps g L ofSO(3) for 
which L runs over both odd and even values. These U; can
not be assigned a unique p by the present method and they 
may be found in either the symmetric or antisymmetric parts 
of Kronecker squares (or both). However, we see from Ta
ble I thatL is always even for (00) and (20), and it is always 
odd for ( 10) and ( II ). Thus p follows L in being even for the 
former and odd for the latter. Although our argument de
pends on the assumption that a state I ( U ~ U B )rU;L ) can 
be generated from an S state by means of an SOC 3) tensor of 
rank L, we have complete freedom in choosing U and T(k) . 
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The latter, for example, may be the superposition of many of 
the irreps of G 2 that contain 9J k' It is thus highly plausible 
thatp = 0 for (00) and (20), and thatp = 1 for (10) and 
(11). 

If, in addition, we suppose that the phase ( - 1 )'1'( U) to 
be associated with the irrep U [in analogy to ( - l)j for 9J j ] 
is of such a form that we can write tp(WI W2 ) = aWl + bw2, 

then our results for (00), (20), (10), and (11) limit our 
choice for a and b very severely. In fact, a must be an odd 
integer and b an even one. Without loss of generality we can 
take a = 1 and b = O. Thus the phase associated with (w 1 w2 ) 

becomes simply ( - 1) w, • 

III. FORMULAS FOR G2 6j SYMBOLS 

The starting point for the construction of algebraic ex
pressions for the 6j symbols (1.3) is the initial five-by-five 
block of entries for (1.1). 9 To match the phase procedure 
outlined in Sec. II, it is necessary to set the single undefined 
phase c of that table equal to - 1. The Racah backcoupling 
relation [Eq. (6.2.11) ofEdmonds l2

] immediately provides 
expressions for 

{
CwO) 

(wO) 

(10) 
(10) 

The Biedenham-Elliott identity [Eq. (6.2.12) of Ed
monds l2

] can now be brought into play. Gaps in the tables 
can be filled by using the orthonormality relation for 6j sym
bols [Eq. (6.2.9) ofEdmondsI2

]. To reduce the complexity 
of the algebra, we define a U coefficient similar to that of 
Jahn l8

: 

U3
} • 

U6 
(3.1 ) 

The introduction of a second meaning for the symbol U 
should not cause any difficulty since it necessarily precedes a 
large and visually characteristic parenthesis. The third col
umn of the U coefficient can be interchanged with either of 
the others on a phase-free basis, but dimensional factors need 
to be included. For example, 

TABLE II. Formulas for U C~) (10) 

U2 

U3 ) 
(10) . 

U (U1 U3 U2) = [D( U2 )D( U5 ) ] 1/2 U (UI U2 U3). 

U4 U6 U5 D( U3 )D( U6 ) U4 U5 U6 

(3.2) 

Formulas for U coefficients corresponding to the forms 
( 1.3) are given in Tables II and III. The replacement 
u = 2w + 5 is used to simplify the tabulation. In spite of our 
procedure for interpreting the phase factors in the standard 
formulas of the Racah-Wigner algebra, the Biedenham-El
liott identity often gives only the squares of new U coeffi
cients. Phase factors C; are introduced for such occasions 
and retained in the analysis until freedom to make a specific 
(though frequently arbitrary) choice is clear. 

Tables II and III are limited to reasonably elementary 
examples. As we proceed to more complicated cases the al
gebra becomes correspondingly intricate. For example, we 
find (for w > 1) 

U (WI) (10) (W1)) 
(wI) (10) (wI) 

u6 + 6u5 
- 102u4 

- 448u3 
- 159u2 + 594u - 2916 

u(u+2) (u-3) (u+5) (u-7) (u+9) 

(3.3 ) 

Some compression is possible here. Just as the SO(3) U coef
ficient 

U~ 1 L) 
1 L 

can be expressed as a function of L (L + 1), so Eq. (3.3) can 
be simplified by introducing Casimir's operator G for Gz. Its 
eigenvalues g for (w 1) are given bylO 

g = (u 2 + 2u - 15)/48, 

and the right-hand side ofEq. (3.3) simplifies to 

(16g3 
- 23g2 - 17g - 3)/g(g - 1) (16g + 5) . 

In spite of the infinite sequences of 6j symbols provided 
by every line of Tables II and III, an accidental vanishing is 
rare. The only examples that we have noticed are 

{
(10) (10) (II)} and {(60) (10) (51)}. 
(10) (10) (11) (60) (10) (51) 

U coefficient 

(wO) (wO) (w + 1,0) 
(wO) (wO) (wI) 
(wO) (wO) (wO) 

(wO) (wO) (w - 1,1) 
(wO) (wO) (w - 1,0) 
(wO) (wI) (wI) 
(wO) (wI) (w-l,l) 
(wO) (w - 1,1) (w - 1,1) 
(wO) (w-l,l) (w-I,O) 
(wI) (wI) (w+ 1,1) 
(wI) (wI) (w + 1,0) 
(wI) (wI) (w2) 
(wI) (wI) (wI) 
(wI) (wI) (w-l,l) 
(wI) (wI) (w- 1,2) 
(wI) (w - 1,1) (w - 1,2) 

[(u+2) (u-5)/6u(u-3)],/2 
(u -1) [(u + 7)/3u(u - 3) (u + 5)]1/2 
- [6/(u2 -25)]'/2 
(u+ 1) [(u-7)/3u(u+3) (u_5)]'/2 
- [(u-2) (u+5)/6u(u+3)]'/2 
- [(u+2) (u-7) (u+9)/6u(u-3) (u+5)]'/2 
- [(u-3) (u-7)/3u(u-5)]'/2 
[(u - 2) (u + 7) (u - 9)/6u(u + 3) (u - 5)]'/2 
- [(u-2)/3(u+3)],/2 
(u+5)[u(u-7)/6(u-l) (u+2) (u-5) (u+7)]'/2 
- [u(u-7) (u+9)/12(u-3) (u-5) (u+7)]'/2 
(u+5) [u(u-3) (u+ 11)/4(u+ I) (u+3) (u-5) (u+7) (u+9)]'/2 
- (u2 + 2u + 9) [6/u(u + 2) (u - 3) (u + 5) (u -7) (u + 9)]'/2 
- (u - 3) [(u + 2) (u + 9)/6u(u + 3) (u - 5) (u +7)]'/2 
(u-3) [(u+2) (u+5) (u-9)/4(u2 -1) (u-5) (u2 _49)]'/2 
- [(u2 - 81 )/2(u2 - 49) ]'/2 
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TABLE III. Formulas for U I 2 • (
u (10) U:) 
U3 (10) U4 

(wO) (wO); (w + I,D) (w + I,D) 
(wO) (wO); (w + I,D) (wI) 
(wO) (wO); (w + I,D) (wO) 

(wO) (wO); (w + I,D) (w 1,1) 
(wO) (wO); (w + 1,0) (w - I,D) 
(wO) (wO); (wI) (wI) 
(wO) (wO); (wI) (wO) 

(wO) (wO); (wi) (w-I,I) 
(wO) (wO); (wi) (w - I,D) 
(wO) (wO); (wO) (wO) 

(wO) (wO); (wO) (w - 1,1) 
(wO) (wO); (wO) (w - 1,0) 
(wO) (wO); (w - 1,1) (w 1,1) 
(wO) (wO); (w - 1,1) (w 1,0) 
(wO) (wO); (w - 1,0) (w 1,0) 
(wO) (w + I,D); (w + I,D) (wI) 
(wO) (w + I,D); (w + I,D) (wO) 

(wO) (w + 1,0); (wI) (wi) 
(wO) (w + I,D); (wi) (wO) 

(wO) (wi); (w + 1,0) (wi) 
(wO) (wI); (w + 1,0) (w 1,1) 
(wO) (wI); (wi) (wi) 
(wO) (wI); (wi) (wO) 

(wO) (wi); (wI) (w - 1,1) 
(wO) (wI); (wO) (w-I,I) 
(wO) (wI); (w - 1,1) (w - 1,1) 
(wO) (w-I,I); (w-I,O) (w-I,I) 
(wO) (w - 1,1); (w - 1,0) (wO) 

(wO) (w-I,I); (w-I,O) (wI) 
(wO) (w - 1,1); (w - 1,1) (w - 1,1) 
(wO) (w-I,I); (w-I,I) (wO) 

(wO) (w - 1,1); (w - 1,1) (wi) 
(wO) (w - 1,1); (wO) (wI) 
(wO) (w - 1,1); (wi) (wI) 
(wi) (w - I, I); (wI) (wI) 
(wI) (w - 1,1); (w - 1,2) (wI) 
(wI) (w - 1,1); (w - 1,2) (wO) 

(wI) (w-I,I); (w-I,2) (w-I,2) 
(wI) (w - I,I); (w - 1,1) (wi) 
(wI) (w-I,I); (w-I,I) (w-I,2) 
(wi) (w-I,I); (w-I,I) (w-I,I) 

U coefficient 

IO/u(u - 3) 

[8(u + 2) (u 5) (u + 7)/u2(u - 3)1(U + 5)]1/2 
[4(u+2)/u(u 3) (U+5)]1I2 
[8(u + 2) (u 7)/U2(U2 - 9) ]1/2 
[(u2 _4) (u2 25)/U2(u2 _9)]I/2 

(u -7) (u + 17)/u(u - 3) (u + 5) 
[32(u - 4)2(U + 7)/u(u - 3) (u 5) (u + 5)2]1/2 
(u2 _ 17) [(u2 49)/U2(U2 - 9) (u2 25) ]1/2 
- [8(u - 2) (u + 7)/U2(U1 - 9) ]1/2 
(u1 - 61)/(u2 25) 
- [32(u + 4)1(U -7)/u(u + 3) (u + 5) (u - 5)2]1/2 
- [4(u - 2)/u(u + 3) (u - 5)j111 

- (u + 7) (u 17)/u(u + 3) (u 5) 
- [8(u - 2) (u + 5) (u - 7)/u1(u + 3)2(U - 5) ]1/2 
IO/u(u + 3) 
[16(u - 5)/(u 3)2(U + 5) ]1/2 

- [(u-5) (u+7)/(u-3) (U+5)]1/2 

-(u2+2u-31)/(u-3) (u+5) 
- [16(u + 7)/(u - 3) (u + 5)2]112 
[2(u -7) (u + 9)/u(u - 3)2(U + 5) ]1/2 
- [(u+2) (u 7)/u(u-5)]l/l 

- 4(u' - 4u 9)/u(u - 3) (u + 5) (w> I) 
[(u - 1)2(U + 2) (u - 7) (u + 9)/u(u - 3) (u + 5)2(U 5)] 1/2 
- [8(u + 2) (u + 9)/U2(U2 - 25)j1/2 
[2(u - 3) (u 7)/u(u - 5)2(u + 5) ]1/2 

2(u - 6)/u(u 5) 
[2(u+7) (u 9)/u(u+3)2(U 5)]1/2 
[8(u-2)/(u+3) (u2 _2S)]I/2 
[(u-2) (u+7)/u(u+5)]112 

4(u1 + 4u - 9)/u(u + 3) (u - 5) (w> 2) 
- [(u + 1)2(U 2) (u + 7) (u - 9)/u(u + 3) (u + 5) (u _ 5)2]1/2 
[8(u-2) (u 9)/U2(u2 _25)]l/l 

[2(u + 3) (u + 7)u(u - 5) (u + 5)2]1/2 

- 2(u + 6)/u(u + 5) 

- 2(u1 + 2u 27)/u(u + 5) (u 7) 
[12(u + 2) (u 3) (u - 9)/u(u + 5) (u - 7)2(U + 7) ]'/2 
[3(u2 - 9) (u' 81)/4(u2 _ 25) (u2 _ 49) p/2 

- (u2 -73)/2(u1 - 49) 
- [(u2 _4) (u2 9) (u l -81)/U' (u2 _25) (u2 _49)]1/2 

- [12(u - 2) (u + 3) (u + 9)/u(u - 5)(u + 7)1(U 7) ]112 
2(u2 - 2u - 27)/u(u - 5) (u + 7) 

These interchanges are summarized by 

(wO)~(wO), (w + l,Q)~(w - 1,0) , 

The zeros implied by such factors as (u - 7) and (u 9) in 
all other formulas in Tables II and III correspond to the 
violation of a triangular condition. The most common exam
ple is (wl)~(w-1,1), (w2)~(w-2,2), (4.1) 

{(lo), (11), (1l)}=O. 

IV. SYMMETRIES OF JUCYS 

It is well known that many formulas of angular-momen
tum theory are invariant (to within a phase factor) with 
respect to replacements of the typej_ - j - 1. The charac
teristic Casimir form j( j + 1) is unchanged, while the di
mension 2j + 1 of i!iJj merely changes sign. In his book with 
Savukynas, JucYS\9 touches on the analogous property for 
G 2• Our choice of u rather than w in the algebraic expres
sions of Tables II and III exposes this symmetry. Under the 
replacement u- - u, we find, for (wO), 

g(w(l)-g(wO), D(wO)- - D(wO) . 

Other irreps (w\wz) appear to become interchanged. For 
example, 

g(wl)-g(w-l,l), D(wl)_-D(w-l,l). 
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(w + 1,l)~(w - 2,1), (w - 1,2)~(w - 1,2) , 

and tally with the substitutions (18.14) ofJucys and Savu
kynas. 19 It is easy to verify that the formulas of Tables II and 
III are consistent (to within phase factors) with the simulta
neous substitutions U-'I> U and (4.1). Since all the formu
las of Tables II and III were calculated separately, this pro
cedure provides excellent checks on the magnitudes of the U 
coefficients. 

V.ISOSCALAR FACTORS FOR SO(7)::)G2 

As an example of the usefulness of Tables II and III, we 
show how certain isoscalar factors can be calculated for 
SO(7) ::)Gz. Our method is the analog of one that can be 
used to find the Clebsch-Gordan (CG) coefficients for 
SO (3) ::) SO (2). If Sand L are two commuting angular mo
menta with resultant J, the CG coefficients in the sum 
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L (SMs,LML IJMJ ) ISMs,LML ) (5.1) 
M",ML 

corresponding to well-defined J and M J can be found by 
insisting that (5.1) be an eigenfunction of 2S' L with 
eigenvalue J(J + 1) - S(S + 1) - L (L + 1). The calcula
tion is carried out by taking 2S·L in the form 
2Sz L z + S+L_ + S_L+ (where S+ = Sx + iSy , etc.), 
which enables enough linear equations to be set up to evalu
ate the CG coefficients (to within a phase) and check them. 

In the notation of Racah, 10 a multiplicity-free isoscalar 
factor for SO(7) :::>G2 is written 

(WI U I + W2U21 W3U3) , (5.2) 

where Wi stands for an irrep of SO(7). We can think of 
(5.2) as a CG coefficient for SO(7) :::>SO(2) with the CG 
coefficient for G 2 :::>SO(2), namely 

(U J3ILIML I' UJ32L 2M L 2IrU/33L 3M L 3) , (5.3) 

factored out. If we can evaluate (5.2) directly we can avoid 
the problem of coping with the multiplicity labels.Bi and rin 
(5.3). As a particular example we choose WI=(wlO) and 
W2=(100). Our program consists in finding algebraic ex
pressions for all possible W3, U I, U2, and U3 in (5.2). 

The 21 generators ofSO(7) belong to the irrep (110).10 
To distinguish the two commuting sets (the analogs ofS and 
L) we write TP IO) and T;IIO). We have 

(5.4) 

as the analog of J = S + L. In a similar way, the 14 genera
tors of G 2, which belong to the irrep (11), can be written as 
T? 1). The part of T} 110) not coincident with T} 11) belongs to 
the irrep ( 10) of G 2' thus forming the tensor T} 10). Our ten
sors are conveniently normalized by means of the equations 

((1oo)IIT(110)11(100») = [D(1lO)] 1/2 = v(21), 

((10)\\T(lI)II(10») = [D(11)]1/2 = v(14) , (5.5) 

where the first reduced matrix element implies reduction 
with respect to SO(7), and the second with respect to G2 • 

The quadratic scalar operators 

(5.6) 

are Casimir's operators for SO (7) and G2. Their eigenvalues 
g'(W) and g(U) for the irreps W= (WIW2W3) and 
U = (W IW2 ) are given by 

g'(W) =io [WI(W I + 5) + W2(W2 + 3) + W3(W3 + 1)], 

g(U) = n [wi + w~ + WIW2 + 5w l + 4w2] . (5.7) 

To find the analog of 2S·L, we note that we can write 

2T~ 1O).Ti 10) 

= (T\IIO) + TillO»)o(T\IIO) + Til101) _ (T~1101)2 

- (Ti lI01 )2 _ (T~lll + Till1)o(T\11) + Ti111) 

+ (T\1l1)2 + (Till1)2 = 5G; - n, (5.8) 

where 

n=5G; +5G 2 -4G3 +4GI +4G2 . (5.9) 

The analog of the sum (5.1), which represents the ket 
IJMJ ), is 
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I (WI W2 ) W3U3 ) 

= L (WIUI + W2U2IW3U3)IWIUI,W2U2,U3) ' 
U)'U2 

(5.10) 

where the ket on the right indicates that UI and U2 are cou
pled to U3• The corresponding coupling in (5.1) is represent
ed by the trivial SO(2) condition M J = Ms + M L . All we 
have to do now is demand that 2T\ 101·T; 101 + n, when acting 
on the right-hand side ofEq. (5.10), yields the eigenvalue 
5g' ( W3 ). The part n is diagonal in the basis 
I WI UI> W2 U2, U3 ), and the central problem is to evaluate 

(5.11 ) 

It is here that we tum to the familiar formulas of the 
Racah-Wigner algebra. For the special case of WI=(wlO), 
W2=(l00), Eq. (7.1.6) of Edmonds 12 reduces (5.11) to 

{ U (10) U} 
(-IV (l~) U; (1~) (wlO)UI IITl

I01
11(wlO)U;) 

X((100) (10)IITi I01 11(1oo) (10»), (5.12) 

wherey=tp(U;) +tp(10) +tp(U3). This phase is calcu
lated according to the rule given in Sec. II. Since both T\ 10) 
and T; 10) are the components of the generators for their re
spective SO(7) groups, the values of their reduced matrix 
elements are independent of how the irreps (wlO) and (100) 
are constructed. For the former, it is convenient to think of 
the irrep (wlO) as being produced by the coupling of two 
parts (a and b, say) belonging to (wOO) and (loo). The 
tensor T\IO) is regarded as T~IO) + T~IO), and we apply Ed
monds' Eqs. (7.1.7) and (7.1.8), which refer to tensors act
ing on the first part or the second part of a coupled system. 
Since (wOO)--(wO) under the reduction S0(7)--G2, we 
have only one kind of reduced matrix element for G2 to 
evaluate, namely 

(wOO) (wO)IIT( 101 11(wOO) (wO»). (5.13 ) 

Applying the Wigner-Eckart theorem, we see that (5.13) is 
equal to 

(wOO) (wO) I (wOO) (wO) + (110) (10») 

(5.14 ) 

where the reduced matrix element in this product is reduced 
with respect to SO(7). Since (T(JlOlf has eigenvalues 
5g( W), it is easy to show that 

(WIIT(JlOlllW) = [5D(W)g(W)]1/2. (5.15) 

As for the isoscalar factor in (5.14), the reciprocity relation 
of Racah 10 gives its value as 

[D( lO)D(wOO)/D(wO)D( 110)] 1/2 = 0) 112 

to within an arbitrary phase. This phase disappears when the 
reduced matrix element of Ti 10) in (5.12) is combined with 
that ofT\IO). 

All the pieces are now in place to calculate the isoscalar 
factors ofEq. (5.10). They are set out in Table IV. Every line 
is associated with an arbitrary phase; each has been chosen 
to reproduce Racah's phase for the two columns headed 
(wO) and (wi) when we set w = 2, corresponding to the 
special cases listed in his Table IlIa. 10 However, all the en-
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TABLE IV. The isoscalar factors (wlO)Ul + (lOO)(IO)IWP3)· 

Ul 

W3 U3 (w-I,1) (wO) (wI) 

(w - 1,10) (w - 2,1) I 0 0 

(w - 1,0) ( 16 t2 «u + 3) (u -7)t
2 

0 
(u + 1) (u - 5) (u+I)(u-5) 

(w-I,I) _ ( 2(u + 7) (u - 9) y/2 ( 8(u - 2) (u + 3) t2 (U - 2) (u + 3)2(U + 7) y/2 
u(u + 1) (u2 - 25) (u + I) (u - 5) (u + 5)2 u(u + 1) (u + 5)2 

(wOO) (wO) _e(U-3) (U-7)t2 
( u

2 
9 t2 e(U + 3) (u + 7)Y

12 

5u(u - 5) 5(u2 - 25) 5u(u + 5) 

(wll) (w- 1,0) «u + 3) (u -7)t
2 

( 16 y12 0 
(u + 1) (u - 5) (u + 1) (u - 5) 

(w-I,I) _«U-2) (u+3) (U-9)t2 ( (u - 1)2(U + 7) y12 ( 9(u+3) y12 
2u(u+I)(u-5) 2(u + I) (u2 - 25) u(u + I) (u + 5) 

(w- 1,2) (u;: It2 0 (U~ ly12 

(wO) _ (U + 3) (u -7)Y12 (_1_6 t2 _ «u - 3) (u + 7)Y/2 

2u(u - 5) u2_ 25 2u(u + 5) 

(wI) ( 9(u-3) t2 _ ( (u + I)2(U - 7) y/2 (U + 2) (u - 3) (u + 9) )112 
u(u - I) (u - 5) 2(u - I) (u 2 

- 25) 2u(u - I) (u + 5) 

(w + 1,0) 0 ( 16 t2 «u - 3) (u + 7)t
2 

(u - 1) (u + 5) (u -1) (u + 5) 
(w20) (w- 2,2) 1 0 0 

(w-I,I) _ «u - 2) (u + 3)2y/2 
2u(u2 - 25) 

_ ( (u + 3) (u + 7) (u - 9) t2 
2(u + 5)2(U - 5) 

( u 9 t2 
u(u + 5)2 

(w-l,2) _(U~lt2 

(wO) _«U+3) (U+7)t
2 

lOu(u - 5) 

(wI) ( u+9 t2 
u(u _ 5)2 

(w2) 0 

(w + 1,10) (wI) _(U+2) (U_3)2(U_7)Y /2 

u(u - I) (u - 5)2 

(w + 1,0) 0 

(w+ 1,1) 0 

tries in the column (w - 1,1) possess opposite signs to those 
ofRacah. This phase difference can be traced to our decision 
to use G2 phases that parallel those of SO(3). For us, 
tp(w - 1,1) differs from tp(wO) and tp(w1), while for his 
limited applications Racah was able to avoid having to intro
duce any general convention for the irreps of G2• 

VI. CONCLUDING REMARKS 

The procedure for calculating the entries of Table IV 
has been described in some detail in order to bring out the 
parallelism to the familiar SO (3) formulas. Like the 6j sym
bols, the isoscalar factors exhibit the symmetries of Jucys. 
The checks that these symmetries provide are totally miss
ing, of course, if purely numerical calculations are per
formed. However, the main significance of our method is 
that it circumvents the need for a detailed basis. This feature 
could prove extremely useful for groups possessing a larger 
number of generators than G2 or SO(7). 

Finding explicit closed forms for the general G2 6j sym
bols of the types (1.3) remains an intriguing possibility. Any 
general formula that encompasses the far from trivial entries 
of Tables II and III would necessarily have to exhibit a fair 
degree of complexity. The sequences of the factors (u - a) 
in Tables II and III seldom suggest the ratio of factorial 
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0 (u;: It2 

_ (4(U2 - 49) y/2 (U - 3) (u _7)Y/2 
5(u2 - 25) lOu(u + 5) 

(U - 3) (u -7) (u + 9) yI2 (U + 2) (u _ 3)2)112 
2(u - 5)2(U + 5) 2u(u2 - 25) 

0 I 
( 8(u+2) (u-3) t2 

(u - I) (u - 5)2(U + 5) 
_ ( 2(u - 7) (u + 9) y/2 

u(u - I) (u2 - 25) 
«u - 3) (u + 7)y/2 

(u -1) (u + 5) 
( 16 y12 

(u - I) (u + 5) 
0 1 

functions, so it would be difficult at this stage to make con
jectures for a general formula. 
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The three-wave resonant interaction equations (2D-3WR) in two spatial and one temporal 
dimension within a group framework are analyzed. The symmetry algebra of this system, 
which turns out to be an infinite-dimensional Lie algebra whose subalgebra is of the Kac
Moody type, is found. The one- and two-dimensional symmetry subalgebras are classified and 
the corresponding reduction equations are obtained. From these the_n~w invariant and the 
partially invariant solutions of the original2D-3WR equations are obtained. 

I. INTRODUCTION 

The group analysis of nonlinear differential equations 
has received much attention in the last years. I- 3 The main 
feature of this approach is the finding of all infinitesimal 
generators (which constitute a Lie algebra) of those groups 
of point transformations that leave the equations under con
sideration invariant. 

Several authors have mainly dealt with systems in one 
spatial and one temporal dimension. 1-4 The group investiga
tion of nonlinear differential equations, in more than two 
dimensions, is still at the beginning. However, the applica
tion of the group method to some special cases5 succeeded in 
revealing new features of certain integrable equations of 
physical significance, such as the Kadomtsev-Petviashvili 
and the Davey-Stewartson equations. 6

•
7 Notable properties 

are (i) the existence of infinite-dimensional Lie algebras of 
the Kac-Moody type, 8 (ii) the discovery of interesting 
classes of solutions admitted by reduced versions of the origi
nal systems, and (iii) their possible connection with equa
tions of the Painleve type. 

In this article we study the three-wave resonant (2D-
3WR) equations in two spatial and one temporal dimension9 

from the group point of view. These equations, which play an 
important role in plasma physics and in nonlinear optics,9.10 
allow a linear eigenvalue problemll

•
12 and Backlund trans

formations and can be solved via the inverse spectral trans
form. 13 

In Sec. II we scrutinize the symmetry algebra of the 2D-
3WR system, which turns out to be an infinite-dimensional 
Lie algebra whose subalgebra is of the Kac-Moody type. 
The symmetry group corresponding to the symmetry alge
bra is treated in Sec. III. Section IV is devoted to a classifica
tion of one- and two-dimensional subalgebras of the 2D-
3WR algebras, into conjugacy classes under the action of the 
adjoint group of the symmetry group of the 2D-3WR sys
tem. Furthermore, we introduce a finite-dimensional subal
gebra of physical meaning. having a scale generator that 
leads to an interesting reduced system with nonconstant co
efficients in two independent variables. This system. dis
cussed in Sec. V. possesses a linear spectral problem derived 
using a prolongation technique. 14 In Sec. V we examine the 
reduced equations arising from the low-dimensional symme
try subalgebras considered in Sec. IV. We obtain both classes 
of the new invariant and the partially invariant solutions of 

the 2D-3WR equations. From among these a few stand out 
that are closely related to solutions of the Painleve VI equa
tion. Finally. in Sec. VI we report some comments and con
cluding remarks. 

II. THE SYMMETRY ALGEBRA OF THE 2D-3WR SYSTEM 

For the sake of definiteness. we consider the three-wave 
resonant process in (2 + 1) dimensions in the case of explo
sive instability9 described by the equations 

Il.j=Ujt + CjUjx + djujy - iutur = o. 
j.k,l = 1.2.3. j#k #1. (2.1 ) 

where uj (x,y.t) are the complex amplitudes of the wave 
packets. cj .dj are their group velocities. the asterisk denotes 
complex conjugate. and subscripts mean partial derivatives. 

The quantities Il.j are functions defined in the space 
X X U(I). where X = (x,y.t) and 

U (1)-( * * * *) - ~,~,~,~,~,~,~,~ 

are, respectively. the manifold of the space-time variables 
and of the amplitudes. their derivatives, and their complex 
conjugates [we have used the abbreviation uj for (U I .U2.U3 ) 

and so on]. 
In order to look for the symmetry algebra for Eqs. (2.1). 

let us introduce the vector field 

v=sax +7J ay+rat+(hauj+¢jaur j=I,2.3. 
(2.2) 

on X X U. where U = (uj .uj) is the space of the dependent 
variables. and S.7J.r.(h'¢j are functions of (x,y.t.uj.uj) de
fined in X X U. Here ax=a lax. ay=a lay .... and the con
vention over repeated indexes is understood. 

The prolongation of V to X X U (I) is given by3 

pr V = V + ¢I} x au + eM}. au + ¢I}t au 
JX iY Jt 

+ ¢j au~ + ¢1 au. + ¢; au'''' 
JX jy JI 

(2.3) 

where the fields ¢lj.¢1 .... are defined by 

¢lj = Dm (¢lj - Ui.mSi ) + u1.mSi' i = 1.2.3 , (2.4) 

where 

. av 
11 = --- XI = X. X 2 = Y. X3 = t. 

I.m a a · 
Xi Xm 
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and D", is the total derivative with respect to x m • 

We recall thae a local group of transformations G is a 
symmetry group for Eq. (2.1) if and only if 

pr V[aj ] = 0, 

pr V[aj] = 0, 

(2.5a) 

(2.5b) 

whenever aj = aj = 0, for every generator V of G where 
pr Vis expressed by (2.3). Equation (2.5a) yields the rela
tions 

(Cj ax + dj ay + at) (cj 1" - S') = 0, 

(cj ax + dj ay + at) (dj 1" - 1/) = 0 , 

.""* * .""* * ("" . * *) - ''I'kUI - ''1'1 Uk + cj 'l'jx - 11"x UkUI 

+ dj (t/Jjy - i1"yut ur) + it/J}uptur - it/JjU,ukU1 

(2.6a) 

(2.6b) 

+ t/Jjt - i1"t utur = 0, j,k,l = 1,2,3. (2.6c) 

Constraints similar to (2.6) can be obtained from (2.5b). 
Equations (2.6) are satisfied by 

S'=a23 1cI'PI(:I) + a 31 IC2'P2(:2) +aI2
I
c 3'P3(:3)' 

1/=a23 Idl'PI(:I) + a 31 Id2'P2(:2) + a l2 Id3'P3(:3) , 

1"=a:i3 I'PI(:I) +a31 1'P2(:2) +aI2
1
'P3(:3)' (2.7) 

where 

akl = a/(dk - d/ ) , 

with 

(2.8) 

a = d l (C3 - c2) + d2(ci - c3 ) + d3(C2 - c I ) (2.9) 

and 'Pj (:j) (j = 1,2,3) are arbitrary functions depending 
on the variables 

,.. Ck - CI Ckdl - c1dk 
~j =X - y+ , 

dk -d[ dk -d[ 

j,k,l = 1,2,3, j-=l=k =Fl. 
Furthermore, we have 

t/Jj = pjUj , (Jj = pjuj, j = 1,2,3 , 

where the quantities Pj are given by 

1 . 
Pj = --2 L 'Pk(:k)' 

k#j 

(2.10) 

(2.11 ) 

(2.12) 

where (pj =a'Pjla:r The generators of the Lie-point symme
try algebra A associated with the 2D-3WR equations (2.1) 
can be written as 

where 

X('PI) ='PI(:I)a~, -!(PI(:l)(U2aU2 

+ u! au! + U3 au~ + ur aur) , 

Y('P2) = 'P2(:2)a~2 - !(P2(:2) (UI au, 

(2.13 ) 

(2.14a) 

and the operators a ~j are expressed by [see (2.10) ] 

a~j=akil(Cjax+djay+at)' (2.15) 

where ak[ is given by (2.8) and the indexesj,k,l = 1,2,3 are 
cyclic. 

In what follows, we shall assume that each function 
'Pj (:j) takes the form of a Laurent series expansion in the 
argument:j • Then we restrict ourselves to deal with the sub
algebra L of A having the basis 

Xn =:~ a~, _!n:~-I(U2aU2 

+ u! au! + u3 au~ + urau,) , 

Yn =:~ a~2 -!n:~-l(UlaU, 

+ uT aut + U3 au~ + urau,) , 

zn =:~a~~ _!n:~-I(UlaU, 

+ ur aut + U2 aU2 + u! au!) . 

The commutator relations 

[Xn,xm] = (m-n)Xn + m_ l , 

[Yn,Ym] = (m-n)Yn+ m _ l , 

[Zn,Zm] = (m-n)Zn+m_I' 

[Xn,Ym] = [Xn,Zm] = [Yn,Zm] = 0 

hold, where n,meZ. 

(2.16a) 

(2.16b) 

(2.16c) 

(2.17) 

From (2.17) we see that L is the direct sum of the ideals 
generated by {Xn},{Yn},{Zn}' Each of these ideals is an 
algebra isomorphic to theZ-graded algebra R[t,t -I] (d Idt) 
(see Refs. 5 and 8). Since the last is a simple algebra, then L 
is semisimple. 1

,2 We notice that Eqs. (2.17) enable us to 
obtain commutator relations among the infinitesimal gener
ators (2.14), provided that any function 'Pj (:j) may be ex
pressed as a Laurent series. We have, for example, 

[X('PP»,x('P\2)>] =X('P\I)(p\2) _(pP)'P\2». 
(2.18 ) 

Equations (2.17) define an affine Lie algebra of the Kac
Moody type. 

III. THE SYMMETRY GROUP OF THE 20-3WR SYSTEM 

In order to obtain the symmetry group of Eq. (2.1), we 
need to integrate the infinitesimal symmetries (2.13) and 
(2.14). In doing so, let us consider the equations 

dx' !-("".') - = ~ x,y,r ,uj ,uj , 
dJ. 

dy' ("" *') - = 1/ x,y ,r ,uj ,uj , 
dJ. 

dr' ("" *') - = 1" X ,y,r ,uj ,uj , 
dJ. 

du~ 
1 "" ( , , t' , .' ) - = 'l'j x,y, ,uj ,uj , 

dJ. 
du'!" -
_1_ = '/"(x'y' t' U~ u'!") dJ. 'f' ", l' 1 ' 

(3.1) 

where 

x'(O) =x, y'(O) =y, t'(O) = t, 

+uraut+U3aU~ +ur au,)' 

Z('P3) = 'P3(:3)a~~ - !fp3(:3)(U l au, 

(2.14b) u;(O) = uj , ur(O) = uj, (3.2) 

+ ur aut + U2 aU2 + u! au!) , 
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S,1/,1" and t/J,(J are, respectively, given by (2.7) and (2.9). 
Now looking at (2.8) and (3.1) we introduce a set offunc-

(2.14c) tions: ;(J.), such that 
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~ t; = tpl (t;), d~ t 2 = tp2(t 2) , 

~ t i = tp3(t i) , 

with the conditions 

t; (0) = ~I' ~ 2 (0) = ~2' ~ 3 (0) = ~3 • 

The system (3.3) can be easily integrated to yield 

~; (A'~I) = F I-I(A + FI(~\»)' 

~ 2 (A'~2) = F 2- I(A + F2(t2») , 

t i (A,t3) = F 3-
I (A + F3(t3»)' 

where F j - I is the inverse of the function defined by 

r~j ds . 
~(~j) = Jt -- (j= 1,2,3). 

~j.o tpj (s) 

(3.3 ) 

(3.4 ) 

(3.5a) 

(3.5b) 

(3.5c) 

(3.6) 

Of course, the variables x',y',t' may be found in terms of ~; 
from Eq. (2.8), where primes are understood. Resorting to 
Eq. (3.1) and taking account of (2.10) we get 

U~(x' ',t') =u.(x ,t)[ tpk(~k)tp/(t/) ]112 
J,y J,y tpk (~ ~ )tp/ (t Ie) 

(3.7) 

wherej#-k #-1 andx,y,t are regarded as functions ofx',y',t '. 
This set of formulas provides a new solution 

{u; (x',y',t')} of the 2D-3WR equations in terms of a known 
solution {uj (x,y,t)}. 

IV. LOW-DIMENSIONAL SUBALGEBRAS 

A. One-dimensional subalgebras 

It is known that the group analysis of differential equa
tions leads to the problem of classifying the subgroups (and 
the corresponding subalgebras) under which certain classes 
of solutions are invariant. 1-3 To this aim one needs to build 
up the so-called optimal system ()s, that is the set of represen
tatives of the classes of s-dimensional subalgebras, Ls, which 
are pairwise nonconjugates by the inner automorphism 
group (adjoint group). I In doing so, first we construct the 
system of one-dimensional subalgebras L I • Looking over the 
commutator relation (2.18) and dropping the index I for 
simplicity, from the Campbell-Hausdorff formula we de
duce that the action of the adjoint subgroup exp [A ad X(.,p)] 
onX(tp)is 

exp[A ad X(.,p) ](X(tp» = X(tp ') , (4.1) 

where the function tp '=tp' (~') is defined by 

~'(t') =ip(~')tp'(t') -(p'(~').,p(t'), (4.2) 
dA 

withtp '(~')1A.=0 = tp(t). Equation (4.2) has thesolution5 

tp '(~') = tp (~(~' )).,p(~ ')/1/J(~(t'») , (4.3) 

where 

~ , (~) = F -I(A + F(~») . (4.4 ) 

Concerning Eq. (4.3), Neumanl5 has shown that a function 
.,p(t) can be chosen in such a way that tp '(t ')==1. Asaconse
quence, all one-dimensional subalgebras generated by ele
ments oftheX(tp) type are conjugated toa~1 ==%0' Similarly, 
any generator of the form Y(tp2) andZ(tp3) can beconjugat-
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ed to a~2:= Yo and a'3 :=Zo, respectively, via suitable ele
ments exp[A ad Y(.,p2)] and exp[A ad Z(.,p3)] of the adjoint 
group. However, the conjugacy classes of X o, Yo, Zo do not 
exhaust all elements of ()I' For example, let us consider the 
one-dimensional subalgebra spanned by X(tpl) + Y(tp2)' 
Since the generators X and Y commute [see (2.17)], from 
the Campbell-Hausdorff expansion we obtain 

exp[A2 ad Y(.,p2) ]exp[A I adX(.,pI) ](X(tpl) + Y(tp2» 

=Xo+ Yo, (4.5) 

where .,pI and .,p2 must be taken in such a way that 
tp;(t;) =tp2(t2):=1 [see (4.3)]. 

Furthermore, it is easy to show that Xo + Yo cannot be 
related to the conjugacy classes of X o, Yo,Zo' We can likewise 
deal with the subalgebra generated by X (tp I) + Z (tp3), 
Y(tp2) + Z(tp3)' andX(tpl) + Y(tp2) + Z(tp3), respective
ly. We conclude that the optimal system is given by the con
jugacy classes of 

Xo, Yo, Zo, Xo + Yo, Xo + Zo , 

Yo +Zo, Xo + Yo +Zo· 
(4.6) 

B. Two-dimensional subalgebras 

In order to classify the two-dimensional subalgebras L2 
of the symmetry algebra, we have to determine the optimal 
system ()2' Concerning this, it can be shown that only two 
isomorphy classes of two-dimensional Lie algebras exist, 
namely, 

(4.7) 

and 

(4.8) 

In both the cases (4.7) and (4.8), UI can be singled out 
without loss of generality and identified with one of the ele
ments in (4.6). Following a scheme analogous to that used 
to derive (4.6), we obtain all the two-dimensional Abelian 
representative subalgebras, i.e., 

which are related of course to the commutation property of 
the translation generators. The non-Abelian subalgebras of 
L2 type can be classified starting from (4.8). They are 

{XO,x1 + £1 Yo + £2Z0} , (4.1Oa) 

{YO'Y1 + £IXO + E2Z0}' (4.1Ob) 

{ZO,ZI + £IXO + £2 yo} , (4.1Oc) 

{Xo + YO,x1 + Y1 + EIZo}, (4.1Od) 

{Xo + ZO,x1 + ZI + EIYo}, (4.10e) 

{Yo + ZO,Y1 + ZI + E1XO} , 

{Xo + Yo + Zo,X1 + Y1 + ZI} , 

(4.1Of) 

( 4.1Og) 

where the parameters £ 1'£2 can take only two mutually non
conjugate values (0, or, say, 1). 

It is worth noticing that the algebra (4.1Og) is endowed 
with the generator of the scale transformation 
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S=X1 + Y1 +ZI =~la~1 +~2a~2 +~3a~3 

-(UjaUj+utau1) (4.11) 

(j = 1,2,3). We point out also that this algebra can be re
garded as a subalgebra of the algebra L6 formed by the gener
ators Xo,YO,ZO,xI,Y1,ZI [see (2.16) 1. Here L6 is a solvable 
six-dimensional algebra that admits the semidirect decom
position' 

L6 = {Xo,Yo,Zo} $ s {X1,Y1,ZI} 

with the Abelian ideal N = {Xo, Yo,Zo}. It contains all the 
infinitesimal transformations of straightforward physical 
meaning, as, for example, translations and dilatations. 

V. 2D-3WR EQUATIONS COMING FROM SYMMETRY 
REDUCTION 

Here we study the reduction equations ofthe 2D-3WR 
system (2.1), which can be written in the simple form 

a . * * akl - uj = lUkU/ , at 
(5.1 ) 

whose solutions are related to solutions that are invariant 
and partially invariant under the subgroups of the subalge
bras discussed in the preceding section. To achieve this goal 
we use some mathematical notions with which the reader is 
supposed to be acquainted. Anyway, one may consult some 
basic references (see Refs. 1-3). We recall that the proce
dure of symmetry reduction consists essentially in finding 
the invariants of a given subgroup of the symmetry group 
admitted by the differential equations under consideration. 
In order to apply the reduction technique to the 2D-3WR 
interaction, let us begin to analyze the invariants of the sub
groups of the one-dimensional subalgebras (4.6). 

A. Case I: reduction from one-dimensional subalgebras 

Let us deal with one of the symmetries (4.6), say ZOo A 
basis of invariants of the subgroup exp[AZol can be deter
mined by the partial differential equation 

a 
-1=0, (5.2) 
a~3 

which is fulfilled by an arbitrary function of the eight inde
pendent solutions 

II={;I' I2=~2' I 2+j =uj, Is+j=uj*, j=I,2,3. 
(5.3 ) 

We observe that each solution ofEq. (5.1) can be re
garded as a six-dimensional manifold U defined by 

uj - Uj(~"~2'~3) = 0, uj - Uj(~1'~2'~3) = 0, (5.4) 

in the space Z. 
Now if we require the invariance of the manifold U un

der the subgroup exp [A,Zo] , we have that U is given implicit
ly by six equations involving invariant functions only. These 
equations can be solved with respect to six new variables, 
which depend upon two invariants. Since we would express 
U in the explicit form (5.4), the rank of the matrix 
a(lI, ... ,ls)/(u1, ... ,ur> has to be 6. Of course, this condition 
is verified for the basis of invariants (5.3). Thus we can in
troduce the new variables v] = 12 + ] ,vj = Is +] (j = 1,2,3) 
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as functions of the independent variables ~l = II and 
~2 = 12, Furthermore, the functions uj , uj can be trivially 
written in terms of vJ and vj. Hence, recalling that uj is the 
complex conjugate of uJ ' Eqs. (5.1) provide 

(5.5a) 

(5.5b) 

(5.5c) 

This system admits three classes of solutions, i.e., 

{0,0,V3(~I'~2)}' {VI(~2)'O,O}, {O,V2(~)'O}, (5.6) 

where the vj's are arbitrary functions. 
The symmetries Xo and Yo lead to similar results. 
Now let us consider the operator Yo + Zoo Following an 

analogous procedure, we have the basis if invariants 

II=~I' 12=~2-~3' 12+j =uj , I s+j =uj,j=I,2,3. 
(5.7) 

Thus, the reduced system reads 

av) . * * avz. * * a 23 - = lV2 v3 , a 3 ) - = lVl V3 , 

a~1 a~z 

aV3 • * * a 12-= -lV1 V 2 , 

a~2 
where Vj=Vj(~I'~1-~3)' Finally, for the 
Xo + Yo + Zo we obtain the set of invariants 

II=~I-{;3' 12=~2-~3' I 2 +j =uj , 

Is+j=uj, j=1,2,3. 

The reduced system becomes 

aV I . * ... av1 · * * a 23 -=lV2 V3, a31-=lVI V3 , 
a~1 a~2 

(
aV3 aV3) . * * 

a'2 a{;1 + a{;2 = - lVl u2' 

where Vj=Uj(~1 - (;3' ~2 - ~3)' 

(5.8) 

symmetry 

(5.9) 

The systems (5.8) and (5.9), which can be investigated 
within the prolongation schemel

6-18 and the inverse spectral 
transform9

•
19 may furnish new solutions of the original2D-

3WR equations. 
To conclude this section, we write down an interesting 

reduced system coming from the scale symmetry (4.11), 
which leads to the invariants 

II = ~1/~3=Z" 12 = ~2/{;3=Z2' Ij = UJ~3' 

Ij* = Uj~3' j = 1,2,3. 

From (5.11) we obtain 

( 
aV3 aV3 ) • ... * a'2 ZI-+Z2-+ V3 = -lVJ V2 • az, azz 

(5.10) 

(5.11) 

The system (5.11), which has nonconstant coefficients, 
has been studied in the framework of the prolongation the
ory. 14 It allows a linear eigenvalue problem and can be inves
tigated in the context of the inverse spectral transform. 
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B. Case II: reduction from two-dimensional subalgebras 

1. Subcase (a): Abelian subalgebras 

Let us consider the subalgebra {Yo,Zo}' The invariant 
solutions related to this algebra must satisfy both Eqs. (5.5) 
and the reduced system corresponding to the symmetry Yo, 
simultaneously. This implies that the resulting system ad
mits the solutions 

( 5.12) 

where V2, V3 are arbitrary functions. On the other hand, the 
algebra {Yo + Zo' Xo} gives rise to a reduced system formed 
by Eqs. (5.8) and a set of three equations of the type (5.5). 
This system affords the solution {VI (~2 - ~3)'0,0}, where VI 

is an arbitrary function. 

2. Subcase (b): non-Abelian subalgebras 

Let us consider, for example, the subalgebra (4.1 Oc). A 
basis of invariants of the subgroup of this subalgebra is fur
nished by the equations 

aI = ° (5.13a) 
a~3 ' 

[
a a a 

~3 a~3 + EI a~1 + E2 a~2 

-- UI-+UI --+U2-+U2 -- =. 1 ( a .. a a.. a )]1 ° 
2 aUI ~T ~2 aut 

(5.13b) 

First let us deal with the case EI = E2 = 1. Then we find 

II = ~2 - ~I' 12 = u l et ,/2, 13 = uTet ,/2, 14 = u2et ,/2, 
t 12 * (5.14) 

Is = ute' , 16 = u3, 17 = u3 . 

Taking account of (5.14), Eqs. (5.1) yield 

(
aVI 1) ..... 

a 23 a~2 +2 VI = -IV2V3 , 

aV2 ... * .... ° a 3I - = IVI V3 , VI V2 = , 
a~2 

where Vj =vj (~2 - ~I)' 
A simple solution ofEq. (5.15) is 

{vI,o exp[ - !(~2 - ~I) ],O,O}, 

where vI,o is a constant of integration. 

(5.15 ) 

The case EI = 0, E2 = 1 (or EI = 1, E2 = 0) provides 
analogous results, while for EI = E2 = ° we are led to solu
tions of the 2D-3WR equations that are partially invariant 
under the subgroup, say H, of the given subalgebra, in the 
sense that their manifold U is a partially invariant manifold 
of H (see Ref. 1, Chap. VI). 

The algorithm that can be exploited to determine par
tially invariant solutions of a system of differential equations 
and the conditions assuring their existence are well estab
lished (see, for instance, Ref. 1, Chap. VI, p. 22). In our case, 
from (5.13) we get the basis of invariants 

so that the rank of the matrixa(lI, ... ,17)la(UI, ... ,Ut) is 5. As 
a consequence, the defect {j (see Refs. 1 and 2) of any solu-
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tion U E U turns out to be 1. This assures that u exists as a 
partially invariant H-solution (see Ref. 1, p. 283). 

Setting VI = 13, V2 = 14, V3 = Is, V4 = 16, where 
Vj = Vj (~1'~2)' from Eq. (5.1) we obtain 

U IU2 = ° (5.17) 

and, according to the choice (i) u I :f 0, U 2 = ° or (ii) U I = 0, 
u2:fO, we deduce that VI==VI(~2) and V2=V2(~I)' respec
tively, where VI and V2 are arbitrary functions. We conclude 
noticing that in both cases (i) and (ii) we have U3 = 0. 

Furthermore, in correspondence with the choice (i) or 
(ii), we have that UI=UI (~2'~3) with 

UI(~2'~3)luT(~2'~3) = VI(~2)' (5.18) 

or U2=U2(~I'~3)' with 

U2(~I'~3)lut(tl'~3) = V2(~I) . (5.19) 

The relations (5.18) and (5.19) imply, respectively, 

U I = III (~2'~3)exp[(A (~2)] , (5.20) 

(5.21 ) 

where the (real) functions IIj andfj are arbitrary. We re
mark that U I and U 2 become invariant under H in the special 
case in which they are independent from ~3' 

A basis of invariants I of the subgroup of the subalgebra 
(4.1Of) arises from the equations 

(~+~)I=O, 
a~2 at3 

(5.22a) 

[
a a a 

EI a~1 + ~2 at2 + ~3 a~3 

- -.!..(2U I ~ + 2uT ~ + U2 ~ 
2 aU I auT aU2 

+ Ut~+U3~+ ut~)]I=O. (5.22b) 
au! aU3 aut 

We get 

II = (~2 - ~3)exp( - ~I/EI)==Z' 12 = UI(~2 - ~3)' 

13 = UT(~2 - ;3)' 14 = u~ (~2 - ~3) , 

Is = (U!)2(~2 - ~3)' 16 = u~ (~2 - ~3) , 

17 = (Ut)2(~2 - ~3) . 

(5.23 ) 

If vl(z) =12' v2(z) =14' and v3(z) =16' the reduced 
2D-3WR equations coming from the subalgebra (4.1Of) 
read 

(5.24a) 

(5.24b) 

(5.24c) 

We shall discuss this system for the nontrivial case EI #0 
elsewhere. 14 

A notable set of reduced equations is found from the 
solvable subalgebra (4.1Og), where the explicit form of the 
scale generator is furnished by (4.11). The invariants I of the 
subgroup of (4.1Og) can be written solving the equations 
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which yield the basis 

I, = (;, - ;3)/(;2 - ;3) =z , 

12 = U,(;, - ;3)' 13 = U2(;' - ;3) , 

14 = U3 (;, - ;3)' 15 = uf(;, - ;3) , 

16 = U!(;, - ;3), 17 = Ur(;, - ;3) . 

Introducing the variables 

(5.25) 

(5.27 ) 

v, (z) = I,/z, V2 (Z) = 12, v3(z) = (1 - z)I3/z , 
(5.28 ) 

the 2D-3WR equations take the form 

av, iv!vr aV2 ivfvr 
a32-= 

[z(1-z)] 
a 3,-= 

(1 - z) (5.29) az az 

aV3 ivfv! 
a 12 -= ---

az Z 

We point out that Eqs. (5.29) coincide with the scaling 
reduction obtained for the 3WR equations in one spatial and 
one temporal dimension. Furthermore, if we consider imagi
nary solutions only, the system (5.29) is reducible to an 
equation related via a one-to-one transformation to the Pain
leve VI equation.4

,'4 

VI. CONCLUDING REMARKS 

In this paper we have carried out a systematic group 
analysis of the three-wave resonant equations in two spatial 
and one temporal dimension. The results of our investigation 
show that the 2D-3WR system shares many features with 
other nonlinear integrable partial differential equations of 
physical significance in (2 + 1) dimensions, such as the Ka
domtsev-Petviashvili, Davey-Stewartson, and modified 
Kadomtsev-Petviashvili equations.5

-
7 In fact, all these 

equations admit infinite-dimensional symmetry groups 
whose Lie algebras contain arbitrary functions and involve, 
as a particular case, Kac-Moody type algebras having a cru
cial role in the theory of integrable systems. 

Concerning the 2D-3WR equations, we have found the 
connection between one- and two-dimensional symmetry 
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subalgebras and reduction equations, which provide new so
lutions of the original system. Among these, Eqs. (5.11) and 
(5.29) deserve a special mention. The former is a nonlinear 
partial differential system in two independent variables and 
with nonconstant coefficients coming from the scale gener
ator. It allows a linear spectral problem that has been derived 
using a prolongation procedure. '4 The latter is related to the 
Painleve VI equation via a one-to-one transformation. Other 
reduced equations arising from our analysis, which seem 
new at the best of our knowledge, are (5.24). These will be 
considered in a forthcoming paper. '4 

We conclude by noting that a natural continuation of 
the present work is the search for the generalized symmetries 
of the 2D-3WR equations and their algebraic properties. 
This program will be dealt with in the near future. 
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The Titchmarsh-Weyl theory is applied to the Schrodinger equation in the case when the 
asymptotic form of the solution is not known. It is assumed that the potential belongs to the 
Weyl's limit-point classification. A rigorous analytical continuation of the Green's function, 
obtained from the solution regular at the origin and the square integrable Weyl's solution 
(regular at infinity), to the "unphysical" Riemann energy sheet is carried out. It is 
demonstrated how the Green's function can be uniquely constructed from the 
Titchmarsh-Weyl m-function and its Nevanlinna representation. The behavior of the m
function in the neighborhood of poles is investigated. The m-function is decomposed in a, so 
called, generalized real part (Reg) and a generalized imaginary part (Img). Reg(m) is found 
to have a significant argument change upon pole passages. Img(m) is found to be a generalized 
spectral density. From the generalized spectral density, a spectral resolution of the differential 
operator and its resolvent is derived. In the expansion contributions are obtained from bound 
states, resonance states (Gamow states), and the "deformed continuum" given by the 
generalized spectral density. The present expansion theorem is applicable to the general partial 
differential operator via a decomposition into partial waves. The numerical procedure involves 
all quantum numbers I and m, but for convenience, and with the inverse problem in mind, this 
study is focused on the case when the rotational quantum number equals zero. The theory is 
tested numerically and analyzed for an analytic model potential exhibiting a barrier and 
decreasing exponentially at infinity. The potential is Weyl's limit point at infinity and allows 
for an analytical continuation into a sector in the complex plane. An attractive feature of the 
generalized spectral density of the present potential is that the poles close to the real axis seem 
to exhaust or deflate the above-mentioned density inside the pole string. Outside this string the 
density rapidly approaches that of a free particle. This information is used to derive an 
approximate representation of the m-function in terms of poles and residues as well as 
free-particle background. In order to display the features mentioned above, the present study is 
accompanied with several plots of analytically continued quantities related to the Green's 
function. 

I. INTRODUCTION 

In a scattering experiment one is interested in the out
come of the interactions between colliding particles as mea
sured, for instance, by the velocity dependence of the appro
priate cross sections of the various processes. 

Hamilton-Liouville time evolution generators to the com
plex energy or k-plane. Generalized spectral properties as 
well as spectral expansion theorems are therefore needed to 
analyze and classify the dynamics of the colliding system. 

An important feature of the theoretical description of 
the scattering experiment lies in the possibility of relating 
observed cross-section data with details of the interaction. In 
this analysis, short-range properties of the potential as well 
as long-range and background effects are found to be related 
to bound and quasibound states formed by the partners of 
the collision. And, conversely, the spectral density related to 
the physical process defines the potential uniquely. 1 

Even though atomic and molecular scattering theory is 
in a relatively privileged position from the viewpoint of rig
orous foundation and applicative power, there are neverthe
less open problems that need attention. One such problem is 
related to the question of how to decompose a cross section 
into resonance contributions and background effects. In a 
wider context this problem concerns a generalization of the 

In a previous study,2 we gave a formulation of scattering 
theory in terms of the classical Titchmarsh-Weyl theory.3,4 
We paid particular attention to the connection between var
ious spectral densities and the scattering cross section. In 
addition to an asymptotic analysis of the densities, we also 
demonstrated how the resonance contribution could be 
uniquely defined and numerically calculated. 

In order to extend the formulation, we will here devote 
attention to the following developments: continuation of the 
partial wave Green's function to the second Riemann sheet; 
evaluation of the generalized spectral density on the second 
sheet; analysis of the various generalized imaginary and real 
parts of the Titchmarsh-Weyl m-function; the Nevanlinna 
representation of the Titchmarsh-Weyl m-function and the 
associated Green's function; analytic extension of the 
Green's function based on the Nevanlinna formulation; de-
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flation of the generalized spectral density and the behavior of 
the background contribution; and treatment of potentials 
with laborious tails, i.e., when the asymptotic form of the 
solution to the associated differential equation is unknown. 

Since the formulation of the inverse problem in scatter
ing theory is focused on the spectral density, the present 
generalization offers several possibilities. In addition to an 
analysis of the analytic properties of the interaction poten
tial, it is also possible to use the generalized expansion tech
niques treated here to solve the Gel'fand-Levitan5•

6 and 
Marchenk07

•
8 equations in connection with the inverse prob

lem in a sector of the complex plane. 

II. PRELIMINARY DEFINITIONS AND NOTATIONS 

A. Definition of the appropriate Green's functions 

Since the present investigation aims at the analytical 
properties of the differential equation and its associated 
Green's function we will give a rather detailed preliminary 
account of the actual equations. The starting point is the 
time-independent Schrodinger equation 

(E - Ho)t/J = Vt/J, 

where 

fi2k 2 
and E=--, 

2Jl 

(2.1 ) 

(2.2) 

with the boundary condition of regularity oft/J(r) at the ori
gin. Asymptotically, t/!(r) then behaves as 

t/J_elkr + j(o.)eikr/r, Irl--oo. (2.3) 

We solve (2.1) formally by introducing the Green's function 
defined by 

(E - Ho(r»)G + (r - r') = 8(r - r') , 

G + (r - r') - outgoing waves for r' fixed, 

G + (r - r')--o for r' fixed, I rl--o . 

Using (2.4), the formal solution is 

Irl--oo , 

(2.4) 

t/J(r)=1p(r)+ f dr'G+(r-r')V(r')t/J(r'). (2.5) 

Equation (2.5) is an integral equation for t/J(r), where 
1p(r) is the plane wave solution of the homogeneous equa
tion 

(E - Ho)1p = 0 . (2.6) 

We decompose G + (r - r') into partial waves, as is usually 
done, in the form 

2 I 

G +(r - r') = ~ ;; G / (r,r') mJ.-1 Y?,(o.) y?,(o.') . 

Inserting this in (2.4) we get 

L ± (E-HI(r») 2~ G(r,r')Y?,(o.) y?,(o.') 
I m= -I fz 

= 8(r - r') , 

where 

fi2 ( 1 d 2 1(/ + 1)) 
HI(r) =- --- (r) + + Vo(r). 

2Jl r dr r 
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(2.7) 

(2.8) 

(2.9) 

Noting that 
I 

L L Y?,(o.) y?,(o.') 
I m=-I 

I 

= L L (o.llm)(/mlo.') =8(0. - 0.'), 
I m=-I 

we find 

(2p/fz2)(E - HI(r»)G / (r,r') = 8(r - r')/r. 

(2.10) 

(2.11 ) 

For convenience we extract some constants from HI (r) by 
defining 

fz2 
HI (r) = - LI (r) and 

2Jl 
with 

1 d 2 1(/+1) 
LI(r) = -7 dr (r) + r + Uo(r). 

(2.12) 

(2.13) 

The partial wave Green's function in (2.8) now satisfies 

(A - LI)G / (r,r') = 8(r - r')/r , 

where the energy parameter A is given by 

A = k 2 = (2Jl/fi2)E. 

(2.14 ) 

(2.15 ) 

For atomic units we instead get the connection A = 2E. 
Equations (2.12) and (2.13) can be simplified to the follow
ing expressions: 

(2.16) 

and 

LA () _ £ + 1(/ + 1) + u. ( ) 
I r = dr r 0 r , (2.16') 

upon defining 

G / (r,r') = rr'G / (r,r') . (2.17) 

Since G + (r,r') with r' fixed should be regular both for 
" r--o and r __ 00, we find that G / (r,r') must be proportional 

to t/JI (r < )X/ (r> ), where t/JI (r) is regular for r--o and 
X+ (r) is regular for r--oo. Replacing the outgoing X+ by 

" the ingoingXI- we trivially get G 1- . Here r < and r> are the 
smaller and the larger of rand r', respectively. 

A 

Alternatively, the Green's functions G I± can be ob-
tained from the operator resolvent (A ± i€ - £1) -I asso
ciated with the differential operators (2.12) or (2.16), via an 
appropriate limiting procedure. 

The proportionality constant is easily determined by in
tegration of (2.16) over the junction point r = r' and is 
found to be the reciprocal of the Wronskian between t/JI (r) 
and X/ (r). Thus we get 

G/(r,r') =t/JI(r< )x/(r> )/W(t/JIX/)' (2.18) 

In the free-particle case [Uo(r)=O], this reduces to 

GI+(r,r') =ll(r< )h/(r> )/Wc}lh l+) , (2.19) 

where 11 ( p) and h / ( p) are Riccati-Bessel and Riccati
Hankel functions, respectively. 

Above we have discussed the free-particle Green's func
tion, i.e., Go and its generalization with the presence of a 
reference potential Uo. In what follows we will let Uo=O and 
consider the Green's function incorporating the actual inter
action potential U = (fi2 /2Jl) -1 V. This Green's function 
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will assume the same form as the one in (2.18). 
Before we proceed to an investigation of the analytic 

properties of G + and associated generalized expansions, we 
will first briefly discuss the classical Titchmarsh-Weyl the
ory. 

B. The classical Tltchmarsh-Weyl theory 

To set up the framework for the analytical extension, we 
consider the radial Schrodinger equation in the form 

( - :: + (U(r) + l(l ~ 0) -A )x(r) = O. (2.20) 

We have dropped the subindex I indicating the rotational 
quantum number. In order to treat bound states and the 
continuum in a unified way, we will here first assume A to 
contain a nonzero imaginary part. 

We define two linearly independent solutions <p and t/J by 
the left boundary conditions at a point r = a in the interval 
(0,00 ): 

(
<p t/J ) (Sin a cos a) 
<p' tI/ r=a = -cosa sina . 

(2,21) 

If the potential is less singular than the Coulomb potential at 
the origin, a can be chosen zero without loss of generality. 
However, in general, and this concerns the Coulomb poten
tial even if the latter is limit circle at r = 0, a must be differ
ent from zero, with the angle a chosen in the interval ( - 1T 12, 
1T 12) such that t/J( r) is regular at the origin. The logarithmic 
derivative of t/J( r) at the point r = a is then t/J' (a) I 
t/J(a) tan a. 

Provided special care is exercised, the limit a---+O can be 
taken in the final spectral density.2 Furthermore, one usually 
assumes - 1T12 < a < 1T12, but the limit lal---+1T12 can also 
be taken. 2-4,9 

Any solution to (2.20), except t/J, can be written in the 
form 

x(r) = <per) + t/J(r)m(E) . (2.22) 

We do not worry about the overall proportionality con
stant here since it is only the logarithmic derivative that re
lates to the quantization condition via suitable boundary val
ues. One important thing to observe is the possible existence 
of a pole in m occurring when X and t/J satisfy the same 
boundary conditions in the limit of real A. The m-coefficient 
in (2.22), which will be uniquely defined below, will be seen 
to be intimately connected to the spectral density associated 
with (2.20). 

We now impose the following real right boundary con
dition on x(r) at r = b> a: 

cos/3X(b) + sin/3x'(b) = 0, (2,23) 

for some/3, where -1T<./3<1T. Using that/3is real implies 

Im(x'IX)r=b = O. (2.24) 

Introducing the square bracket notation 

[uv] = u v' u'V, 

(2.24) can be rewritten as 

[XX](b) = o. 
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(2.25) 

(2.26) 

Inserting (2.22), this can be transformed to a condition on 
m: 

( [<p<p ] + m [t/J<p ] + m [ <pt/J] + mm [ # ]) r = b = 0 . 

(2.27) 

After using Green's formula and the relation [t/J<p ] 

= - [<pt/J] , this condition on m can be shown to force m to 
lie on a circle in the complex plane with center 

Cb - [<pt/J] (b)/[t/Jt/J] (b) (2.28) 

and radius 

(2.29) 

Upon using Green's formula, it is a simple matter to show 
that 

[#] (b) = 2i Im(A) fob 1t/J12 dr (2.30) 

goes to infinity for Im(A) :;f0, in the limit-point case, which 
includes most potentials of physical interest. A sufficient cri
terion for a real potential to belong to this classification is 
given, for instance, by Ref. 10 as 

VCr) > -K~, (2.31) 

for every r> r 0 and some K> O. 
In the numerical applications, the POP ratio (phi over 

psi) 

POP(r) = <p(r)/t/J(r) (2.32) 

is computed. Provided the unique square integrable solution 
x(r) vanishes at infinity, in the limit-point case, the POP 
ratio converges to - meA) as r---+oo ifImCA):;fO (see Ref. 
11). We will refer to such a procedure as the use of the POP 
method. 

For pathological cases, the limit-point solution x(r) 
may not go to zero at infinity. 12 However, if X' is also square 
integrable, then x(r) must necessarily vanish at infinity, 12 

and the POP method is applicable. If X' is not square integra
ble, more general techniques as previously discussed in Ref. 
11 must be applied. In what follows we will assume that both 
X and X' are square integrable on the interval [a, 00 ). 

The circle procedure, and, in cases when X' is square 
integrable, the POP method, can be used to calculate the 
wave function and the associated spectral information with
out explicit knowledge of the asymptotic form of the differ
ential equation. 

It can be shown that m CA) is an analytic function of 
Nevanlinna type (see below) whose imaginary part is a spec
tral density that will occur in the completeness relation 

8(r r') = J: 00 t/J(w,r)t/J(w,r')dp(w) , (2.33) 

where 

P(W2) - P(W1) = lim ..!..[2 Im(m(A + iE»)tiA. (2.34) 
.. -0+ 1T "'1 

The function XpoP obtained is of either outgoing or ingo
ing character depending on the sign ofIm(A). This can be 
visualized by the following argument. 

Let us for simplicity assume that rV(r)---+O when r---+oo. 
Any solution to (2.20) is then asymptotically a linear combi-
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nation of outgoing and ingoing Jost solutions. (In the case of 
the Stark effect, these solutions would instead be Airy func
tions of exponential type.) We then get 

x(r) -A exp(ikr) + B exp( - ikr) . (2.35) 

For energies A (on the first Riemann sheet) with 
Im(A) >0, we have Im(k) and Re(k»O, and the second 
exponential blows up for r-H~. However, XpoP is square 
integrable on the interval [a, 00 ) • The POP method therefore 
inherently chooses the purely outgoing solution for those 
energies. Conversely, for complex energy values, with 
Im(A) <0, the POP method gives the purely ingoing solu
tion. In the general limit-point case, the concepts of in- and 
outgoing waves must be interpreted in an extended sense. 
Symbolically we get 

POP = {x+ , forlm(A»O, (2.36) 
X X-, for Im(A) <0. 

For the m-values obtained by the POP method, we similarly 
have 

POP, {m+(A), for Im(A) >0, 
m (/\,) = 

m-(A), for Im(A) <0. 
(2.37) 

It is possible to let the energy A approach the continuum 
part of the real energy axis. 13 However, XpoP is then no long
er square integrable, albeit finite at infinity. Care must be 
taken as to which side of the real energy axis the limit is taken 
from. Compare, for instance, the corresponding problem of 
approaching the cut of the Green's function. 

As can be seen from (2.35), the solution obtained by the 
Titchmarsh-Weyl-POP method (corresponding to the 
point limit ofWeyl's circle) is square integrable on the inter
val [a,oo). For Im(A) <0 (on the "unphysical" Riemann 
sheet), one notices that the corresponding outgoing waves 
are no longer square integrable. 

Furthermore, this defines a unique formal solution to 
(2.20) that corresponds to a diverging outgoing Gamow 
wave. This boundary condition leads to the occurrence of 
complex eigenvalues. On the first sheet the spectral density 
occurring in the completeness relation (2.33) is, of course, 
confined to the real axis in agreement with the self-adjoint 
nature of the differential operator. Hence, when treating di
vergent waves associated with complex energies the compu
tational procedure no longer converges to the desired solu
tion. This problem, however, can be solved by a simple 
complex scaling trick. 

Although the idea here is to find m even if the asympto
tic form of the solutions f ± is not known, it is easy to obtain 
the connection between m and f (± branches not de
noted). This connection has been given many times, see, e.g., 
Ref. 13. For a = 1T12 one gets 

m =f'(ff,a)lf(ff,a) . (2.38) 

From this relation the spectral density exhibiting the proper
ties of m (A) can be found. 

III. DILATED VERSION OF THE TITCHMARSH-WEYL 
THEORY 

To carry out the appropriate analytic modifications, we 
first consider Eq. (2.20) for complex radial distances r': 
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In (3.1) we have assumed the real potential U(r) has an 
analytic extension to some sector in the complex plane, 
which, according to the Schwartz reflection principle, ful
fills 

U(r') = u(iI) , (3.2) 

for complex values r'. 
At the starting point r' = a', we define two linearly inde

pendent initial value solutions tp and tP by the boundary con
ditions 

(
tp tP) (sin a cos a) (3.3) 
tp , tP' r' = a' = - cos a sin a . 

If the starting point r' = a' is chosen nonreal, the angle a 
is nonreal in general. This somewhat more complicated situ
ation will be treated in a later article. Here we restrict a' to be 
real, a' = a>O, ensuring the initial value matrix in (3.3) to 
be real. In the present numerical applications, I is chosen to 
be zero (and a = 0) for convenience. 

At this point it is suitable to introduce complex scaling. 
If a is positive, we are led to the utilization of exterior com
plex scaling. 14

-
16 Otherwise, if a = 0, as in our numerical 

investigation, we invoke uniform complex scaling. 
We now consider (3.1) along the ray r' = a + 1](r - a), 

where r is a real radial distance coordinate and 1] = 11]lei6 

(0)0), the complex scaling parameter. In what follows, r 
belongs to the interval [a,oo). Rewriting (3.1) using the 
definitions 

X1) (r) = x(a + 1](r - a») and r1) = a + 1](r - a) , 

(3.4 ) 

we arrive at 

(- :; + (1]2 U(r1) +1]21(/~ 1»)_1]2A )x1)(r) =0, 

(3.5) 

where the differentiations from now on refer to the real coor
dinate r. 

Noting that 

'() (dx(r'») X1)r=1]--,- , 
dr r'=a+1)(r-a) 

(3.6) 

and similarly for tp ~ (r) and tP~ (r), the boundary condition 
(3.3) assumes the following form: 

(
tp1) tP1)) ( sin a cos a) - (3.7) 
tp ~ tP~ r = a - - 1] cos a 1] sin a . 

Imposing now the boundary condition 

(3.8) 

for X1) (r) at r = b, we find in parallel with the real case that 
m must lie on a circle in the complex plane with center 

C b = - [tp1)tP1)] (b)/[tP1)tP1)] (b) 

and radius 

Rb = 1I1[tP1)tP1)](b)l· 

The formula corresponding to (2.30) is then 
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[tP" tP,,] (b) = [tP" tP,,] (a) + 2i f ItP,,12(Im( 'TlA) 

_ Im( r/U(r,,) + 1]2 1(1 ~ 1)) )dr. (3.11) 

We note that 1m ( 1]2 A) is the distance (including sign) from 
the ray 1]- 2R + in the complex energy plane. 

We further note that (3.11) differs from (2.30) in the 
occurrence of the imaginary part of the effective potential in 
(3.5). This may perturb the convergence properties of 
Weyl's circle in the complex plane. For the model potential 
used in our study, the additional potential terms just men
tioned will be dominated by the 1m ( r/ A) term provided 
Arg ( 1]) < 1r 12. We therefore realize that the radius of 
Weyl's circle will shrink to zero provided the energy does not 
belong to the rotated cut 1]- 2R +. 

After complex scaling, the equation corresponding to 
(2.35) is now 

X" (r) -A expUk1]r) + B exp( - ik1]r) . (3.12) 

The sign ofIm(k1]), or equivalently the sign ofIm( 1]2A ), 
determines the behavior of the POP method where the modi
fied POP ratio 

POP" (r) = ep" (r)II/J'TJ (r) (3.13) 

is computed. By an argument similar to the real case, we get 

POP {x,,+, for Im( 1]2A) > 0, 
X = (3.14) 

" X;, for Im( 1]2A) <0, 

and for the m-values 

mPoP(A) = {m+(A), for Im( 1]2A) >0, 
" m-(A), for Im( 1]2A) <0. 

(3.15) 

Furthermore it follows that X;( and X; are square integra
ble on [a,oo) as long as A does not lie on the rotated cut 
1] - 2 R +. A sufficient condition for the radius Rb -0 as b~ 00 

is then that the integral in (3.11) diverges to infinity. 

IV. GENERALIZED SPECTRAL EXPANSION OF 
GREEN'S FUNCTIONS AND THE RESOLUTION OF THE 
IDENTITY 

A. Spectral expansion over real energy states 

We will now derive a spectral resolution of the Green's 
function (2.18). In addition to dropping the subindex I, we 
also temporarily suppress the coordinate dependence of the 
Green's function. The resulting equation can also be looked 
upon as a resolvent operator expression. One can then write 

G +(A) = Joo drew) 
-00 A+iO-w 

= L Res~+(Aj) + (00 [dr(w)ldw]dw 

j A + 10 - Aj Jo A + iO - w 

A "qj . (4.1) 

In order to interpret ( 4.1), we will compare this formula 
with (2.18) of Sec. II A. This is easily done by letting A 
approach the real axis. Let us for the moment take A real and 
indicate the limit from the upper part of the complex plane 
by A + iO. As will be seen below, the resolvent representation 
is based on an analytic representation of Nevanlinna type. 
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A 

As a consequence both Res G+(A) and dr(w)ldw (w;>O) 
are real quantities. Now we extract the imaginary part of 
( 4.1) by using the well-known distribution formula 

1 = p_l _ _ im5(A _ w) (4.2) 
A+ffi-w A-w ' 

obtaining 

(4.3) 

From (2.18) we also get, using X + = ep + I/Jm + and 
W(epI/J) = 1, that 

1m G 1+ (r,r') = - Im(tP(r < )x+ (r > ») 

- I/J(r)tP(r')Im(m+) , (4.4) 

where the notations r < and r> have been dropped since they 
occur symmetrically. We have used here that ep and I/J are 
real since the differential operator as well as the energy is real 
and the initial conditions are real by construction. We now 
rewrite (4.1) in the coordinate representation, using (4.3) 
and (4.4) to the form 

G + (A-r,r') = L I/J(Aj,r)I/J(Aj,r')/(tP(Aj ) 1I/J(Aj » 
, j A +iO-Aj 

+ (00 I/J(w,r)tP(w,r')( 1I1r)Im(m + (w) )dw 

Jo A +iO-w 

= J_oooo I/J(w,r)tP(w,r')dp(w) (4.5) 
A +iO-w 

where 

{ 

8(w -Aj ) 

dp(w) __ ~ (I/J(Aj)II/J(Aj » ' for w<O, 
(4.6) 

dw 1 
-Im(m+(w»), for w;>O. 
1r 

Using (2.18) and (4.1) we further find that the residue parts 
occurring in (4.1) are related to the normalization of the 
bound states. By letting the operator (A + iO - L) work on 
( 4. 5), we immediately conclude that the spectral density in 
(4.6) is exactly the one occurring in (2.33). 

As a general remark it is also possible to relate (4.6) to 
the Kodaira form needed, for instance, in the Gel'fand-Levi
tan equation for the inverse problem. In this case one finds 
that 

dp(w) _ k 21 + 1 
---_ , for w;>O, k 2=w, (4.7) 

dw I.t; (k) 12 

where .t;(k) is the well-known Jost function. See, for in
stance, (1). 

B. The Nevanlinna representation 

It is obvious that the Green's function previously dis
cussed is uniquely defined once the Titchmarsh-Weyl m
function is known for all energies. However, in order to ana
lytically extend the Green's function [or m(A)] it is 
necessary to study the appropriate analytical properties in 
more detail. From the Titchmarsh-Weyl theory, it can be 
shown that m (A) belongs to a class of functions said to be of 
Nevanlinna type. We will here briefly give the definition. 
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A function fez) is said to be of Nevanlinna type if it 
maps the upper (lower) complex half-plane onto itself. It is, 
of course, assumed that f(z) is Cauchy analytic in each half
plane with possible singularities on the real axis. Further
more the theory of Nevanlinna functions leads to the exis
tence of a uniquely defined function 0'( w ), called the spectral 
function of fez). For general properties of o'(W), see Refs. 9 
and 17. For an example see Fig. 1 where a suitable integra
tion contour for the Cauchy representation of fez) is dis
played. From this it is easy to show that fez) can be written 
in the form 

~ Resf(Zj) 1'" (lhr)lmf(w + iO)dw 
fez) = - ~ + 

j Zj-Z 0 w-z 

= f: '" ~~; (4.8) 

where 

dO'(w) j (4.9) 

{

L - Resf(Zj )15(w - Zj)' for w < 0, 

--;;;;- = ! Imf(w + iO), for w;;;>O. 

In addition, the Nevanlinna property defines O'(w) as a 
nondecreasing function of w. It is required that 1 fez) 1-0 
sufficiently fast for Izl~oo so that the contribution from the 
circle C R vanishes for R ~ 00 • 

A good candidate for this representation is 
f(A) = m (A) - mfree (A), where the free-particle m-func-
tion is given by mfree (A) = i..{X. Here we restrict ourselves 
to the case 1= 0 and a = 0, although the general Green's 
function formula that we will obtain can be found for any 
rotational quantum number I. Hence we get 

- Res m(A.) 
meA) - i..{X = L J 

j Aj - A 

where 

+1'" (1hr)(Im(m+(w»)-~)dw 
oW-A 

= f'" _ dO'(w) 
~_CU-A' 

( 4.10) 

dO'(w) = dp(w) - dPfree (cu) 

= {dp(w) -d(2cu312/31T) , for w;;;>O, (4.11) 
dp (cu), for cu < 0 , 

withp(cu) given by (4.6). 
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FIG. 1. Integration contour for 
the Cauchy representation show
ing the necessary deformation 
around bound states and the cut 
along the positive real energy 
axis. 
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C. Deformation of the integration contour in the 
Nevanllnna representation of m().) 

Weare now going to deform the integration contour in 
(4.10) from w = 0 to w = 00 and therefore we need the ana
lytical continuation of Im(m + (cu») occurring in the spectral 
density. 

From the analysis of Sec. III we also assume that the 
relations (3.14) and (3.15) are valid. This means that the 
pair of functions m + (A) and m ~ (A) have analytic contin
uations onto a higher-order Riemann sheet. If m+ (A) and 
m ~ (A) are nonreal for real energies, their respective imagi
nary parts differ only by their signs in agreement with the 
Nevanlinna character previously discussed. Hence, for real 
energies we realize that 

(4.12 ) 

The analytic extension Img(m + (A»), here called the 
generalized imaginary part of m + (A), is then immediately 
given by the left-hand side of (4.12). When we deform the 
contour in the way shown in Fig. 2, we must take care of the 
residues of Img(m + (A») at the resonance energies corre
sponding to Gamow waves. The residue contributions corre
sponding to resonances will appear together with bound 
states, as can be understood from the figures. Since m ~ (A ) 

has no poles in the lower half energy plane [m - (A) is by 
definition evaluated on the first Riemann sheet], the for
mula (4.12) immediately gives 

Res(Img(m+(A»)) = Res(m+(A»)/2i. (4.13) 

From the analytic information above the following gen
eralized Nevanlinna representation holds: 

- Res m(A.) 
meA) - i..{X = L J 

j Aj - A 

+ L (1!1T)(Img(m+(cu») - ~)dw 
cu -A 

(4.14 ) 

where C is the positive real axis rotated downwards twice the 
argument of'T/. 

D. Spectral expansion of the Green's function with 
deformed integration contours in the complex energy 
plane 

Weare now going to deform the integration contour in 
(4.5) in the same way as we did in the generalized Nevan
linna representation ( 4.14 ). Thus we also need the analytical 
continuation of the wave function product ¢(cu,r)¢(w,r'). 

FIG. 2. Integration contour for the 
Cauchy representation showing the nec
essary deformation around bound states 
as well as resonance poles and the rotat
ed cut in the complex energy plane. 
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We note that since ,p«(i),r),p«(i),r') occurs in an operator 
kernel the last factor should be a complex conjugated quanti
ty. This is of no importance here as long as both (i) and rare 
real since then the wave functions are real. The appropriate 
analytical continuation is then given by ,p«(i),r),p(w,r). 
Since ,p( (i),r) is real for real (i) and r, the two conjugations will 
annihilate each other here. 

By defining the residue of the m + -function at a pole 
(bound or resonance states) by 

Res(m+(Aj ») = - (,p(Xj )I,p(Aj »-I, (4.15) 

where the scalar product takes the general form 

( 4.16) 

we arrive at the following generalized spectral resolution of 
the Green's function: 

G + (kr r') = ~ ,p(Aj,r),p(Aj,r' ) Res( - m + (Aj ») 
, ,~ , , 

j ~ -~j 

i ,p«(i),r),p«(i),r') ( l/1T) Img(m + «(i) )d(i) + , 
c A-(i) 

A ¥Aj , (4.17) 

where r,r' lie on the ray 1JR +, and C is the rotated continuum 
1J-2R +, as before. Note that the discrete sum in (4.17) con
tains, in addition to bound states, also those resonances that 
are exposed by the complex rotation, see Fig. 3. This is equi
valent to saying that the corresponding Gamow waves are 
square integrable, i.e., the integral (4.16) converges. All oth
er nonexposed poles are contained in the generalized spec

. tral density occurring in the integral part of ( 4.17). 
~ in the conventional case, we now apply the operator 

(A - L(r») on (4.17) obtaining 

b(r - r') = L ,p(Aj,r),p(Aj,r')Res( - m+ (Aj ») 
j 

+ L ,p«(i),r),p«(i),r')dp«(i) , (4.18) 

where 

dp«(i) = J.. Img(m + «(i)) 
d(i) 1T 

( 4.19) 

)( 

)( 

-5 
)( 

UJ )( 

E -10 \ ..... 
\ 

)( 

-15 )( \ 

\ 

2 4 6 8 
ReE 

FIG. 3. Pole string for m+ (A.) (A. = 2E). The ray 11-2R + displays theinte
gration contour for the Nevanlinna representation (4.14). Along the weak
ly drawn line the generalized spectral density is vanishingly small. Outside, 
along the thick solid line the generalized spectral density is that of a free 
particle. The broken line shows a transition region. 
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is a generalized spectral density. Since r,r' belong to the ray 
1JR +, the delta function in ( 4.18) is different compared with 
that occurring in (2.33). It belongs to the space of ultra dis
tributions. See Ref. 18 for more details. 

v. NUMERICAL APPLICATION AND RESULTS 

A. Numerical integration and the convergence of the 
POP ratio 

The de Vogelaere method 19 for numerical integration of 
second-order differential equations without a first-deriva
tive term has been implemented in the program POP. The 
method is suitable since the initial values required for the 
algorithm consist of the value of the function and its deriva
tive at the starting point. Compare, for instance, with (3.7). 

The numerical integration ofEq. (3.5) for the two solu
tions qJ'T/ and ,p'T/ continues until convergence of the POP 
ratio (3.13) is reached. One of the convergence criteria that 
we have used is based on the change of the POP ratio, which 
is computed successively for a specified increment of radial 
distance. If the absolute value of the change is smaller than a 
certain value supplied by the input, convergence is assumed. 

B. Computation and analysis of quantities related to m 
The POP method has been tested numerically and ana

lyzed for a model potential,20 which in atomic units 
(A = 2E) is given by VCr) = 7.5re - r. The potential is 
Weyl's limit point at infinity and allows an analytical con
tinuation into a sector in the complex plane. This potential 
gives no bound states but it has a barrier that results in the 
pole string shown in Fig. 3. 

For convenience we have only treated the case when the 
rotational quantum number is zero and the left end point of 
the interval is a = O. 

The program POP gives us the possibility of computing 
several quantities related to the Titchmarsh-Weyl function 
m (A). They consist of some special combinations of m + (A) 
and m - (A). Some of these quantities are the analytical con
tinuations of quantities usually studied only for real ener
gies. 

The various quantities are as follows. 
( 1) m + (A) for energies A continued to the second Rie

mann sheet of the lower energy half-plane. m + (A) is com
puted using a specified complex rotation angle B. This allows 
the energies A to be situated in the half-plane determined by 
Im(e,'2/1A) >0. 

First we note the general property m + (A) = m - (X). 
Therefore, by taking the mirror image of that plot in Fig. 8, 
see below, with respect to the real energy axis, we get the 
modulus plot of m + (A) for our model potential on the first 
sheet of the upper half-plane. 

In Figs. 4 and 5 we show the analytical continuation of 
m + (A) onto the second sheet of the lower half energy plane. 
In addition to the string of poles of m +, we also find zeros 
situated between the poles along the same string. 

If the potential had been absent, the equimodular con
tours would have been circles centered at the origin. De
pending on the chosen axis setup, this virtually corresponds 
to ellipses on the plots. With the potential present, the equi-
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FIG. 4. Abs(m+(Ji»). 

modulars curve around one or several of the poles. Figure 6 
indicates that the argument of the m + -function along a ray 
from the origin is almost constant aside from the pole string 
region. Looking at the three-dimensional plot in Fig. 7, we 
see that passing the poles implies an argument shift of 
around 'IT radians. 

On the argument plot we also see some "slip faults" 
from the poles and the zeros of the m + -function. This is 
further described in the section about Reg(m + (A) ) below. 

(2) m - (A) for energies A on the first Riemann sheet. 
m - (A) is computed using the complex rotation angle - (J 

and thus allows the energies to be situated in the half-plane 
determined by 1m (e - i28 A) < O. 

Since the solution, regular at the origin, is never square 
integrable for energies on the first sheet [except for bound 
states energies where m (A) has a pole] m - (A) exhibits no 
pole in the lower half energy plane. 

When analytically continued to the second sheet of the 
upper half-plane, there may be poles in m - (A). The poles 
lying close to the real axis may influence the behavior of 
m - (A) even on the first sheet. 

Figure 8 shows the modulus of m - (A) for our model 
potential on the first sheet. The two poles closest to the real 
axis can be detected from the concentration of contours near 
it. We see that at larger absolute values of the energy the 
m - -function rapidly approaches the value corresponding to 
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FIG. 6. Arg(m + (Ji»). 

a free particle, i.e., m - (A) = - i.JT. This can also be seen 
from the argument contour plot in Fig. 9. 

(3) The generalized imaginary part of m + , 
Img(m+ (A») = (m+ (A) - m- (A»)/2i. Img(m+ (A») is the 
analytical continuation of Im(m + (A») for real energies. 
Note that this quantity is complex in general. This quantity 
is proportional to the generalized spectral density occurring 
in the spectral resolution of the Green's function and in the 
Nevanlinna and related representations of the m-function. 

For our model potential, Fig. 10 shows that 
Img(m + (A») is almost zero inside the pole string. This, 
together with the observed properties of Img(m + (A) 

- m + free (A»), described below, is the empirical motivation 
for the conjecture of deflation, see below. 

( 4 ) The generalized real part of m + , 
Reg(m + (A) + m - (A) )12. Reg(m + (A») is the analytical 
continuation of Re(m + (A) ) for real energies. This quantity 
is also complex in general. 

For real energies, Re(m + (A») can be used to localize 
poles on the second sheet since it shows sign shifts upon 
passing poles lying close to the real axis. For complex ener
gies, one can therefore assume that Reg(m + (A ») exhibits 
some phase change upon pole passages. 

When scanning along lines close to poles that do not lie 
near to the real axis, it is possible to mimic the above-men
tioned behavior either by considering Re(eia m + (A»), where 

FIG. 5. Abs(m+(Ji»). 
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eia is a suitable chosen phase factor, or by letting the scan
ning line go in a suitable chosen direction depending on the 
phase of the residue of the m-function at the resonance pole. 

The argument of Reg(m + (A») for our model potential is 
shown in Fig. 11. Inside the pole string the argument seems 
to be almost constant. Outside, where the modulus of 
Reg(m + (A») rapidly goes to zero, the argument increases 
steadily following curves locally parallel to the pole string. 
The argument increases slowly for trajectories far away, 
whereas it increases quickly inside the string defined by the 
zeros of Reg(m + (A»). In the latter case we find "slip faults" 
in the argument plot since the program POP uses the con
vention that the argument should be in the interval from 
- 1T to 1T. The slip faults go from the zeros of Reg (m +) to 

the poles of Reg (m +) (or m + itself). Encircling any slip 
fault end point shows a complete argument cycling. 

(5) Img(m + (A) - m + free (A»). This quantity occurs in 
the spectral density in the Nevanlinna representations for 
m + (A). It is also a necessary ingredient in the Gel'fand
Levitan integral equation for the inverse problem. Figure 12 
shows the modulus of Img(m+(A) - m+free(A») for our 
model potential. Our numerical study shows that this quan
tity is negligible outside the pole string. Inside, where 
Img(m + (A») is negligible, it assumes approximately the val
ue - Img(m + free (A»). Comparing with Fig. 10 we find that 
only in a narrow transition region do we have a more compli
cated situation. 
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-15 
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FIG. 8. Abs(m-(,i»). 
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FIG. 7. Arg(m+(,i»). 

We are thus led to a conjecture of a deflation effect. 
Referring to Figs. 3 and 13-15, we now discuss the following 
approximation. For the integral appearing in (4.14), we as
sume a sharp transition point between a negligible and a free
particle spectral density located somewhere on the dashed 
part of the integration contour. This point will be denoted by 
n. With this approximation we find that the integral occur
ring in ( 4.14 ) is explicitly evaluable. This leads to the follow
ing approximate representation of the m-function in terms of 
poles and residues as well as free-particle background and 
pole-background interaction: 

1 • fT ,,- Res meA) 
m(/!.) - h-J/!. = ~ 

j Aj-A 

_2. /IT + JT In (.JX + /IT) . 
1T 1T (.JX -/IT) 

(5.1 ) 

C. Computation of resonance energies 

At a resonance energy A = Aj' m+ (A) exhibits a pole. 
Therefore 11m + (A) has a zero. By the program POP, these 
zeros can be searched for using a Newton-Raphson-like 
method. For such a computation the complex rotation angle 
must be chosen large enough so as to uncover the pole, i.e., 
make the corresponding Gamow wave function square inte
grable. 
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FIG. 9. Arg(m-(,i»). 
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FIG. 10. Abs(lmg(m+(A»)). 

VI. CONCLUSIONS 

We have investigated a generalization of the Green's 
function and the associated completeness relation to a sector 
in the complex plane defined by the complex rotation meth
od. For bound states, McIntosh21 has studied the precise 
effect of the quantization condition for quantum mechanics 
in Weyl's theory formulation of second-order differential 
equations. Furthermore he analyzed the associated Green's 
matrix expression with regard to the corresponding discon
tinuities. The present study extends this discussion to reson
ances in the complex plane. 

Previously, Berggren22 has obtained analytically con
tinued Green's functions using Zel'dovich regularization 
without any complex deformation of the coordinate. Investi
gations by Gyarmati and Vertse23 show that the result ob
tained in the Zel'dovich framework24 is independent of the 
convergence factor used. In fact their analysis coincides with 
the technique of uniform and exterior scaling for the local
ization of the Gamow wave. 

The present study shows that the Berggren continu
ation, with the Zel'dovich regularization replaced by com
plex rotations, yields a rigorous formulation of the Green's 
function and the completeness relation in a sector in the 
complex plane. This approach has the additional feature of 
providing a consistent relation between the analytic proper
ties of the potential and the spectral density.6 

Our numerical results display, in addition to the above
discussed deflation property of the spectral density, that the 
Green's function can be approximately represented by 
bound state and resonance poles and a background contribu-
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FIG. 11. Arg(Reg(m+(A»)). 
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tion. The formula (5.1) has been preliminarily tested and 
found to contain the relevant information necessary for the 
construction of the Green's function. The string of corre
sponding residues used in formula (5.1) shows a smooth 
trajectory pattern in the complex plane in parallel to the 
complex pole distribution. For bound states, the residue of m 
is a negative quantity related to the normalization integral, 
see (4.15). For resonances with small widths, the real part of 
Res (m) is still negative but the imaginary parts are nonzero. 
When the resonance pole trajectory reaches its maximum 
real energy and turns, see Fig. 3, we found that for the pres
ent potential the real part of Res(m) changes sign. This 
seems to represent an alternative way of classifying the reso
nance poles in a primary and secondary class, see Ref. 25. 
The primary class, with a negative real part of Res(m), 
would then correspond to detectable structures in, for in
stance, the cross section. 
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Auto-BAcklund transformation, Lax pairs, and Painleve property 
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Using the Painleve property of partial differential equations, the auto-Backlund transformation 
and Lax pairs for a Korteweg-de Vries (KdV) equation with time-dependent coefficients are 
obtained. The Lax pair criterion also makes it possible for some new models of the variable 
coefficient KdV equation to be found that can represent nonsoliton dynamical systems. This 
can explain the wave breaking phenomenon in variable depth shallow water. 

J. INTRODUCTION 

Exciting and important discoveries have been made in 
the nonlinear dynamics of dissipative and conservative sys
tems. Numerical, analytical, and experimental works in the 
last two decades show that most of the nonlinear systems 
exhibit a transformation from "regular" to "chaotic" behav
ior. I Recently,2,3 the connection between movable singulari
ties and algebraic integrability of dynamical systems is wide
ly studied in different contexts. For an algebraically 
completely integrable system the independent, single-valued 
integrals of motions are part of a compact, complex tori on 
which the motion is linear. 

Ward4 has extended the study ofthe Painleve property 
(PP), well known in the context of ordinary differential 
equations, to partial differential equations (PDE's). A sys
tem ofPDE's in n independent variables is considered in the 
complex domain, the coefficients being analytic on en. If Sis 
an analytic noncharacteristic complex hypersurface in en, 
then the PDE that is analytic on S is meromorphic on en. A 
weaker form of the PP was suggested by Weiss et 01.5 while 
studying the Lorentz series expansion of the solutions in the 
neighborhood of a movable singularity. 

It is a well-known conjecture that if a field equation has 
the PP then it is completely integrable. 6 The limitations of 
this conjecture, known as the Ablowitz-Ramani-Segur 
(ARS) conjecture, have been pointed out by many auth
ors. 2,3 The complete integrability is also defined in terms of 
the existence ofthe inverse scattering transform (1ST) or the 
auto-Backlund transformation (ABT). 7 The existence of an 
1ST solution is assured by that of Lax pairs. 

A well-known 7 model for an 1ST solvable and complete
ly integrable dynamical system is the celebrated constant 
coefficient Korteweg-de Vries (KdV) equation: 

U,t + auu,x + f3u,xxx = 0, (1.1) 

the coefficients a and f3 being constants and the suffix indi
cating a partial derivative with the respective variables. This 
equation yields a highly collisionally stable particlelike solu
tion, called a soliton. 

a) Present address: Mathematics Section, International Centre for Theoreti· 
cal Physics, 34100, Trieste, Italy, 

Here, we report the results of the PP analysis of a KdV 
equation with variable coefficients. The PP is used to identi
fy the values of the different parameters for which the system 
loses its integrability. We have found these parameter values 
using a property of Lax pairs obtained from the PP. The 
possible ABT is also developed, when the system is integra
ble. 

Such an equation is particularly significant in the study 
of the development of a steady solitary wave as it enters a 
region where the bottom is no longer level. 8-15 It has been 
found both theoretically and experimentally that when the 
depth decreases to form a shelf, the solitary wave breaks into 
a number of "solitons" while if the depth is increasing the 
solitary wave degenerates into a cnoidal wave. 

II. PAINLEVE PROPERTY OF VARIABLE COEFFICIENT 
KdV EQUATION 

We introduce a variable coefficient KdV equation: 

U,t + at nuu,x + f3t mu,xxx = 0, (2.1) 

where m and n are real numbers and a and f3 are constant 
parameters. The well-known KdV equation (1.1) is ob
tained when m = n = 0. For a = ~, f3 = i and m = 0, 
n = -~, we can transform (2.1) to the well-known purely 
concentric KdV equation 

2V,t + vlt + 3vv,x + jv,xxx = 0, 

through a nonlinear transformation 

u = v.Jt. 

(2.2) 

(2.3 ) 

Equation (2.2) is studied by several authors,I6-19 and 
ABT and 1ST are well known for this system. Some soliton
like solutions of (2.2) in terms of Airy functions are also 
developed. IS 

Equation (2.1) has the PP when its solutions u (x,t) are 
"single valued" about the movable, singularity manifolds, 
determined from the singularity analysis of the Lorentz se
ries expansion 

00 

u(x,t) = cp '7 (x,t) L uj (x.t)cp j(x,t), 
j=O 

(2.4) 

where uj (X,f) and cp(x,t) are analytic functions in a neigh
borhood of the manifold 
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f{)(x,t) = ° (2.5) 

and 7J is an integer to be determined. Substituting (2.4) into 
Eq. (2.1), a leading-order terms analysis uniquely deter
mines the possible values of 7J. The PP requires that 7J be a I 

j 

negative integer. The resultant series expansion of (2.1) 
gives the required ABT and Lax pair for the IST. 

The leading-order terms analysis gives the value 
7J = - 2. The recursion relations for uj (x,t) are found to be 

uj _ 3,t + (j - 4 )uj _ 2f{),t + at n L uj _ dU k l,x + (k - 2)uk f{),x) + /3t m{uj _ 3,xxx + 3(j 4 )uj _ 2,xxf{),x 
k=O 

+ 3(j - 3) (j - 4)uj _ l ,xf{),x 2 + 3(j - 4)uj _ 2,xf{),xx + (j - 2) (j - 3) (j - 4)uj f{),x 3 

+ 3(j - 3)(j - 4)uj - 1 f{),xf{),xx + (j - 4)uj _ 2f{),xxx} = 0, (2.6) 

where 

aUj (x,t) 
Uj,x = ax ' etc. 

Collecting terms involving uj , it is readily found that 

(2.7) 

/3t
m
f{),/(j 6)(j-4)(j+ 1)uj =F(uj-I, ... ,uO,f{)",f{),x'''')' (2.8) 

forj = 0,1,2, .... 
We 'note that the recursion relations (2,8) are not defined whenj= -1,4, and 6. These values ofj are called the 

"resonances" of the recursion relation and, corresponding to these values ofj, we can insert arbitrary functions of (x,t) instead 
of uj (x,t) into the series expansion (2.4). But for j = - 1, the series expansion (2.4) is not defined and so the admissible 
values of resonances arej = 4 and 6 only. 

Puttingj = 0,1,2, ... in (2.7), we get 

j 0, Uo = - (l2/3/a)t m- nf{),x 2
, 

j= 1, u1 = (12/3/a)t m
-

nf{),xx' 

j 2, (t n/a)f{),xf{),t +u2f{),/- (3/3/a)t m- nf{),x/+ (4/3/a)t m nrp,xrp,xxx =0, 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) j 3, (t n/a)rp,xt + (m - n)(t - n - I/a)rp,x + U2rp,xx - u 3rp,x 2 + (/3t m - n /a)rp,xxxx = 0, 

and 

a {t - n t - n I 2 /3t m - n } _ 
j 4, -a -- f{),xt + (m - n )--- rp,x + U2rp,xx - U3rp,x + --- rp,xxxx - 0, 

x a a a 
(2.13 ) 

which is a compatibility condition. The compatibility condi
tion atj = 6 involves extensive calculations. 

When we assign U4 = U6 = ° and for u3 = 0, we can find 

uj = 0, for allj>3, (2.14) 

provided U2 is a solution of (2.1), which implies that 

(2.15) 

From Eq. (2.4) and Eqs. (2.9)-(2.15), we get 

Uo = - (l2/3/a)t m- nrp,/, (2.16) 

U1 = (12/3 /a)t m - nrp,xx' (2.17) 

(t -" /a)f{),xrp,t + U2rp,x 2 (3/3 /a)1 m - nrp,xx 2 

+ (4/3 /a)t m - nf{),xf{),xxx = 0, (2.18) 

(t - "/a)rp,xt + [(m - n)/a]t - n lrp,x + u2rp,xx 

+ (/3/a)t m- nrp,xxxx =0, (2.19) 

U2,t + at nU2U2,x + /3t mU2,xxx = 0, (2.20) 

and 

Uj = 0, forj> 3. (2.21) 

Substituting (2.16)-(2.21) in Eq. (2.4), we get 
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2 

( t) - 12{3 tm-n rp,x + 12/3 tm-n rp,xx + 
U x, - --- -- -- -- U2' 

a rp2 a rp 

(2.22) 

or 

12{3 a2 
u(x,t) =_-t m - n _

2 
(logf{) + U2, 

a ax (2.23) 

where U (x,t) and U2 are exact solutions of (2.1) and (2.15), 
respectively. 

Equations (2.16)-(2.23) define the ABT for the vari
able coefficient KdV equation (2.1) provided (2.18) and 
(2.19) are consistent. If any one of the solutions u2 (x,t) is 
known then another solution u(x,t) ofEq. (2.1) can be de
termined using the ABT. The consistency ofEqs. (2.18) and 
(2.19) can be verified by using a property of the Lax pairs. 

The Lax pairs are obtained from the equations (2.18) 
and (2.19) by using a transformation 

f{),x = V 2. (2.24 ) 

Substituting (2.24) in (2.19) yields 
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t~n v:,+ (m-n) t~n~lv+U V +!!....tm~nV 
a 2a z,x a ,xxx 

+ 3/3 t m ~ n V V:xx = O. 
a ,x V 

(2.25) 

Equation (2.19) also transforms to 

t~n 1 4/3 m~n 
-- V, +uzVx +-u1xV+-t V xxx =0. (2.26) 
a' '2' a ' 

EliminatingV:, from Eqs. (2.25) and (2.26) we get 

(m - n) t ~ n ~ I _1.. u1,x _ 3/3 t m ~ n ( V:xx ) = O. 
2a 2 a V,X 

(2.27) 

Integrating Eq. (2.27) with respect to x gives 

!!.... t m ~ n V:xx + 1.. Uz + (m - n) x t ~ n ~ I = A (t), 
a V 6 6a 

(2.28) 

or 

f(t){!!....tm~nDz+1..uz- (m-n) xt~n~l} V 
a 6 6a 
=f(t)A(t) V. (2.29) 

Thus we get the linear eigenvalue problem 

LV=IlV, (2.30) 

where Il = A (t) f(t) and L is a linear operator defined by 

L=f(t) {! tm~nDZ+ ~uz- (m~n) xt~n~I}. 

(2.31 ) 

From Eq. (2.26) we get 

V, = -atn{(4{3la)tm~nD3+uzD+!Ul,x}V, (2.32) 

or 

V, = -BV, (2.33 ) 

where the operator B is defined by 

B = at n{(4{3 la)t m ~ nD 3 + uzD + ~uz,x}' (2.34) 

Equations (2.30) and (2.34) define the Lax pairs Land B. 
However, Eq. (2.33) implies that the eigenfunction V is in 
time evolution so that 

L, =LB-BL. (2.35 ) 

The L, in (2.35) denotes the derivative with respect to 
both the explicit time dependence of L and the implicit de
pendence through u2 (x,t). 

From (2.30) and (2.33) we get the following results for 
which (2.35) holds: 

(i) m = n, f(t) = C, 

(ii) m = 2n + 1, f(t) = Ct n+ \ 

(2.36) 

(2.37) 

where C is an arbitrary constant. For all other values of m 
and n the Lax pairs are not consistent and hence the ABT 
exists only for the values of m and n defined in Eqs. (2.36) 
and (2.37). Equation (2.36) implies that m and n can be 
both zero together and then the respective L and B are the 
well-known Lax pairs of the constant coefficients KdV equa
tion (1.1). 
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The above study shows that the variable coefficient 
KdVequation (2.1) is 1ST solvable and has PP whenever 
m = n or m = 2n + 1 and these properties are independent 
of the constant parameters a and/3. For all other values of m 
and n, the system is nonintegrable. 

III. DISCUSSION 

The variable coefficient KdV equation (2.1) that we 
have introduced is a new member in the families ofintegrable 
as well as nonintegrable PDE's depending on the coeffi
cients. The PP analysis leads to the ABT and Lax pairs when 
it is integrable. The operator identity (2.35) of the Lax pairs 
reveals that the system (2.1) can be integrable when m = n 
and m = 2n + 1 only, whereas for all other values of m and 
n, the system (2.1) is nonintegrable. The soliton solutions 
are the products ofIST solvable class of nonlinear PDE's.I.7 
The above study shows that the variable coefficient KdV 
equation (2.1) does not always have a soliton, but only in 
two special cases. Hence in general a solitary wave solution 
of (2.1 ) need not be a soliton and so it need not be collisional
ly stable always. 

The variable coefficient KdV equation (2.1) that we 
introduced is a model for explaining the observations of soli
ton-type solution's instability reported earlier in different 
contexts. 8

-
15 

The existence of an infinite number of conservation laws 
is considered as a necessary condition for the existence of 
soliton solutions ofIST solvable equations.7 Here we are able 
to give two of these members for general m and n, 

u,' + (a/2)t nUZ + /3t mU,xx ),x = 0 (3.1) 

and 

( 1.. uz) + (!!.... t nu3 -!!.... t mu.x Z + /3t muu.xx ) = O. 
2 ,3 2 ,xx 

, (3.2) 

The higher-order conserved quantities are not so direct and 
they are now under investigation. 

It is interesting to find the soliton solutions of the vari
able coefficient KdV equation when it is 1ST solvable and 
study their time evolutions, etc. Another interesting prob
lem is that of finding the solution of (2.1) for general m and 
n and then studying its time evolution for various values of m 
and n. Such a study may shed some light on the possible 
connection between movable singularity, the Painleve prop
erty, and the soliton stability of particular solutions of a non
linearPDE. 
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A Korteweg-de Vries (KdV) equation with time-dependent coefficients is studied in this 
paper. The similarity transformation for this system is investigated and an exact solution in a 
particular case is obtained. The Ablowitz-Ramani-Segur (ARS) conjecture is used to identify 
the integrability of the system. It is found that in some special cases the system may be 
integrable. 

I. INTRODUCTION 

One of the most important methods for developing ex
act solutions of partial differential equations (PDE's) is that 
of reducing the number of variables, exploiting continuous 
symmetries of the system. The solutions obtained by this 
procedure are generally called similarity solutions. 1 This 
method has been widely used in the past for developing solu
tions as well as for the test of the Painleve property (PP) of 
various systems. 2.3 

In an earlier paper4 we have analyzed the existence of 
auto-Backlund (ABT), Lax pairs (LP), and the PP of a 
Korteweg-de Vries (KdV) equation with variable coeffi
cients. In this paper we are reporting some similarity solu
tions and an exact solution of the equation in a particular 
case using the standard similarity method. 

II. SIMILARITY TRANSFORMATIONS OF A PARTIAL 
DIFFERENTIAL EQUATION 

We shall give the essential details 1 of the Lie continuous 
point group similarity transformation method to reduce the 
number of independent variables of a PDE, 

(2.1 ) 

under a family of one-parameter infinitesimal continuous 
point group transformations 

x = x + EX(X,t,u) + O(E2) , (2.2) 

t=t+ET(x,t,u) + O(~), (2.3) 

U = U + EU(X,t,u) + O(~) . (2.4) 

Here X, T, and U are the infinitesimals of the variables x, t, 
and u, respectively, and E is an infinitesimal parameter. The 
derivatives of U are also transformed according to 

Ux=Ux+E[Ux]+O(~), (2.5) 

(2.6) 

Uxxx = uxxx + E[ Uxxx ] + O(~) , (2.7) 

where [Ux ], [U,], and [Uxxx ] are the infinitesimals of the 
transformations of derivatives Ux' Up and Uxxx ' These are 
called the first and third extensions depending on the order 
ofthe derivative term. These "extensions"t are given by 

[Ux ] = Ux + (Uu -Xx lux - Txu t -Xuux 2 - Tuuxut , 

(2.8) 

(2.9) 

and 

[Uxxx ] = Uxxx + (3Uxxu -Xxxx)ux - Txxxut + 3(Uxuu -Xxxu )ux 2 - 3Txxuuxut + (Uuuu - 3Xxuu )ux
3 

+ 3( Uxu - Xxx )uxx - 3T xxUxt - 3Txuu ux 2Ut + 3( Uuu - 3Xxu )uxuxx - 3Txuutuxx - 6Txuuxtux 

- 3Txuxxt + (Uu - 3Xx )uxxx - Xuuuux 4 - 6Xuu ux 2uxx - 3Tuu ux 2uxt 

- Tuuuux 3Ut - 3Xuuxx 2 - 3Tuuxuxxt - 3Tuuxx uxt - 3TuuuxutUxx - 4Xuuxuxxx - Tuutuxxx . (2.10) 

The invariance requirement of (2.1) under the set of transformations (2.2)-(2.10) leads to the invariant surface condition 

On solving (2.11), the infinitesimals X, T, and U can be 
uniquely determined, which give the similarity group under 
which the system (2.1) is invariant. 

a) Present address: Mathematics Section, International Centre for Theoreti
cal Physics, 34100. Trieste. Italy. 

(2.11 ) 

By the infinitesimal transformations (2.2)-(2.4) we 
have 

U(X+EX+O(~), t+ET+O(~»)=U+EU+O(~). 

(2.12) 
On expanding and equating the O(E) terms on either side of 
(2.12) we get 
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(2.13 ) 

The solutions of (2.13) are obtained by Lagrange's condi
tion 

dt /T= dx/X = du/U. 

Equation (2.14) gives the solution 

x = x(t,CI,C2) , 

u = u(t,CI,C2) , 

(2.14 ) 

(2.15 ) 

(2.16) 

where C 1> C2 are arbitrary integration constants. The constant 
CI plays the role of an independent variable called the simi
larity variable U and C2 that of a dependent variable called the 
similarity solution/(u) such that 

u(x,t) =/(u) . (2.17) 

Substituting (2.17) in the original equation (2.1) the 
resultant equation is an ordinary differential equation in
volving only the derivatives with respect to the similarity 
variable u. 

III. SIMILARITY TRANSFORMATION AND LIE ALGEBRA 
OF VARIABLE COEFFICIENT KdV EQUATION 

Here we consider a variable coefficient KdV equation 

(3.1 ) 

where a and P are arbitrary constant parameters and nand 
m are real numbers. In a special case this equation can be 
reduced to the well-known cylindrical KdV equation.4 

Under the family of infinitesimal transformations 
(2.2)-(2.4) the variable coefficient KdV equation (3.1) 
yields 

[Ut ] + atn(ux U + u[ Ux ]) + antn-IuuxT 

+Pt m[ Uxxx ] +pmtm-IuxxxT= O. (3.2) 

On substituting the expressions for the extensions from 
(2.8)-(2.10) and solving for the infinitesimals X, T, and U 
we get the constraint equations 

-Xt +atn(U+u(Uu -Xx»)+natn-IuT=O, (3.3) 

Ut + at nuUx + pt muxxx = 0, (3.4) 

tUu - 3tXx + mT= 0, (3.5) 

Uu-Tt=O, Uxu-Xxx=O, Uuu -3Xux =O, (3.6) 

Tx = Tu = Xu = 0 . (3.7) 

The constraints (3.3)-(3.7) can be uniquely solved. Then 
we get the following solutions for X, T, and U. 

(i) When m and n are arbitrary, 

T=O, 
X=a[atn+I/(n + 1)] +b, 

U=a. 

For the Lie algebra, 

at n + I a a 
GI =-----+-, 

n+l ax au 
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(3.8) 
(3.9) 

(3.10) 

(3.11 ) 

a 
G2 = ax ' 

[GI ,G2 ] = O. 

(ii) When m = 3n + 5, 

T=t, 

X= (2+n)x+a[atn+I/(n+ 1)] +b, 

U=u+a. 

(3.12) 

(3.13 ) 

(3.14) 

(3.15) 

(3.16) 

The Lie algebra is the same as in the last case [( 3.11 )
(3.13)]. 

(iii) When m = - 2 and n = -~, 

T=t l
/
2 , 

X= - (xt- I/2/2) -2aat- I/2+b, 

U= (ut- I
/
2/2) + (x/4a) +a. 

(3.17) 

(3.18 ) 

( 3.19) 

The Lie algebra is same as in (3.11)-( 3.13), with n = -~. 

In all the above cases [(3.8)-(3.19)], a and b are arbi
trary integration constants. 

IV. SIMILARITY, SELF-SIMILAR AND EXACT 
SOLUTIONS 

Using (2.14) and (2.17) we can find the similarity vari
ables, similarity reduced equations, and similarity solutions 
for the above three cases [( 3.8 )-( 3.19) ]. 

The set of infinite sima Is (3.8 )-( 3.10) gives the similar
ity variable 

u l = t (4.1 ) 

and the similarity reduced equation 

dll + (n + 1)aaul
n 

II = O. (4.2) 
dUI aat n+ 1 + (n + l)b 

The corresponding similarity solution is 

u(x,t) = (n + l)ax/aat n+ 1+ (n + 1)b) + II' (4.3) 

Equations (4.2) and (4.3) give an exact solution of the vari
able coefficient KdV equation (2.0. 

u(x,t) = [a(n + 1)x + c]I[aat n+ 1+ ben + 1)] . 

(4.4) 

The solution (4.4) is not so useful as the third derivative 
with respect to the variable x vanishes. 

The set of infinite sima Is (3.14)-(3.16) yields the simi
larity variable 

x aa b 
U 2 = --+ + . (4.5) 

t n+2 (n+l)t (n+2)t n +2 

The corresponding similarity reduced equation is 

p d
3

h + ah d/2 +12 _ (n + 2)U2 dh = 0 
d~2 dU2 dU2 

(4.6) 

and the similarity solution is 

u(x,t) = tf2(U2) - a. (4.7) 

When n = - 3, Eq. (4.6) can be reduced to a second-order 
equation by integration with respect to u2• This yields 

P d% al2 f --+ - 2 + U2 2 = const . 
d~ 2 

(4.8) 

Nirmala, Vedan, and Baby 2645 



                                                                                                                                    

Equation (4.8) is not easily solvable. 
From Eq. (3.17)-(3.19) we get the similarity variable 

O'3=xtI/2+4aatI/2-bt. (4.9) 

The corresponding similarity reduced equation is 

{3 d
3
/3 + aJ; dl3 + ~ = 0 (4.10) 

d~ dO'3 2a 

and the similarity solution is 

u(x,t) = - O'3/2a + bt /2a + t 112
/3(0'3) . (4.11 ) 

Equation (4.10) can be exactly solved for the case b = O. 
This gives the following solution of the variable coefficient 
KdVequation (3.1) for m = - 2, n = -~: 

-(4a+X)t I/2 
u(x,t) = 2a 

4t 1/2 + . (4.12) 
[U - a/3{3) (x + 4aa)t 1/2 + cp 

The exact solution (4.12) is real valued only when a < 0 or 
{3 < 0 and not both simultaneously negative. The solution 
( 4.12) has no characteristics of a stable configurationlike 
"soliton. ,,5 

The self-similar I solution can be developed for the vari
able coefficient KdV equation (3.1) using the dimensional 
analysis. The self-similar transformation is very much iden
tical to the similarity transformations; nevertheless self-sim
ilar solutions are not always obtainable by similarity proce
dure. 

For the variable coefficient KdV equation (3.1) we got 
the self-similar transformation 

U(X,t) =t(m-3n-2)/3F(rJ) , 

where rJ(x,t) is the self-similar variable 

rJ(x,t) = xt - (m + 1)/3 . 

(4.13 ) 

(4.14 ) 

Equation (4.13) yields the following self-similarity re
duced ordinary differential equation, on substituting in 
(3.1) : 

{3 d 3 F + aF dF _ (m + 1 ) rJ dF + m - 3n - 2 F = 0 . 
drJ3 drJ 3 drJ 3 

(4.15 ) 

Unfortunately Eq. (4.15) cannot be solved for any values of 
m andn. 
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v. DISCUSSION 

The variable coefficient KdV equation has attracted the 
attention of several authors since 1969.6-13 The equation is a 
standard mathematical model6 for explaining the soliton 
breaking phenomena observed in variable depth shallow wa
ter. So far no exact solution for this model exists in the litera
ture. Our work is an attempt in this direction. 

Using the well-known Ablowitz-Ramani-Segur 
(ARS) conjecture3 one can study the PP of a PDE by reduc
ing it to an ordinary differential equation (ODE), using si
milarity or self-similar transformations. Equation (4.2) is 
linear and so it is clearly a Painleve-type. For n = - 3, Eq. 
(4.8) is not a Painleve-type equation whereas (4.11) can be 
integrated once and it will reduce to Painleve-type. This 
equation (4.15) can be reduced to a second-order equation 
for n = - 1, but not a Painleve-type. 

The exact solution (4.12) that we developed has no 
smooth property of a soliton solution, which indicates that 
the system has decaying solutions other than soliton solu
tions when coefficients of KdV equation are variables. 
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A new method for studying integrable systems based on the "periodic fixed points" of 
Backlund transformations (BT's) is presented. Normally the BT maps an "old" solution into a 
"new" solution and requires a known "seed" solution to get started. Besides this limitation, it 
can also be difficult to qualitatively classify the result of applying the BT several times to a 
known solution. By studying the periodic fixed points ofthe BT (regarded as a nonlinear map 
in a function space), integrable systems of equations of finite degree (equal to the order of the 
fixed point) and a method for the systematic classification of the solutions of the original 
system are obtained. 

I. INTRODUCTION 

A Backlund transformation (BT) maps solutions of a 
nonlinear system into solutions of (we assume the same) 
nonlinear system. Customarily, the BT is applied iteratively 
to a known (trivial) solution to generate a sequence of solu
tions that may be of interest. 

For instance, the (Schwarzian KdV) equation I 

'Pt/'Px + {'P;x} = A (1.1) 

has the Backlund transformations I 

(i) 'P = (at/l + b)/(et/l + d), ad - be = 1, 

( ii) .1. - I 'Px = 'f'x , 

where 

t/l,;t/lx + {t/l;x} = A. 

The expression 

{'P;x} = ~ ('Pxx) _ ~ ('Pxx)2 
ax 'Px 2 'Px 

( 1.2) 

(1.3 ) 

(1.4) 

( 1.5) 

is the Schwarzian derivative, which is invariant under the 
Moebius group (1.2).2,3 

From Eq. (1.1) and identifying the variables 

v = 'Pxx/'Px' 

U= {'P;x}, 

it can be shown that l 

( 1.6) 

( 1.7) 

( 1.8) 

( 1.9) 

where Eq, (1.9) is the KdV and (1.8) the modified KdV 
equation. I 

Now, from Eqs. (1.1) and (1.4), the BT (1.3) is com-
pleted by (either of) the equations 

~ + ~ = ('Pxx)2 + 2,1 = (t/l=)2 + 2,1, (1.10) 
'Px t/lx 'Px t/lx 

~_~=2~('PXX)= _2~(t/lxX). (1.11) 
'Px t/lx ax 'Px ax t/lx 

a) Mailing address: Division of Applied Sciences. Harvard University, Cam
bridge, Massachusetts 02138. 

That is (1.3) and (say) (1.10) imply, by the integrability 
conditions, 

'PIX = 'Pxl' t/llx = t/lXI' ( 1.12) 

that ('P,t/l) satisfy Eq. (1.1). Since (1.3) is in involution, the 
effective BT is the composition of ( 1.2) and (1.3): 

(1.13) 

Through the iterative application of ( 1.13) and (1.14), 

'P = 'Pn + I' t/l = 'Pn' (1.15 ) 

with A = 0, 

'Po =x, (1.16) 

the sequence of rational solutions of the KdV equation can 
be found. I These are 

'PI = x3 + 12t, 

'P2 = (x6 + 6Otx3 
- nOt 2)/x, (1.17) 

etc. 
On the other hand, with the solution 

'Po = ~ + bl, b = A + !, ( 1.18) 

an application of ( 1.13) and (1.14) obtains 

'PI = e2~+b1 + 2cd(x - 2t) - d 2e- x- b'. (1.19) 

The continued iterative application of (1.13) and (1.14) 
produces solutions that are rational functions of ~ + bl, x, 
and t. The "secular" terms in (1.19) will vanish only ifd orc 
vanishes. Say, d = O. But in this case 'PI = c2'Po or 'PI is a 
fixed point of the BT 

( 1.20) 

'Pn + 1,1 + 'Pn,1 _ ('Pn,xx)2 4 a 2 I + ., ~ 
--- -- - -- - -2 n 'Pn oUL. 

'Pn + I,X 'Pn,x 'Pn,x ax 
(1.21) 

Since we do not find the usual N-soliton solutions by a 
straightforward, iterative application.ofthe BT, we propose, 
instead, to study the periodic fixed points ofthe BT (1.20), 

2647 J. Math. Phys. 27 (11), November 1986 0022-2488/86/112647-10$02.50 @ 1986 American Institute of Physics 2647 



                                                                                                                                    

(1.21). That is, we define Eqs. (1.20) and (1.21) with 

n = 1,2,3,4, ... ,mod(N). (1.22) 

The periodic fixed points continue to define a strong Back
lund transformation of Eq. (1.1). That is, the integrability 
conditions 

q:; n + I,XI = q:; n + I,IX ( 1.23) 

continue to imply that q:;n satisfy Eq. (1.1) and, by the peri
odicity mod(N), the set {q:;n, n = 1,2, ... ,mod(N)} are solu
tions of 0.1 ). Therefore, it is enough to solve (1.20) and 
then fix the time-dependent constants of integration by 
(1.21 ). 

The period three fixed points satisfy the system of equa
tions: 

q:; Ix = q:; V q:;3x' q:;2x = q:; i I q:; lx' q:;3x = q:; U q:;2x' 
(1.24 ) 

It is not difficult to show that Eqs. (1.24) with 

( 1.25) 

are equivalent to a Hamiltonian system and each €j will sa
tisfy the equation 

~ =C(€-b)2_4a€, (1.26) 

which defines € as a Jacobi elliptic function. Also, each q:;j 
will satisfy the equation 

q:; !/2 = bq:;q:; ;/2 + e - bx/2q:; + aebx/2, 

and, when b = 0, Eq. (1.27) is 

i'" ds x+c= . 
o (S3 + a)2/3 

( 1.27) 

( 1.28) 

Equation ( 1.28) defines a conformal mapping from the inte
rior ofa circle of radius Iqll/3 in the q:; plane into an equilater
al triangle in thex plane. On the other hand, when the modu
lus in Eq. (1.26) is 1, the usual one-soliton solution for the 
KdV equation is found. 

Before considering the periodic fixed points for the KdV 
equation, we note the following remarks. 

Remark 1: In general, it is to be expected that the fixed 
points of a BT of an integrable system themselves define 
integrable systems of finite degree. The degree of the system 
(number of arbitrary constants in the solution) equals the 
order of the fixed points. 

Remark 2: When the order of the fixed point approaches 
infinity we expect that the solutions of the associated systems 
are "dense" in the manifold of solutions of the original sys
tem. 

Remark 3: There may exist analogies between the fixed 
points of mappings and the fixed points of Backlund trans
formations, especially as regards their stability to perturba
tion. 

II. PERIODIC FIXED POINTS AND THE KdV EQUATION 

Consider the periodic fixed point of the Backlund trans
formation (1.20) of order N: 

q:;j + I,x = q:; J I q:;j,x' 

where 

j = 1,2,3, ... ,mod(N). 
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(2.1 ) 

(2.2) 

We define the variables 

€j = q:;jX I q:;j' 
6· e ] = €j, 

V; = q:;jxx I q:;jx' 

and find from Eq. (2.1) the equations 

€j+ I,xl€j+ I + €jXI€j = €j - €j+ 1> 

() +() 
_ 6j 6j + 1 j+ I,x j,x - e - e , 

V;+ I,x + V;,x =!( VJ - VJ+ I)' 

where, from (2.1), 

V;+ I + V; = 2(q:;jx1q:;j) = 2€j = 2e
6j

• 

Next, define the N by N matrices 

o 
0 0 0 

0 0 
A= 

0 0 

0 1 

-1 0 

0 -1 0 0 

0 0 1 -1 
B= 

0 '. '. 0 

-1 

-1 

It can be shown that 

det B = IB I = 0, 

(2.3 ) 

(2.4 ) 

(2,5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

for all N and the one-dimensional null space of B is spanned 
by the N-vector 

(2.13 ) 

Also, 

IA I =0 (2.14 ) 

for N = 2k and A has a one-dimensional null space spanned 
by 

-1 

-1 

-1 

Finally, for N = 2K + 1, 

IA 1#0, 
and 

A-I=!(l+!l), 

where 

John Weiss 

(2.15 ) 

(2.16) 

(2.17) 
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0 -1 -1 1 

0 -1 1 -1 

-1 0 -1 

0= 
-1 0 -1 

-1 1 -1 0 

-1 1 -1 

is a (2K + 1,2K + 1) antisymmetric matrix 

ot= -0, 

with 

10 1=0. 

-1 

(2.19) 

(2.20) 

The one-dimensional null space of (2.18) is spanned by the 
(2K + 1) vector 

and it can be shown that 

0=A-1B. 

Now, define the N-vectors 

A _( ~:) V- . , 

VN 

A _(::) 0- . , 

ON 

and 

Then, using (2.2), (2.8), (2.10), and (2.11), 

(2.21) 

(2.22) 

(2.23 ) 

(2.24) 

(2.25) 

(2.26) 

and similar equations for (2.6) and (2.7). For even N = 2K, 
A and B are singular and the contraction ofEq. (2.26) with 
the null vectors (2.13) and (2.15) obtains the conditions 

a N 
(i) - L Jj = 0, (2.27) ax 1 
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-1 

1 

-1 

1 
-1 

1 

-1 
1 

-1 

-1 
o 

K K 

(ii) L Vij_l = LVii' 
j= 1 j= 1 

(2.18 ) 

(2.28) 

For odd N = 2K + 1, A is invertible and, using (2.17) and 
(2.22), we find the equations 

and 

From (2.9), (2.10), and (2.7), 

and 

In this paper, we will require that 

N=2K+l 

(2.29) 

(2.30) 

(2.31 ) 

(2.32) 

(2.33 ) 

(2.34) 

and show that Eqs. (2.29)-(2.31) are completely integrable 
K-dimensional Hamiltonian systems with K integrals (and 
one Casimir) in involution. 

From (2.29) and (2.30), 
A 

Vx =OVV H 3 , 

OX = OVii JI> 

where 

John Weiss 
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(2.36) 
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N 

J\= L e'\ 
j~\ 

(2.38) 

(2.39) 

Using the notation of Ref. 4, .0., being a constant coefficient, 
antisymmetric matrix, is cosymplectic and Eqs. (2.35) and 
(2.36) are Hamiltonian systems. Furthermore, the Hamilto
nian systems (2.35) and (2.36) are connected by an inverti
ble "Miura" transformation (2.32), (2.33), which may be 
written as 

(2.40) 

It is a result of Ref. 4 that if two Hamiltonian systems, 

Ux = n\VU H\, 

Wx =n2V W J\, 

are connected by a Miura transformation 

eIJ, 

0 

V~J\ = 
2 

0 o 

VVE= !A, 

(2.41) 

(2.42) 

o 

and 

VwU= VwB, 
VuW=VuC, 

then the forms 
A- A-

n; = (V W B)n2 (V wB)*, 

n~ = (VuC)n\(VuC)* 

(2.43 ) 

(2.44) 

(2.45 ) 

are cosymplectic for Eqs. (2.41) and (2.42), respectively. In 
effect, this obtains the dual-Hamiltonian formulation for 
Eqs. (2.41) and (2.42) and the recursion operators for the 
functional gradients of the conserved quantities 

n\vuHj+\ =n;VUHj' 
.0.2 V w Jj+ \ = n~ V w Jj" 

(2.46) 

We refer the reader to Refs. 4-6 for further information. 
For Eqs. (2.29)-(2.31), using theformula 

Vii V = (I + n)V~ J\, (2.47) 

(2.48 ) 

(2.49) 

(2.50) 

and the above result, the recursion operators for the gradients of the integrals of Eqs. (2.29)-(2.31) are 

(2.51) 

(2.52) 

(2.53 ) 

where 

o 
Mv = (I + .0.) .0. (1- .0.), (2.54 ) 

o 

Mil = AnA * (2.55 ) 
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0 -1 0 

0 -1 

0 1 =BA * =A *B= 
0 o . -1 

-1 

In general, the forms (2.54)-(2.57) are cosymplectic and 
singular, since 101 = O. Also, since 0 is singular the systems 
(2.29)-(2.31) have "Casimir" invariants 

N N N 

HI=L~' Jo=LOj' Hi=L€j· 
j= I j= I j= I 

We note the following results: 

OVV H 3 = MvVv HI' 

OVvHI=O, 

OVi} Jo = Mi} Vi} J I = 0, 

0IVEHi =0. 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

It is somewhat nontrivial to solve (2.51 )-(2.53) for the inte
grals since the operators involved are singular. To do so re
quires a fairly detailed analysis to arrive at the result. 

Theorem 1: For the Hamiltonian systems, 

VX =OVV H 3, 

Ex = OIVE Hi, 

there are K integrals 

H3,Hs,···,H2K+ I' Hi,H;,···,HiK+ I' 

and one Casimir integral 
N N 

(2.63a) 

(2.63b) 

(2.64) 

HI = L~' Hi = L€j· (2.65) 
I I 

The integrals are 
N 

H2K + I = II (~+ ~+I)' (2.66) 
j=1 

N 

HiK+ I = II €j' (2.67) 
j=1 

H2K+I-2m = (lIm!)( -.Il)moH2K+I' (2.68) 

HiK+ I-2m = (lIm!)L m ° HiK+ I' (2.69) 

for m = 0,1,2, ... ,K, where 

N a2 
.Il= L -2' (2.70) 

j= I aVj 
N a2 

L = - L (2.71) 
j= I a€j a€j+ I 

Furthermore, the integrals are in involution. That is, 

2651 

(Vv H 2j+ I)' ° OVv H 2I + I = 0, 

(VE Hij+ I)' ° OIVE Hi/+ I = 0, 
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(2.72) 

(2.73) 

0 

0 

1 

0 

(2.56) 

-1 

0 

(2.57) 

for (j,i)E(O,I, ... ,K). Also, (H2j+ I ,H ij+ I) are homogen
eous of degree 2j + 1. That is, 

A 2'+1 A H2j+ I (A V) = A J H2j+ I (V), 

H ij+ I (AE) = A 2j+ IH ij+ I (E), 

forj = 0,1,2,3, ... ,K. 
Finally, 

MvVVH2K+ I = 0, ME VE HiK+ I = 0, 

which implies that 

OVv H2K +3 = OVv HI = 0, 

OIVE HiK+3 = OIVE Hi = 0, 

(2.74) 

(2.75) 

(2.76) 

and, in terms of the recursion operators (2.51) and (2.53), 
the integrals (H2j+ I ,H ij+ I; j = 0,1, ... ,K) provide a basis 
for their solutions. 

To begin, it is enough to solve one of the sequences 
(2.51)-(2.53) since the results for each follow by a change 
of variable. For instance, 

Mv = (/ + O)ME{/- 0), 

VE = {/- O)Vv, 
where 

E=!AV. 
Now, consider the sequence 

(2.77) 

(2.78) 

Oh2n +1 =MVh2n_1> (2.79) 

where the h2j+ I areN-vectors (not necessarily the gradients 
of integrals) and 

(2.80) 

Since 0 is singular with null vector (2.80), the right-hand 
side of (2.79) must be orthogonal to (2.80), for every n, to be 
solvable. That is, 

h~ oOh2n +1 =h~ oMy h2n _ 1 =0. (2.81) 

However, using the antisymmetry of Mv and induction on n, 

h ~ ° M yh2n _ I = - h2n _ I ° My hi = - h2n _ I ° Oh3 

=h300h2n_1 =h30Mvh2n_3' (2.82) 

and after j steps 
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h~ oMv h2n _ 1 = -h2n_I_2j Onh2j+3 

=h2j+30Mvh2n_3_2j' 

which vanishes identically when 

j = (n + 1 )/2 or j = n12. 

(2.83 ) 

(2.84) 

Therefore, the sequence (2.79) beginning from (2.80) exists 
(although it is not unique). An identical argument, using the 
identity 

(2.85) 

to raise or lower indices, establishes that the "symmetries" 
{h2j + I } are in involution: 

h ~m + I 0 nh2n + I = o. (2.86) 

Since 

Vx = nvv H3 = MvVv HI' (2.87) 

the symmetries {h 2j + I }, which are the gradients of func
tions, will obtain integrals of (2.87) that are in involution. 

To find the integrals it is convenient to consider the se
quence (2.53). Let 

N 

H 2K + 1 = II Ej • 
j=1 

Then 

ME V E H2K + I = O. 

(2.88) 

(2.89) 
I 

To see this, note that for every j, j = 1,2,3, ... ,N, where 
N=2K + 1, 

a 
Ej -H2K + 1 =H2K + 1· 

aEj 

Therefore, 

and 

where 

Now, define the operator 

(2.90) 

(2.91 ) 

EN 
)

nVEHI =0, 

(2.92) 

(2.93) 

N a2 
L = - L' (2.94) 

j= I aEj aEj+ I 

and apply the operator m times to (2.90) to obtain the iden
tity 

a Lm H L m H a ( a + a )Lm-10H Ej - 0 2K+I = 0 2K+I +m-
a 

-a-- -a-- 2K+1> 
aEj Ej Ej _ 1 Ej+ I 

(2.95 ) 

for eachj = 1,2, ... ,mod(N). Therefore, 

where 

a 
D.=-

J aE.· 
J 

Lm-IoH2K+I' (2.96) 

From the definition of n, (2.18), the first term on the rhs of (2.96) vanishes when applied to n and the second term obtains 

L m - I 0 H2K + I. (2.97) 

From (2.95), 
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€j Dj ( -Dj_ 1 +Dj+ I )Lm-I 0 H2K+ I (2.98) 

= ( - Dj _ I + Dj+ I )€j Dj L m - I 0 H2K + I 

= (-Dj_ 1 +Dj+ I ){L m-I 0 H2K+ 1+ (m - I)Dj (Dj _ 1 +Dj+ I)L m-2 0 H2K+ I} 

= ( - Dj _ I + Dj+ I )L m - I 0 H2K + I + (m - 1 )Dj ( - D] _ I + D] + I )L m - 20 H2K + I 

= (-Dj _ 1 +Dj+I)Lm-1 o H2K+ I> (2.99) 

since 

(-D]_I +D]+I)Lm-20H2K+I 

=L m- 2( -D]_I +D]+I)H2K +I =0. (2.100) 

Combining (2.99) and (2.97), 

0IVEL m-I 0 H2K+ I = (llm)ME VEL m 0 H2K+ I' 
(2.101 ) 

where 0 1 is defined by (2.56). Therefore, by induction on m, 

H~K+I-2m = (lIm!)Lm o H2K +I, (2.102) 

for m = 0,1,2, ... ,K, will satisfy the recursion relation 

OIVEH~K+ 3 -2m = ME VE H~K+ I-2m' 

for m = 1,2,3, ... ,K. Furthermore 

Hi =_I-LKoH2K+1 = (_I)K f €j 

K! j=1 

and 

(2.103) 

(2.104) 

0IVEHI=MEVEH2K+I =0. (2.105) 

Equations (2.105) and (2.103) show that, in spite of the 
non uniqueness of solutions of the recursion (2.103), the in
tegrals (2.102) provide a basis for the solution of (2.103) in 
that this set of integrals is closed under the recursion 
(2.103). The general solution of (2.103) can be found by 
adding an arbitrary function of H I to a H ~j + I at each step of 
(2.103) (since the gradient of HI is in the null space of 0 I) 
and allowing for the effect of this addition under the recur
sion (2.103). 

It is immediate that 

H ' (1~) 12j+IH' (~) 
2j + I A€ = A 2j + I € , (2.106) 

forj = 1,2,3, ... ,K. 
By the previous remarks the {H ~j+ I; j = 0,1,2, ... ,K} 

define (K + 1) integrals in involution and, by construction, 
these integrals are independent. Thus, (2.63b) is a K-dimen
sional completely integrable, Hamiltonian system with one 
Casimir integral. 

After the change of variable [ (2.77) and (2.78)] and a 
convenient scaling, we find that 

N 

H 2K + I = II OJ + JtJ+I)' 
I 

H2K+I-2m = (lIm!)( -A)moH2K+1> 

where m = 0,1,2, ... ,K and 

(2.107) 

(2.108) 

N a2 

A = L-' (2.109) 
I aV] 

are (K + 1) independent integrals of (2.63a) in involution, 
satisfying the recursion (2.51). The properties of (2. 63a) 
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I 
follow directly from those of (2.63b) and will not be repeat
ed. 

We note that, as defined by (2.108), 

which is not identical to (2.37), where 

H ~ = 1-L V]. (2.111) 
6 

However, except for a possible difference in sign, 

(2.112) 

and insofar as the dynamics of (2.35) and (2.63b) is con
cerned there is no difference. 

We tum next to the time dependence of the fixed points. 
Theorem 2: For the modified KdV equation 

V, +~ (Vxx _1- V3
) =0, ax 2 

(2.113 ) 

the order N = 2K + 1 periodic fixed point of the Backlund 
transformation is determined by the commuting (complete
ly integrable) Hamiltonian systems 

(2.114) 

A 

V, =OVvH'5=MvVvH~, (2.115) 

where 

H~ = 1- f VJ. (2.116) 
6 j= I 

Remark 1: The H '5 of (2.115) is not the H5 of (2.108) 
but differs by a constant multiple of HiH3 [as defined by 
(2.108) ] . The time dynamics determined by H5 is equivalent 
to a partial Galilean transformation (t-+t,x-+x + ct) ofEq. 
(2.113). 

To see (2.115) we can begin from the BT 

rpj' + rpj+ I x + 4 ~ (rpjx) = (rpjXX )2 
rpjx rpj + I x ax rpj rpjx 

(2.117) 

or directly from 

(2.118 ) 

and use (2.114) to find that 
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v =~ 1 
, 2 2 

o 

where we use the identity 

o 

Let 

1 
O2 =-

2 

We show that 

M V =02· 

Using 

-0 

o 

1 
0+-0 

2 

o 

1 
0+-0 

2 

O=~ 0 
2 

o 

A-l=~(l+O), A*-'=!(l_O), 

o 

o 

-0 

O=A-'B, !lA*= -B*, 02=~(l+0)03(l-0), 

where 

o 

o 

o 

o 
O. 

o 

(2.119) 

(2.120) 

(2.121) 

(2.122) 

(2.123 ) 

(2.124 ) 

1 
03=-B 

2 
B*+B B*. (2.125) 

o o o 

It is straightforward to find 

o 
H V2 + V3 

)
O(VI + V20 

(2.126 ) 

VN + VI 

and 

02=Mv , 

which establishes (2.115). 
Remark 2: The system (2.114) is a scale-invariant 

Hamiltonian system of the type studied by Yoshida. 7 That is, 
(2.114) is invariant under the scaling 

A A 

X---+a-1X, V---+aV. (2.127) 

By a leading order analysis 

V_X-1C, (2.128) 
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I 
it can be shown that there is an N-vector c, 

c = (2,4,6,8, ... ,2K,·- 2K, - 2K + 2, ... , - 2,0)', 
(2.129) 

and resonances 

r = - 2K + 1, - 2K + 3, ... , - 1, 1,3,5, ... ,2K + 1. (2.130) 

By Ref. 7 the resonances {1,3, ... ,2K + 1} correspond to the 
homogeneous invariants {H2i+ l;j = 0,1, ... ,K}. 

In a somewhat different direction, the general system 
(2.26) (for arbitrary N) has a commutator representation 
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that is related to the factorization method of Infeld and Then 
Hull. 8 Define the "raising" and "lowering" operators 

L/ =D+~Jj, (2.131) 

L j - =D-!Jj, (2.132) 

where D = a/ax and the N by N matrix operators 

A L
I
+ 

0 A L+ 
2 0 

L;,. = , (2.133) 

0 LJ_I 
L+ 

N A 

0' Lii_1 

L-
I 0' 0 

M= a L 2- (2.134) 

0 

0' 

o 

o 

M N = 
o 

From (2.135), or directly using (2.136), the pair of scalar 
operators 

P=LtL 2+ "'LJ, Q=LiiLii_1 "'L I-, (2.142) 

and other associated pairs, commute: 

PQ=QP. (2.143 ) 

Althoughdeg(P) = det(Q) = N (not relatively prime), the 
operators (P,Q) will, according to Burchnall and Chaundy,9 
satisfy an algebraic identity of degreeN, or less, in (P,Q). We 
note that 

L * = - M, Q * = ( - 1 )Np. (2.144) 

For N = 3,5, we have found that the matrix operators 
(L,M) satisfy 

L 3 -M 3 =h l (LM) +h3, 

L S - M S = h l (LM)2 + h3 (LM) + hs, 

(2.145) 

(2.146) 

where the h2j + I are integrals of (2.137), homogeneous of 
degree (2j + 1). 

The modified KdV sequence is defined to bel 

V, +L';, 0 Vx =0, 

where n = 0,1,2, ... and 

2655 J. Math. Phys., Vol. 27, No. 11, November 1986 

(2.147) 

L;,.Ma=MaLA 

if and only if 

forj = 1,2,3, ... ,mod(N). Condition (2.136) is 

Jjx + Jj+IX =!(VJ- VJ+I)' 

which is 

(
V2) I 

AI. 
AV =-B . x 2 ., 

V 2 
N 

(2.135) 

(2.136) 

(2.137) 

(2.138) 

or, Eqs. (2.26). When N = 2K + 1, (2.138) is the system 
(2.114). With 

L=L;,. -AI, M=Ma -0'1, 

it can be shown that 

(2.139) 

(2.140) 

(2.141 ) 

(2.148 ) 

We conjecture that the time dependence of the periodic fixed 
points evolves according to the system 

V, = nv v H ~n + 3' (2.149) 

for n = 0,1,2,3, ... , and where 

(2.150) 

The H ~n + 3 are suitable integrals of (2.150), homogeneous 
of degree 2n + 3. With N = 2K + 1, we have found pre
viously (2.105) that 

(2.151 ) 

or, for the (2K + 3) MKdV flow associated with H2K + 3' 

V, =0. (2.152) 

Therefore, if the conjecture is verified, the evolution of the 
fixed points occurs on a manifold of steady state solutions of 
a higher-order equation (a Lax-Novikov equation) and the 
theory of periodic fixed points of Backlund transformation 
is, in this sense, equivalent to the theory of the finite-zone 
potentials. 10,11 

John Weiss 2655 



                                                                                                                                    

ACKNOWLEDGMENTS 

This work was supported by the Air Force Office of 
Scientific Research Grant NO.AFOSR 84-0128. 

IJ. Weiss, J. Math. Phys. 25,13 (1984). 
2E. Hille, Ordinary Differential Equations in the Complex Plane (Wiley, 
New York, 1976). 

3J. Weiss, J. Math. Phys. 24,1405 (1983). 

2656 J. Math. Phys., Vol. 27, No. 11, November 1986 

4B. Fuchssteiner and A. S. Fokas, Physica D 4, 47 (1981). 
5A. S. Fokas and R. L. Anderson, J. Math. Phys. 23,1066 (1982). 
6B. A. Kupershmidt and G. Wilson, Invent. Math. 62, 403 (1981). 
7H. Yoshida, Celestial Mech. 81, 363, 381 (1983). 
8L. Infeld and T. Hull, Rev. Mod. Phys. 23, 21 (1951). 
9J. L. Burchnall and T. W. Chaundy, Proc. R. Soc. London A Ser. 118, 557 
(1928). 

lOp. D. Lax, Commun. Pure Appl. Math. 28,141 (1975). 
III. M. Gelfand and L. A. Dikii, Integrable Systems, edited by S. P. Novikov 

(Cambridge U. P., London, 1981), p. 13; B. A. Dubrovin, V. B. Matveer, 
and S. P. Novikov, ibid. p. 53. 

John Weiss 2656 



                                                                                                                                    

On the stable analytic continuation with a condition of uniform boundedness 
I. Sabba Stefanescu 
Institutfiir Theoretische Kernphysik, Universitiit Karlsruhe, Karlsruhe, West Germany 

(Received 11 November 1985; accepted for publication 2 July 1986) 

It is shown that, if h (x) is any continuous function defined on some interval 
[ - a,b] C ( - 1,1) of the real axis, then, in general, its best L 2 approximant, in the class of 
functions holomorphic and bounded by unity in the unit disk of the complex plane, is a finite 
Blaschke product. An upper bound is placed on the number off actors of the latter and a 
method for its construction is given. The paper contains a discussion of the use of these results 
in performing a stable analytic continuation of a set of data points under a condition of 
uniform boundedness, as well as some numerical examples. 

I. INTRODUCTION 

In this paper, we consider the following problem: (A) 
let h(x) be a continuous function defined on the segment 
[-a,b]C( -1,1), andp(x) an increasing function with 
normalized bounded variation defined on the same interval. 
The distance from h (x) to another continuous function 
I (x) on [ - a,b] is measured by 

X 2(p;h-f) = f~}h(X) -/(xWdp(x). (Ll) 

Let further H R (D) be the set off unctions real holomorphic 
in the open unit disk D: Izl < 1 (z = x + iy) and uniformly 
bounded there, with the norm 

11/11", =supl/(z)l· 
Izl <1 

( 1.2) 

The question is to show the existence and to describe that 
element of H R (D) which realizes 

X~in (p;h) = inf{x2 
( p;h - f): leB R (D), 11/11 00 ,1}, 

(1.3 ) 

i.e., the best L 2( P )-approximant of h(x) in terms offunc
tions of H R (D), bounded by unity inside D. 

In Sec. II, we shall argue that the situation X~in > 0 is in 
a certain sense the usual one. Then, if a number of xi exists 
so that X~in > xi > 0, we show that (i) the unique function 
on which the infimum is attained is a finite Blaschke product 
and (ii) an upper bound may be placed on the number of its 
factors, dependent on h (x) and xi. An estimate of xi may be 
obtained from the solution of the related H 1 problem: (A') 
find 

X~in,2 (p;h) = inf{x2 
( p;h - I): IEH1 (D), IlfIl2,l}, 

(1.4) 

where H1 (D) is the analog of H R (D) with the norm 

1I/IIi=-l !1/(ei8 )1 2 dO. 
. 21T j 

( 1.5) 

The problem (A') is explicitly solvable (see Sec. IV for a 
reminder) and, since the infimum in (1.4) is taken on a 
larger set, it is true that 

X~in,2 (p;h)'X~in (p;h) , (1.6) 

Therefore, if X~in,2 ( p;h) > 0 (which is the usual situa-

tion), we do obtain an upper bound on the number of factors 
ofthe Blaschke product in the solution of problem (A), de
pending only on the "data function" hex). In Sec. III we 
shall show, however, even more, i.e., there exists a nice con
nection between, roughly speaking, the dual extremal prob
lem that arises in relation to (A') and the dual problem relat
ed to CAl. This allows us to set up an algorithm for the 
determination of the extremal element of (A), which avoids 
resorting to an opaque and cumbersome minimization in a 
space of Blaschke parameters with dimension equal to the 
bound mentioned above, We reduce, namely, the problem to 
that of solving a certain nonlinear equation for which the 
convergence of an algorithm related to the Newton-Kan
torowich procedure may be completely analyzed (see Secs. 
III and VI and Appendix C). 

The fact that the function realizing the extremum (1.4) 
is a finite Blaschke product if X~in > 0 was derived by differ
ent means (using the Schur-Pick-Nevanlinna interpolation 
theory) in Ref. l, for the case of a piecewise constant weight 
function p (x) with N jumps. It was shown there that the 
extremal product consists of at most N Blaschke factors. The 
present paper provides a refinement in that, for large N, it 
turns out that the number off actors does not increase indefi
nitely, as long as X~in (p;h) stays larger than any given xi 
>0. 

The argument we present concerning the existence and 
uniqueness of the finite Blaschke product that realizes (1.3) 
rests upon (a slight generalization of) a theorem of Rogo
sinski and Shapiro (Ref. 2), concerning the extrema oflinear 
functionals defined over Hoo (D) (see also Ref. 3 for a relat
ed treatment). In Sec. II we repeat the reasoning of Ref. 2 in 
the present setting, both for the convenience of the reader 
and because several of its intermediate steps are of further 
relevance to this paper. 

The interest in the solution of problem (A) is in the first 
place of a mathematical nature; it provides an example of a 
rather complicated looking extremal problem (of a mixed 
H2_Hoo type) whose solution always lies in a finite-dimen
sional class off unctions. In fact, the results stated above may 
presumably look more surprising if they are formulated as 
follows: Consider any real analytic function/o(z), holomor
phic and bounded by unity in the unit disk and let it be affect
ed by errors on some interval [ - a,b] of the real diameter of 
the disk, in such a way that one obtains a (continuous) func-
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tion h (x), which admits of no analytic extension to Izl < 1. 
Then, look for the best fitto h (x) in the class II I 1100 < I: one 
always obtains a Blaschke product as a result and never the 
original/o, regardless of the manner in which the errors have 
been distributed. 

There are also other reasons for studying question (A): 
its solution allows an answer to the following problem (B): 
let S(Yo;h) be the set off unctions I in H'R (D) obeying 

X2 (p;h -/)<X6 , (1.7) 

for some X6 > O. One is required to show the existence and 
describe that element of H 'R (D) which realizes 

Mo(Xo;h) =infll I II 00 =inf sup I/(z) I 
Izl < I 

(1.8 ) 

over all I in SeX o;h). 
The solution 10 (z) of problem (B) provides a stable 

analytic continuation ofthe data hex) to the whole interior 
of the unit disk (see Refs. 4-6 and also Sec.\ VI of this paper) . 
Usually, for such applications, p(x) is a piecewise constant 
function, with jumps equal to l/NC; at the points 
X;E[ - a,b], where E; is the estimated error of the measure
menth(x;) atx; ofa certain function lo(z), holomorphicin 
D. The most well-known instance in high energy physics 
where such an extrapolation is required is presumably the 
Chew-Low-Goebel extrapolation of the 11'N ..... 11'11'N differen
tial cross section to the (second-order) pion pole.7

,8 To be 
sure, there exist other, simpler, methods to achieve the same 
end: one of them is to map the unit disk onto the natural 
domain of convergence of a series of polynomials (Refs. 9 
and 10), orthogonal on the image of [ - a,b] and truncate 
the series suitably (see also Ref. 11). Also, methods that are 
numerically very successful have been developed for the situ
ation when the stabilizing condition II III 00 < 1 is replaced by 
the condition II/lb<l, or variants of it (Refs. 12-14). 

It is of interest to consider also modifications (Ae), 

(Be) of problems (A) and (B): one looks for the extrema 
(1.3) and (1.8) under the ne supplementary conditions 

I (XO,i) =/0;; , (1.9) 

for some points {xo,J 7~ 1> lying (in general) outside 
[ - a,b], and fixed, given values/o,;. 

The solutions of problems (Ae) and (Be)' for ne = 1 
may be used to give a numerical answer to the following 
question (C): given a point x outside [ - a,b], find all possi
ble values assumed at x by functions/(z) in S(Xo;h) n{f 
IEH'R(D), 11/1100 <t}. This problem [withp(x) piecewise 
constant] has received attention over the past decade in rela
tion to the interpolation of the spacelike data on the pion 
form factor F'IT (t).1,l5,16 Measurements in the timelike re
gion provide a bound M(t) to F'IT (t) and the problem of 
finding the allowed values of F'IT (t) at some point t I < 0 out
side the (spacelike) data region may be reduced to (C), after 
dividing off an outer function 

1 f ei
() +z E(z) =exp- -.--lnM(O(t»)dO', 

211' e'() - z 
(LlO) 

wherez = z(t) is a well-known conformal mapping. I In fact, 
the form factor is constrained by F'IT (t = 0) = 1 and then 
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problem (C) may be reduced to (Ae) and (Be)' with 
ne = 2. 

A problem similar to (A) and (B) above was consid
ered in Ref. 17. There, the set off unctions F(z) was consid
ered, with F(z) represented as 

F(z) =~ (II l(t) dt, (Lll) 
11' Ja t - Z 

where I (t) is real, and we looked for the smallest possible 
value of X2( p;h - F), defined over a data region outside 
[a,.8] , among all F(x) satisfying (1.11) with 

11I111 = f: 1/(t) Idt<A, (Ll2) 

for a given A. It turned out that, if X~in (p;h) > xi > 0, then 
the extremal function is made up of a finite number of {j
functions and a bound, depending on h (x) and xi , was de
rived for the number of the latter. The proofs in Sec. IV of 
this paper bear some similarity to those of Ref. 17 but are 
more involved. 

A recent study exists l8 concerning problem (C) above, 
with the distance (1.1) between functions on [ - a,b] re
placed by the uniform norm. For arbitrary h (x), this form of 
the problem is considerably harder than the one of this pa
per. The authors solve it completely in the special case 
h(x)=O and show that, as in problem (C) of this paper, 
Blaschke products realize the extreme allowed values at a 
given x outside [ - a,b]. They are also able to make definite 
statements concerning the location of the zeros of these par
ticular Blaschke products, which turn out to be a natural 
( and surprising) generalization of the Chebyshev polynomi
als. 

The present paper is organized as follows. In Sec. II, 
after a short geometrical discussion, we derive the an
nounced result concerning problem (A): the extremal func
tion is a finite Blaschke product. In Sec. III, we discuss the 
determination of the sets 11/1100 < 1 and 11/112< 1 in terms of 
their supporting hyperplanes and obtain, essentially, a de
scription of the former set by means of the latter. This allows 
us to reduce the solution of (A) to that of a nonlinear inte
gral equation. Further, using geometrical and function theo
retical arguments, we show that the operators appearing in 
this equation have pleasant differential properties (in parti
cular, their Frechet derivative is, in general, invertible). In 
Sec. IV, we derive the bound announced above concerning 
the number of zeros of the extremal Blaschke product. Sec
tion V extends the results ofSecs. II-IV to the case when the 
values of the extremal function are prescribed at some points 
[problems (Ae) and (Be)]. In Sec. VI, we discuss the basis 
of the numerical solution of problems (B) and (C) and, 
finally, in Sec. VII, we present some numerical examples and 
conclusions. 

Appendix A extends the geometrical discussion of Sec. 
II and establishes a relation between a solution of problem 
(C) with X~in = 0 and the methods of this paper where X~in 
> O. Appendices Band C are complements to Sec. III and V 
and Appendix D discusses the convergence of the algorithms 
used for the solution of the integral equations ofSecs. III and 
V. Appendix E removes an assumption made for simplicity 
throughout the text. 
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II. THE DESCRIPTION OF THE EXTREMAL FUNCTIONS 

We shall describe the functions realizing the extremum 
( 1.3) in the family 

,7a,,,,, -=={fleH;(D), 11/11"" ..;a}(=,7a) (2.1) 

with a = 1. The generalization to arbitrary a is obvious and 
will be used in Sec. VI. It is advantageous to distinguish 
between ,7 a, "" and Y a, "" (=Ya ), the image of ,7 a,oo in 
L 2( p) by the inclusionHR (D) CL 2( p). Ifp(x) is of finite 
type (i.e., has only N points of increase), two distinct ele
ments of,7 a need not be distinct in Y a • We suppose that 

X~in (p;h) #0. (2.2) 

This condition requires some comments. 
Assume first that p(x) has on some interval (a', 

b ') C ( - a,b) a strictly positive derivative. Then, condition 
(2.2) means that no extension of hex) outside the points of 
increase of P (x) leads to a function in ,7 I' The question is 
how likely is this situation. To this end, we notice that every 
I (x) in ,71 may be approximated arbitrarily well in the 
sense of the norm ( 1.1 ) by functions continuous on [ - a,b] 
and lying outside YI> e.g., by modifying/(x) and (a',b') to 
broken lines joining points (Xi,f (Xi»), (Xi + I ,f (Xi + I »), 
a' <Xi <b' . Thus, Y I does not contain any ball S(Xo;f) 
centered at f, no matter how small X o' On the other hand, 
we shall show below that Y I is closed with respect to the 
convergence generated by ( 1.1 ); therefore, any point outside 
it has a neighborhood disjoint from Y I' It is in this sense that 
we state that condition (2.2) is fulfilled with a large chance 
(generically). Intuitively, we may state that the noise in the 
data, although it respects the continuity of the measured 
function in our case, destroys the fine correlations implied by 
analyticity and boundedness. 

If (2.2) is violated, i.e., X~in (p;h) = 0, then, by the 
uniqueness of analytic continuation, the minimal value of 
X2 ( p;h - I) is attained on one function in ,71' about which, 
of course, nothing more may be said. 

If p (x) is of finite type, let K N be the set of continuous 
g(x), XE[ - a,b], such that X~in (g) = O. We shall argue 
that condition (2.2), i.e., h(x)VY'N is, in some sense, in
creasingly likely as N increases. We show, namely, the fol
lowing (which is a more detailed form of the argument used 
in Ref. 17). 

Let p(x) have an infinite number of points of increase 
on [ - a,b], and letpN (x) be a sequence ofapproximants of 
finite type to p(x), such that (a) the points of increase 
XI,X2, ... ,xN ofpN (x) are included in those ofpN + I (x); (b) 
PN(Xi +0) =p(xi +O),i= 1,2, ... ,N;and (c) asN--+oo, 

sup Ip(x)-PN(x)I-+O. 
)tE[ -- a,b J 

(2.3) 

Further, define, for any IE,7I, 

r [,N =sup{rJ~a(g(X) - I(x)f dPN(x)..;r=}g(x)eJYN} . 

(2.4) 

Then, as N --> 00, r [,N --> 0, uniformly with respect to IE,7I' 
To understand the meaning of this statement, consider 

the set 

2659 J. Math. Phys., Vol. 27, No. 11, November 1986 

Y N = {weR N, W = (WI,W2, ... ,WN ): 

l(xi)=wO i=l, ... ,N, for some/E,7I}, (2.5) 

i.e., the set of possible values assumed atx l ,x2, ... ,xN by func
tionsjE,7I' We may identify Y N with Y I if we use the 
isomorphismofL 2(PN) withRN

. Equation (2.4) is theradi
us of the largest ball contained in Y N, and centered at the 
point {/(x i )}f= I' 

To prove the statement, we shall show that, for any 
E>O, we can find No(E) such that, for N;;.No(E) and for any 
lEY I' the ball of radius E centered at I contains points lying 
outside Y N' Indeed, we choose first NI (E) so that the left
hand side of (2.3) is less than E/16 for N;;.NI(E). Assume 
then that P Nt + I (x) has a point of increase x between x k and 
Xk + I . Let then No(E) = NI (E) + 1 and define 

g(x) =/(x), for x";xk or x;;.xk+ I 

= I (x) + (f (x) + 3)(x - Xk )/(x - xk ), Xk <x <x, 

=/(x) + (f(x) + 3)(x -xk+ I )/(x -Xk+ d, 

(2.6) 

Clearly, by the maximum modulus theorem, I I (x) I < 1, so 
that g(x) > 1 and, consequently, g(x)VY' N' for all 
N;;.No(E). On the other hand, for any N;;.No(E) , 

fa(g(X) - I(X»)2 dpN(X) 

..;16(PN(xk+ 1 -0) -PN(Xk +0») 

..;16(p(xk+ 1 -O)-PNt(Xk +0») 

..;16 sup (P(X)-PNt(X»)";E 
-a<x<h 

and this proves our point. 

(2.7) 

Thus, we can state that the body Y N gets increasingly 
flattened as N grows and, for high N, the effect of the noise is 
that the experimental values {hi} yield in general a point in 
RN lying outside .Y N, so that condition (2.2) is fulfilled. 
This remark was made for the first time in Ref. 19 and, in the 
present setting, in Ref. 15; it was used in the work of Refs. 1, 
16, and 20 and was further discussed in Ref. 21 and in Ref. 
17. 

One should mention that the improbable situation 
{h(x i )}f= I E.Y N allows, under special circumstances, an 
elegant treatment of problem (C) of the Introduction. As a 
consequence of Theorem 2.2 of Sec. VI, Ref. 22, if both 
points ~,hERN, with coordinates 

~i =h(xi ) + (_l) iEo hi =h(xi ) + (_l)i+IEi , (2.8) 

belong to .Y N, and XI >X2 >X3 > ... >XN, then one may 
obtain exact upper and lower bounds for the values assumed 
at a point x #Xi by all functions in ,71 obeying 

h(xi ) - Ei <I (Xi) < h(xi ) + Eo i = 1,2, ... ,N (2.9) 

(Ei > 0). Namely, if x <XN ' the upper bound is obtained by 
performing a Pick--Nevanlinna interpolation (explained, 
e.g., in Ref. 15 and 23) of the points hi and letting the final 
free function be equal to + 1 if N is even and - 1 if N is odd. 
The lower bound is obtained from ~i with the free function 
equal to + 1 if N is even/odd. Similar statements are possi
ble if x is situated in a different manner [staying in 
( - 1,1)]. Apart from the statements of Ref. 22, the only 
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information one needs in order to derive these results is the 
positivity of the determinant 

(2.10) 

where P(x,O) is the Poisson kernel 

which makes positivity explicit.25 

In a recent paper (Ref. 26), under the assumptions that 
the point with coordinates {h(x j )}f= I belongs to Y N' and 
that both points €,E, with coordinates {( - 1) j Ej }f= I , 
{( - 1) j + I E j }f= I i; tum, also belong to Y N' the author 
derives upper bounds for the departure of a linear extrapola
tion formula 

N 

I(x) = I Cj(x;xj;Ej)h(xj) , (2.13 ) 
j=1 

where the coefficients C j are specified functions of X,X j ,Ej , 

from the set of values assumed atx by those functions of Y I> 

which obey (2.9) (see Ref. 27). 
Unfortunately, the arguments of Refs. 1,15-17 and 19-

21 as well as the foregoing one show that the "chance" (un
derstood as above) for the conditions of validity of these 
results [i.e., (ii,h)EY N or hEY N' (E,€)EY N] to be met is 
vanishingly small, as soon asN assu~s realistic values (e.g., 
;;:; 5 in the example of Ref. 17). It may be, however, of inter
est to understand the transition between these results and 
those obtained in Ref. 1, when the experimental point 
{h(xd}f= I lies outside Y N' We give a discussion of this 
point in Appendix A. 

Clearly, the arguments for the generality of the condi
tion X~in > ° are not restricted to the special type of norm 
( 1.2) used to define Y I' In fact, such a question arises in 
connection with the construction of a function C(x), which 
reduces the errors Ej of the data points h j to a constant value, 
as proposed in Ref. 28. For two data sets at points {Xj }fl~ , 
{x;}fl~, such that X;_I <Xj <x; <Xj+ I' with errors E and 
2E in tum, the minimal L 2 norm ofRe In C(e j

() is a rather 
large number [of the order of 1014 for a total of 15 points 
distributed equidistantly on ( - 0.5,0.5) ]. 

Before proceeding, we note that, if p (x) has an infinite 
number of points of increase, then Y 1 is convex and closed 
with respect to the distance (1.1). Indeed, if a sequence 
In (X)EY 1 converges in the sense of (1.1) to 10(x)EL 2( p), 
it contains a subsequence Ink (x) that converges pointwise, 
a.e.-p to lo(x), By a form of the principle of uniform boun
dedness (due to Vitali), the sequence Ink (x) converges even 
uniformly on compact subsets of D. The limit function 
lo(x) is thus real holomorphic in D and bounded on any 
compact subset of D by unity. Thus, it is in Y I' 

If p(x) has only a finite number of points of increase, 
then the set Y NER

N
, defined by Eq. (2.5), is convex and 

closed (see Ref. 1). 
In order to have easy reference to results available in 
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1 l-x2 

P(x,O) = - --------:-
21T 1 - 2x cos 0 + X2 ' 

(2.11) 

and 1 >X I >X2 >·· '>XN > -1,0<01 <02 <" ·<ON <1T. 
Imitating the method of Ref. 24, one obtains the recurrence 
relation 

(2.12) 

textbooks of analysis, we take the completion of the space of 
continuous functions with the form (1.1) and obtain thus 
the Hilbert spaceL 2( p). Then, using, e.g., Theorem 4.10 of 
Ref. 29 (p. 83), we conclude that there exists a unique 
10 (x) EY 1 [a unique point P oEY N if P( x) is of finite type] 
on which X~in ( p;h) is actually attained. 

The characterization of the extremal elements of prob
lem (A) is obtained by transforming it to a problem of maxi
mization in the space dual to L 2 ( p ), which, by a well-known 
result (Ref. 29, p. 89, Theorem 4.17) may be identified with 
L 2 ( p) itself. We shall use the notation II . lip and (. , .) p for 
the norm and scalar products obtained from (1.1). The re
sult we need is a corollary of the Hahn-Banach theorem (see 
Ref. 30, p. 58, Theorem 3.4 and Ref. 31, p. 136, Theorem 1) 
and states for our problem 

Xmin (p;h) = sup (n,h)p - sup(n,J)p) , 
Ilnllp<1 Ji=Y, 

(2.14 ) 

where the supremum on the right is attained by some no in 
L 2( p). The essential element in (2.14) is the convexity of 
Y I' Further, we have seen that X min ( p;h) is realized by a 
unique 10EY I ; then, Eq. (2.14) implies 

Xmin = IIh -/ollp«no,h)p - (no,Jo)p<llh -/ollp, 
(2.15) 

where we have used Schwarz's inequality in the last step. We 
conclude that 

and 

sup (no,J) p = (no,J 0) p 
Ji=Y, 

no(x) = (h(x) - 10(x»)/llh - I ollp . 

(2.16 ) 

(2.17) 

This shows that the extremal no(x)EL 2( p) on the right
hand side of (2.14) is also unique. 

We are now able to sketch the main direction of our 
argument (presented in Sec. IV) concerning the bound on 
the number of parameters of the solution of problem (A). In 
the rest of this section, we shall show that, independently of 
the special form of p (x) and for any n (x) in L 2 ( p), the 
functions I (n;x) realizing the supremum in (2.16) are 
uniquely determined in Y I and are finite Blaschke products. 
Consequently, so is lo(z), which realizes X~in' In Sec. IV, 
we prove essentially that, if a sequence {n k (x)} k = I is such 
that the corresponding extremals {/O(x;nk)} have a num
ber of zeros that increases indefinitely, then nk (x) tends 
weakly to zero. Consequently, if X min ( p;h) is realized on a 
function that has a too large number of zeros, Eq. (2.14) 
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implies that it may be unable to stay larger than some num
ber X I' given in advance. This will set an upper bound on the 
number of zeros of lo(x), depending on hex) and XI' as 
announced. Now, following (to some extent) Ref. 2, we 
state the following theorem. 

Theorem 2.1: Let n(x)EL 2( p). There exists a unique 
I(n;z) in 3'1 such that sup{(n,/)p :/eY I } is attained on 
I (n;x) and I (n;z) is a finite Blaschke product. 

Proof: We rewrite, using Cauchy'S theorem 

(n I) = (n -I-f I(eif:i) eif:i dB) 
'p '2 if:i 'IT e -x p 

= _1_ i.. k{n;B)/(B)eif:i dB, (2.18) 
2'IT j 

with 

, Jb n(x) 
k(n;B) = k(n;z = e'f:i) = -'-'f:i-- dp(x) . 

-Q e -x 
(2.19) 

Notice, k{n;z) is holomorphic in the whole z plane, except 
for the line [ - a,b]. The problem is to find the supremum of 
the right-hand side of (2.18), for fixed k(n;B) among all 
I(B), which are boundary values of leY I' (These are de
fined almost everywhere, see Ref. 32, p. 6, Theorem 1.3.) 

We derive the existence and properties of the extremal 
I (n;z) using again duality relations (see, e.g., Ref. 32, 
Chaps. 7 and 8 and Ref. 31, Sec. 5.8). To this end, we recall 
we can identify isometrically the space L"'" (T) of measura
ble complex functions absolutely bounded on the unit circle 
T: Izi = 1 with the space of continuous linear functionals 
defined on L I(T) (Ref. 29, p. 136, Theorem 6.16). The ac
tion of such a functional, denoted by h, on L I (T) is then 
given by 

(h,g) = f h(B)g(B)dB, (2.20) 

with h(B)ELoo (T), g(B)EL I(T). 

Consider now the real subspace L ; (T) of L 00 (T) con
sisting of functions I{B) with the symmetry property (a.e. 
on - 'IT<B < 'IT) 

I(B) =1*( B). (2.21) 
One can verify that L; (T) is isomorphic (isometrically) 
with the real vector space of real continuous linear function
als defined on the subspace L 1 (T) of L I ( T), of functions 
g(B) obeying the symmetry (2.21). Further, it follows from 
Cauchy's theorem that the subspace H; (D) of L; (T) 
made up of functions I (B), which admit of a bounded holo
morphic extension to D: Izi < 1, generates linear functionals 
that vanish on the subspaceH 1 (D) of L 1 (T), offunctions 
g(z), holomorphic in D and such that p Ig(reif:i ) IdB is uni
formly bounded in r < 1. It can also be shown (e.g., using 
Ref. 32, Theorem 3.7, p. 40) that H 1 (D) represents in fact 
the whole annihilator of H; (D). 

With this the following (duality) relation holds (Refs. 
30 and 31): 

sup -l-fk(n;B)f(B)eif:i dB 
fEH';.(D) 2'IT 
1If1l~<1 

2661 

= inf -1-f1k(n;B) -g(B)ldB. 
geHj,(D) 2'IT 
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(2.22) 

The supremum on the left is achieved by some 
l(njz)EH ;(D). Thus, the existence of the extremal ele
ment of Theorem 2.1 is guaranteed. Further, using the argu
ment of Ref. 32, p. 132, one can show that, since k(njB) is 
continuous on T, the infimum on the right is also realized by 
a functiong(n;z)EH 1 (D). With this, we may obtain part of 
the statement of Theorem 2.1 from the conditions under 
which the following chain of inequalities is saturated: 

2~ f k(njB)/(n;B)eif:i dB 

_1_ i..(k(njB) _ g(n;B»)1 (n;B)eif:i dB 
2'IT j 

(a) 

<_1 i..1k(n;B) g(n;B) III (n;B) IdB, 
2'IT j 

(b) 

<_1_ i..lk(n;B) g(n;B) IdB . 
2'IT j 

(2.23) 

In step (b), equality can occur only if I I (n;B) I = 1 al
most everywhere on T, where k(n;B) - g(n;B) #0. How
ever, k(njB) - g(n;B) cannot vanish on a set of positive 
measure, without vanishing completely [Ref. 32, p. 17; 
k(n;B) is holomorphic in a domain around T]. Thus, almost 
everywhere on Izi = 1, 

I/(njB)I = 1. (2.24) 

We next show that I (n;z) contains only a finite number of 
zeros in Izi < 1. The condition for equality in step (a) of 
(2.23) is that the function 

L (n;B) = (k(n;B) - g(n;B»)f (n;B)eif:i (2.25) 

be of constant phase on the unit circle. From the symmetry 
condition (2.21 ), we conclude that, in fact, a.e. on ( - 'IT, 'IT), 

L(n;B);;.O. (2.26) 

Equation (2.26) suggests an application of Schwarz's 
reflection principle to L (n;z) across the unit circle, and thus 
the conclusion that L(n;z) is in fact holomorphic in the 
whole z plane, except for the segments [- a,b] u [ 1/ 
b,oo ]u[ - 00, - 1/a] (a> 0). A repetition of the reasoning 
on which Schwarz's principle is based (see, e.g., Ref. 33, p. 
309) shows that the only requirement for its validity is that, 
for any arc (BI ,B2 ), 

1
f:i2 

lim (rL(n;reif:i) - L(njeif:i»)dB = O. 
r-+l 8

1 

(2.27) 

This is, however, guaranteed by the fact that g(n;z) belongs 
to H 1 (D) through Theorem 2.6 of Ref. 32 (p. 21). It fol
lows that L(njz) and, therefore, f(n;z) can vanish only a 
finite number of times inside a crown 1/r< Izi <r, 1> 1/ 
r>max [a,b]. Further, f(n;z) may vanish only a finite 
number of times in Izi < 1 and may be written as (Ia i 1< 1) 

P z-a, 
f (n;z) = II ' 7f;(z) , (2.28) 

i=11 arz 

with 7f;(z) nonvanishing in Izi < 1, 17f;(eif:i) I = 1 a.e. on 
Izl = 1, 7/JEH;(D). 

We now show that, in fact, 7f;(z) = ± 1. To this end, 'we 
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write, for any r < 1 and Izl < r, z = Izleit/l, 

lnl¢(z) I = _1 1: r - Izl2 
211" j r - 2rlzlcos(0 - ¢) + Izl2 

Xlnl¢(rei8) IdO . (2.29) 

If we show that the positive quantities 

I(r) = - f Inl¢(rei8) IdO (2.30) 

tend to zero as r---+-l, we conclude that Ilnl¢(z) II is bounded 
by arbitrarily small quantities, for any z in Izl < 1, and it 
follows that I¢(z) 1==1. To show that I(r)---+-O as r---+-l, we 
notice first that a number ° < a <! exists so that both 
jL(n;ei8 )1- 2a and Ig(n;ei8 )la IL(n;ei8 )I-a are integrable 
on - 11"<0<11". This follows from the fact that L(n;ei8 ) has 
only zeros of finite multiplicity (isolated) on Izl = 1 and 
from Schwarz's inequality 

f lg(n;ei8 ) la IL(n;ei8 ) 1- a dO 

< [flg (n;ei8 ) 12a dO r/2[fIL(n;ei8) 1- 2adO r12 

, 

(2.31) 

if we take into account that Ig(n;ei8 )IEL I(T). Using the 
inequality 

1 l_xa 

-lnx<--- (O<x<l), (2.32) 
a xa 

we write 

I(r) <1- 1: 1 - 1¢(re
i8

) la dO 
a j 1¢(rei8) la 

<! f(1 - 1¢(rei8 ) la)p(ei8 ) 

+ ~ f(,8(rei8 ) - P( ei8
) )dO , 

with 

P( ei8) = (lg(n;ei8 ) la + Ik(n;ei8 ) la)/IL(n;ei8) la . 

In (2.33) we have used the inequality 

(2.33 ) 

(2.34) 

(x + y)Q <xa + ya , (2.35) 

valid for x,y > 0, 0< a < 1. The first term on the right-hand 
side of (2.33) goes to zero as r---+-l, by the dominated conver
gence theorem. The second term also vanishes as r---+-l, as a 
consequence of the fact thatg(n;z) belongs to HI(D) (see 
Ref. 32, Theorem 2.6, p. 21). 

From this argument and knowing the holomorphy do
main of L(n;z) it follows thatg(n;z) is in fact holomorphic 
in the whole z plane, except for a cut along [ - 00, - 1/ 
a)u[1/b,oo). 

The uniqueness of the extremal functions f (n;O) and 
g(n;O) is a consequence of the positivity condition (2.26). 
The latter is true for L(n;O) constructed with any combina
tion of an extremalg(n;O) and an extremal f(n;O). We pick 
then out a definite g(n;O) and infer from (2.26) that all 
extremal f (n;z) must have the same phase (mod 211") along 
Izl = 1. Since If(n;O)1 = 1, this implies that they must be 
identical. However, if f (n;O) is given, the combination 
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zg(n;z) f (n;z) [and thus g(n;z)] is completely determined 
from its boundary values by means of the (complexified) 
Poisson formula: 

1m k(n;O) f (n;0)ei8 = 1m g(n;O) f (n;0)ei8 . (2.36) 

This ends the proof of Theorem 2.1. 
Returning now to problem (A), we see that, with the 

remarks surrounding Eq. (2.14), we have proved the follow
ing theorem. 

Theorem 2.2: There exists a unique f o(z)e.7 Ion which 
Xmin (p;h) is attained. The function f o(z) is a finite 
Blaschke product. 

Notice, in both Theorems 2.1 and 2.2 we assert the 
uniqueness ofthe extremal element in .71, rather than .71' 

This reproduces the results of Ref. 1 where, using Schur
Pick-Nevanlinna interpolation theory, the authors show 
that the unique point Po in .Y N on which X min ( p;h) is at
tained is indeed generated by a unique Blaschke product. In 
the next section, we tum to the problem of actually con
structing f o(z). 

III. AN INTEGRAL EQUATION FOR PROBLEM (A) 

The theorems of the preceding sections provide no 
means of computing the extremal f o(x). In fact, given 
n(x)EL 2(p), the argument of Theorem 2.1 does not show 
how to find the Blaschke product f (n;x), which maximizes 
(n,J)p over .71' If such a method (expected to be nonlin
ear) were known, Eqs. (2.16) and (2.17) would provide an 
equation for the unique extremal function iio(x) 
= IIh -follpno(x) associated to fo(x). Since f(n;x) is 

unaffected by a change from n (x) to A.n (x) for any positive 
A., this equation reads simply 

iio(x) =h(x) -f(iio;x). (3.1) 

Equation (3.1) has no other solutions in L 2 ( p) apart from 
no(x). Indeed, any n l (x) obeying (3.1) leads, when normal
ized, to equalities in (2.15) and is thus identical to iio(x). 

Although it does not give the explicit dependence on 
n (x) of f (n;x), the argument of Theorem 2.1 does provide a 
characterization of f (n;x), for given n (x), by means of the 
special properties of the functionL(n;z), Eq. (2.25). To see 
how this is done, we recall the function L(n;z) is made up of 
n(x), the extremalg(n;x) and the extremal f (n;x), is posi
tive along Izl = 1 [Eq. (2.26») and is holomorphic in the z 
plane cut along (- 00, - 1/a)u[ - a,b)u[ 1/b,oo). The 
latter property is expressed more accurately through the fol
lowing lemma. 

Lemma 3.1: L(n;z) obeys the representation 

L(n;z) = 211" J~a n(x)f(n;x)P(x;Z)dp(x) , (3.2) 

where P(X;Z) is the Poisson kernel [generalizing (2.11) to 
Iz l¥l]. 

To prove this lemma, we denote by L(z) the right-hand 
side of (3.2) and verify first that it has the correct analyticity 
properties of L (n;z). This is evident from the decomposition 

1 1 1 - x 2 

--P(x;z) = -
X 211"X x 2 -x(z+ 1/z) + I 

= 2~ [x ~ z + x _l1/Z - ~]. (3.3) 
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Further, L (z) is clearly real on the unit circle. As a conse
quence, the difference 

l1(z)=L(n;z) -i(z) (3.4) 

obeys the same reflection symmetry as L(n;z) and i(z): 

l1(z) = 11*(lIz*). (3.5) 

Now, using Eq. (2.25) and the expression (2.19) for 
k(n;z) we verify easily that, in fact, a(z) is holomorphic in 
the unit disk. It follows then from (3.5) that it is everywhere 
holomorphic and thus a constant. To show that the constant 
vanishes, we compute limz---+o l1(z). On one hand, from the 
definition of L(n;z), Eq. (2.25), we see that the possible 
nonzero term of L(n;z) near z = 0 comes from 
zk(n;z)j(n;z). On the other hand, from (3.2), we verify 
that, near z = 0, 

i(z) = z f~a n(x;~~;X) dp(x) 

+ O(z) =zk(z)j(n;z) + O(z). (3.6) 

Thus, 11 (z)-+O as z-+O, and this proves Lemma 1. 
Notice that the right-hand side of Eq. (3.2) contains 

only n(x) and j(n;x), whereasg(n;x) has dropped out. We 
may now imagine that we are given a function n(x) and a 
Blaschke product B(x;a), with zeros at the points ai' 
i = 1,2, ... ,p, and that we construct with them a function 
l.(z;n;B) by means of the right-hand side ofEq. (3.2) [with 
j (n;x) replaced by B(x;a)]. The question is to decide 
whether l.(z;n;B) is indeed the functionL (n;z) associated to 
n(x) [and the extremal j(n;x)]. From Eq. (2.25) we ex
pect this to be so only if 

l.(z = ai;n;B) = 0, i = 1,2, ... ,p, (3.7) 

whereas from Eq. (2.26) we obtain the (necessary) condi
tion 

l.(z=eilJ;n;B);;;.O, 0<;,{)<21T. (3.8) 

A more precise inspection shows, however, that Eq. (3.7) is 
not necessary if one of the a;s happens to coincide with a 
point of discontinuity ofp(x). Nevertheless, it turns out that 
conditions that are both necessary and sufficient and are re
lated to (3.7) and (3.8) may be formulated, essentially from 
geometrical considerations. For simplicity, we shall confine 
ourselves in the following to the situation when the extremal 
Blaschke product has no multiple factors. The changes that 
have to be made to allow for this are described in Appendix 
E. With this, we formulate the following lemma. 

Lemma 3.2: The Blaschke product B(x;a) is the extre
mal function j(n;x) associated to n(x) by Theorem 2.1 if 
and only ifboth 

(n(x),B(x;a)P(x;ai )/ai)p = 0, i = 1,2, ... ,p, (3.9) 

and 

(3.10) 

Notice, Eq. (3.10) is, by (3.2), identical with (3.8); 
however, (3.9) reduces to (3.7) ifaEJ:[ - a,b], but not neces
sarily otherwise. 

Proof: We show first the "only if" part. Let B (x;a) be 
the extremal Blaschke product associated to n (x); then it is 
true that, for any change l1ai of the positions of the zeros, 
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(n (x) ,B(x;ai ) - B(x;ai + l1ai »)p;;;'O . (3.11 ) 

Consider then first only a change l1ak = Aeiq> , 
l1ak + 1 = Ae - iq> = (l1ak ) * in the positions of a pair of 
complex conjugate zeros ak' ak + 1 = at, with a fixed angle 
tp. We may apply Taylor's first-order formula with respect to 
A to write, using (3.11), 

n(x),--(x;iik (x») Ae'q> + --(x;iit(x») Ae'q> <0, ( 
aB . aB . ) 

aak aat p 

( 3.12) 

with O«iik (x) - ak)/Aeiq> <1. In writing (3.12) we have 
allowed formally a Blaschke factor (x - a)/(1 - a*x) to 
depend upon two variables, a and a*. We divide now Eq. 
( 3.12) by A and let A tend to zero. Using the dominated 
convergence theorem, we obtain the condition that, for all tp, 

Re[ (n(x), :~ (x;a) t eiq> ]<0. (3.13) 

Letting in turn tp = 0 and tp = 1T in Eq. (3.13), and then 
tp = 1T 12 and tp = - 1T 12, we see that (3.13) implies that, as 
a complex quantity 

( n(x), aB (x;a») = O. (3.14) 
aak p 

A simple calculation verifies that 

aB 21TB(x;a)P(x;ak) 
--(x;a) = , 
aak a k 

(3.15) 

so that we obtain Eq. (3.9) for a i complex. 
If ai is a real zero, we need only consider real variations 

l1ai , repeat the reasoning above, and allow l1ai to have both 
signs. Taking limits l1ai -0 with l1ai > 0 and l1ai < 0, we 
obtain immediately (3.9) also for real a i • Notice the expres
sionP(x;a)la is well behaved even if a = O,exceptatx = 0, 
where it diverges like lIx. However, in this case, B(x;a) 
contains a factor x, so that (3.9) is always meaningful. 

Finally, consider the variations of B(x;a) obtained by 
the addition of two complex conjugate zeros ap + 1 ,ap + 2 

near the points z=exp( ±i(). Let l1ap +l = _AeilJ , 
l1a p + 2 = - Ae - ilJ, A > O. We obtain an equation analo
gous to (3.13), however, with an opposite sign. We can now 
let A tend to zero only with a positive sign, so that we can 
only conclude that [usingEq. (3.15)], 

Re(n(x),B(x;a)P(x;eilJ»)p;;;'O. (3.16) 

The brackets in Eq. (3.16) are manifestly real [P(x;eilJ ) is 
real] so that we have obtained (3.10). Thus, conditions 
(3.9) and (3.10) are indeed necessary. 

To show that they are sufficient, we write (z complex) 

l.(z;n;B) = (n(x),B(x;a)P(x;z»)p 

and construct, by analogy with (2.25), 

g(z) = k(n;z) -l.(z;n;B)lzB(z;a) . 

( 3.17) 

(3.18 ) 

We claim that g(z) is holomorphic in the whole z plane mi
nus the intervals (- 00, -lIa)u(lIb,oo). It is in fact 
enough to show that it has no singularities on [ - a,b], since 
Eqs. (3.9) show that it has no singularities if z lies outside 
[ - a,b], Izl < 1. Using Eq. (3.3) and (3.9), we see further 
that it is enough to show that the function 
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<I>(z) = (n(x),tf!(z;x»)p _1_=~, 
B(z;a) B(z;a) 

with 

.1,( ) B(z;a) - B(x;a) B( ) x 
If' z;x = - x;a ---, 

z-x l-xz 

(3.19) 

(3.20) 

is holomorphic at all points of [ - a,b]. It follows from 
(3.19) and (3.20) that <I>(z) has in fact at most poles on 
[ - a,b] at the possible zeros of B(z;a). Let Xo be such a 
zero; we compute the residuum at such a point (apart from a 
factor) by lettingzapproachxo in y(z), Eq. (3.19).lfx~xo, 
we obtain, using B(xo;a) = 0, 

tf!(xo;X) = - 21TB(x;a)P(x;xo)/xo. (3.21) 

Ifx = xo, the last term in (3.20) vanishes, but the first term 
gives [using (3.15)] 

(3.22) 
X-Xo 

Then (using the dominated convergence theorem), 

y(xo) = - 21T(n (x) ,B(x;a )P(x;xo) /xo)p (3.23) 

and it vanishes, by virtue of (3.9). Thus, g(z) is indeed holo
morphic at all points of [ - a,b] and thus in the z plane 
minus ( - 00, - 1/a] U [1/b, 00 ). In particular, 
g(z)EH 1 (D). Notice, we could have used the analyticity of 
g(n;z) in Izl < 1 to show directly, usingEq. (3.18), that con
ditions (3.9) are necessary. Our proof has the advantage of 
giving some meaning to the function L(n;z). 

We shall now show that, choosingf (0) = B (eilJ;a) and 
g(O) = g(eilJ ) in Eq. (2.22), we obtain equality of the quan
tities under the sup and inf signs on the left- and right-hand 
sides; this will imply that B (z;a) and g(z) are indeed extre
malfunctions associated to k(n;z) and, thus, to n(x). Using 
Eq.(3.18), (3.17), and (3.10) in tum, we verify 

fk(n;O)B(eilJ;a)eilJ dO 

= f(k(n;O) - g(eilJ ) )B(eilJ;a)eilJ dO 

= fZ(eilJ;n;B)dO 

= flk(n;O) _g(eilJ)ldO. (3.24) 

This ends the proof of Lemma 3.2. 
It may appear that the characterization of the extremal 

Blaschke product by means of Eqs. (3.9) and (3.10) falls 
short of providing the explicit dependencef(n;x) needed in 
Eq. (3.1) in order to compute the extremal functionfo(x) of 
problem (A). However, we shall now show that, by solving a 
problem analogous to the one of Theorem 2.1 in the Hardy 
space H1 (D), we are able to obtain a large supply of pairs 
(n(x),B(x;a»), which satisfy identically Eqs. (3.9) 
and(3.1O). 

Thus, we consider the problem of determining, for a 
given N(x)EL 2( p), 

IlkNI12=SUp{(N,j)p: fEH1 (D), Ilfll~ .;;;t}, (3.25) 

and of describing those functions on which II k N 112 is attained. 
The solution is a straightforward generalization of the ex
pansion in reproducing kernels of Refs. 12, 19, 34, and 35 
and is expressed in the following lemma. 
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Lemma 3.3: The function F(N;Z) on which IIkNI12 is 
attained may be written as 

F(N;Z) = const f_b a N(x)dp(x) (3.26) 
l-xz 

The (positive) constant is determined from the condition 
IIF(N;z)lli = 1 ( = 1/llkNI12)' 

Proof: We write as in(2.l8) [explaining also the nota
tion IIkNII2 in Eq. (3.25)] 

(N,j)p = 2~ fkN(eilJ)f(O)eilJdO 

= _1_ J:(kN(z»)*f(z)zldzl, 
21T J (3.27) 

where we have denoted by kN(z) the function equal to 
(k N (z»)* on Iz I = 1 and holomorphic in Iz I < 1, 

kN(z) =Zf_b
a 

N(x)dp(x) (3.28) 
l-xz 

The last expression in (3.27) is the scalar product ofkN(z) 
with zf(z) in the Hilbert space H1 (D). Its maximum is 
attained if fez) is proportional to kN(z)/z. This proves 
Lemma 3.3. The analyticity domain of F(N;Z) contains the z 
plane without the interval ( - 00, - 1/a) u(l/b,oo). 

We next prove identities similar to Eqs. (3.9) and 
(3.10) in the following lemma. 

Lemma 3.4: If at> i = 1,2, ... ,p,p + l, ... ,q are the zeros 
of F(N;z) in the z plane minus (- 00, -1/a]u[1/b,oo), 
then 

(N(x),F(N;x)P(x;ai )/atlp = 0, i = 1,2, ... ,q. (3.29) 

Also, for 0.;;;O.;;;21T, 

(N(x),F(N;x)P(x;eilJ»)p >0. (3.30) 

Proof: We write the canonical factorization (Ref. 32, p. 
24, Theorem 2.8) 

F(N;x) = B(N;x;a)E(N;x), (3.31 ) 

where B(N;x;a) is a finite Blaschke product containing the 
zeros at> i = 1,2, ... , p of F(N;x), lying in Izl < 1 and E(N;x) 
is the corresponding outer function [cf. Eq. (LlO)]. [Since 
F(N;z) is holomorphic in Izl <r, r> 1, the singular part of 
the factorization (3.31) is absent.] We may now repeat the 
proof of Lemma 3.2 and consider variations of F(N;x) ob
tained by displacing the zeros at> i = 1,2, ... , p, i.e., replacing 
B(N;x;a) by B(N;x;a + .:lex). This leaves the condition 
Ilfll~.;;;l unchanged. With the argument of Lemma 3.2, we 
obtain Eq. (3.29) for the p zeros lying in Izl < 1. Further, the 
same reasoning as in Lemma 3.1 shows that the function 

!/' (N;z)=F(N;z)kN (z) = F(N;Z)(F(N;1/z*»)*, 
(3.32) 

which is clearly holomorphic in the z plane minus 
(- 00, -1/a)U( -a,b)U(1/b,oo),obeystherepresenta
tion 

!/'(N;z) = 21T(N(x),F(N;x)P(x;z»)p/likNI12' (3.33) 

The positivity of !/'(N;Z) on Izl = 1 [manifest in (3.32)] 
leads to Eq. (3.30). Also, from Eq. (3.32), we see that, if a 
zero aiEl: [ - a,b ], then !/'(N;ai ) = 0, which is Eq. (3.29). 
This ends the proof of Lemma 3.4. 
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We now notice that we may rewrite Eq. (3.29) by means 
of the factorization (3.31) as 

(N(x)E(N;X)J](N;x;)P(x;a; )/a;)p = 0, i = 1,2, •.. ,q. 
(3.34) 

Since the same can be done with Eq. (3.30), a comparison 
withEqs. (3.9) and (3.10) yields by Lemma 3.2 the follow
ing statement, which is essential for the construction of the 
extremal/o(x) of problem (A). 

Theorem 3.1: For any n (x)EL 2 ( p), the Blaschke prod
uctB(N;x;a) ofEq. (3.31) realizessup{(n,j )p:/Ell R' (D), 

11/11." .;;;1}, if 

n(x) = N(x)E(N;x)lIkNlb N(x)Eo(N;x). (3.35) 

In Eq. (3.35), we have introduced a factor IIkNlb, to 
remove the normalization constant in Eq.(3.26). We are 
clearly free to do this, since Eqs. (3.9) and (3.10) and Eqs. 
(3.29 and 3.30) are invariantifn(x), or N(x) are multiplied 
by positive, x-independent, quantities. Therefore, in Eq. 
(3.35) Eo(N;X) is the outer function obtained from 

Fo(N;z) =fo N(x)dp(x) B(N;z;a)Eo(N;z). (3.36) 
-a l-xz 

We may now regard Eq. (3.35) as a nonlinear mapping 
~: L 2( p) ........ L 2( p) (the left-hand side is always in L2( p) 
since Fo(N;X) is continuous on [ - a,b J}. Theorem 3.1 may 
then be understood as follows: suppose n (x) is given and we 
are required to find the associated extremall (n;x) in the set 
11/1100 .;;;I,jEllR' (D); we may regard then Eq. (3.35) as a 
nonlinear integral equation for the function N(x). If we can 
solve this equation (compute ~-In), the solution to the 
original question is given by B(N;x;a). Let us show that this 
is, in principle at least, always possible. 

Lemma 3.5: The mapping ~:L 2( p) ........ L 2( p) given by 
Eq. (3.35) is onto and has an inverse ~ -I. 

Prool: We show first that ~ is one-to-one on its domain 
of values. Assume to this end that two functions Nt (x) and 
N 2 (x) exist, both satisfying (3.35) for a given n(x). Since 
there exists a unique Blaschke productB(n;x) realizing the 
extremum of (n,j)p over 11/11"" .;;;1, the two functions 

fo Nj(x) . 
Fo(N;;x) --dp(x), 1 = 1,2, (3.37) 

-a l-xz 
must lead to the same Blaschke factor B(n;x). Thus 

Fo(Ni;x) B(n;x)Ei;o (x), i = 1,2, (3.38) 

and we have to show that the two functions Ei;o (x) are in 
fact identical. It is enough to show that they have the same 
modulus on Izi = 1. But 

IEI;o (ei8 ) 12 = Fo(Nj;Z)F~(N;;lIz*) Iz=e'(J 

= 2'o(N;;z)lz=ei8 (3.39) 

with 2' O(N/;Z)S5ll!kN lli 2' (NI;Z), Eq. (3.32). However, by 
the representation (3.33), both functions 2' o(Nj;Z) may be 
written as 

2' o(N;;Z) = 21T(N; (x),B(n;x)E;;o (x)P(X;Z»)p 

= 21T(n(x)J](n;x)P(x;z»p =L(n;z), 
(3.40) 

withL(n;z) the function associated to n(x) by (2.25), and 

2665 J. Math. Phys., Vol. 27, No. 11, November 1986 

use was made of Lemma 3.1. Therefore, the two functions 
2' o{Nt;z) are identical and it follows that 
Fo(N\;z) = Fo(Nz;Z), i.e.,N\(x) =N2 (x) (a.e.-p). 

To show that 'if is onto, we pick out an nEL Z(p) and let 
B(n;x) be its associated Blaschke product by Theorem 2.1. 
We define then, using property (2.26) of L(n;ei8

) 

e(O)=[L(n;ei8 ) JI/2 (3.41) 

[we take e(O);;>O] and construct the function E(z), holo
morphic and free of zeros in Izi < I, with modulus e(O) on 
lzl = 1. Clearly, for Izi = 1, 

L(n;z) = E(z)E*(1lz*), (3.42) 

whereE * ( 1/z·) is holomorphic andnonvanishing in Izi > 1. 
Since L(n;z) is holomorphic in the z plane minus 
(- co, -lIa]U[ -a,blU[1/b,co), Eq. (3.42) can serve 
to extend E(z) to a holomorphic function in the z plane 
minus ( - co, - 1/0] U [lib, co); namely, we declare for 
Izi > I, 

E(z) =L(n;z)/E*(lIz*). (3.43) 

Notice that E(z) vanishes at all points in Izi > 1, where 
L(n;z) vanishes. A reasoning similar to that of Lemma 3.1 
and use ofEq. (3.2) show that E(z) may be represented as 

E(z) = fO n(x2B (n;x) 1 dp(x). (3.44) 
-Q E(x) l-xz 

Consider now the function 

F(z) = B(n;z)E(z). (3.45) 

Use of Eq. (3.44), of the identity B(n;z)B *(n;1/z*) = 1, 
and again a reasoning similar to that of Lemma 3.1 show 
that, in fact, Fez) is obtained through the formula 

- c fo n(x) 1 
Fez) = -_---dp(x). 

-a E(x) l-xz 
(3.46) 

In Eq. (3.46) we see that, denoting N(x) = n(x)/E(x), it 
follows that Fez) FoCN;x) and, from (3.45), E(z) 
= Eo(N;x). Thus, anNex) obeying (3.35) has been found. 

This ends the proof of Lemma 3.5. 
Next follow some comments. 
(a) If B (n;x) is the extremal Blaschke product associat

ed to n ex), we see from Eq. (3.35) that it is in fact the extre
mal function for many other n(x), namely, all those ob
tained by varying N(x) in such a manner that the zeros of 
Fo(N;x), Eq. (3.36), in Izi < 1, stay unchanged; only 
E(N;x) varies. Thus, we may regard the Blaschke products 
as "comers" of the set JO\ in L z( pl. 

(b) With the help ofEq. (3.35) we may now cast Eq. 
(3.1) in the form of a nonlinear integral equation for the 
unknown function No(x), 

no(x) = No(x)Eo(No;x) = hex) - B(No;x). (3.47) 

This is a considerable improvement over (3.1). In fact, it is 
easy to see that the integral equation (3.47) has a unique 
solution. Indeed, we have seen that there exists a unique 
no(x) satisfying (3.1) and the statement follows from 
Lemma 3.5. The problem is, of course, whether the solution 
of (3.47) is or is not an awful task. It turns out that the 
solution is not completely out of reach, in view of the follow
inglemma. 

Lemma 3.6: If N(x) is such that Fo(N;z) does not van-
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ish anywhere on Izl = 1, the Frechet derivative of the non
linear operator If: L 2 ( P )-+L 2 ( p) given by (3.35) exists, is 
continuous, and has a bounded inverse. 

Thus, under the conditions of Lemma 3.6, the operator 
If (N) is a local diffeomorphism of L 2 ( p); the inverse map
ping If-I(n) also has a continuous Frechet derivative (see 
Ref. 36, p. 56, Theorem 4.2.1). Also, as a consequence of 
Lemma 3.6, we shall show in Sec. VII that we can give a 
systematic method of solving Eq. (3.47). 

Proof" The fact that If has a continuous Frechet deriva
tive follows immediately from the known representation of 
Eo(N;X): 

Eo(N;x) = exp[_I_,.( ei
() + x In Fo(N;ei()Fo(N;e-i()d(}]. 

41r :r e'() - x 

(3.48 ) 

Straightforward calculations show that the action of the Fre
chetderivativealf IaN on a vector oN(x) EL 2( p) is given by 

(a~~N) ) (oN)(x) 

= oN(x)Eo(N;x) + N(x)Eo(N;x) 

x,.(p(x;ei()(OFo(e
i
() + oFo(e-

i
() )d(}, (3.49) :r Fo(N;e'() Fo(N;e-'() 

with 

oFo(z) = f~a ON~x~d:z(X) (a;;) (oN)(z). (3.50) 

The integrand of Eq. (3.49) indicates why we needed the 
restrictions on N(x) in the statement of the Lemma. The 
situation when Fo(N;ei() vanishes for some () is discussed 
after the end of the proof. Equation (3.49) may be trans
formed by means of the residuum theorem to yield 

(a~~N) ) (oN) (x) = oN(x)Eo(N;X) + N(x)Eo(N;x) 

(jFo(X) oBex) ) X - , 
o(N;x) B(N;x) 

(3.51) 

where 
p 1 oFo(a.) 

oBex) = - 21TB(N;x) L P(x;ai ) - ' 
i=1 aiF~(N;ai) 

(3.52) 

and ai' i = 1,2, ... ,p are the zeros of B(N;z) in Izl < 1. 
For any given left-hand sideon(x), Eq. (3.51) is a Fred

holm equation of the second kind for oN (x). It can be solved 
for any on (x) if the equation 

alf (N) (oN) = 0 (3.53) 
aN ' 

does not admit of nonzero solutions. To show this, we see 
thatEq. (3.2) defines [via (3.35)] amappingfromL 2 (p) 
into the set of holomorphic functions representable in the 
form (r(x),P(X;Z»)p with r(x)EL 2( p) and the norm of 
L 2( p). The action of its Frechet derivative on oN(x) is giv
en [using the notation (3.53) ] 

OL(Z)=( a~c;) )(ON) (z) 

2666 

= (on(x),B(x)P(x;Z»)p + (n(x),oB(x)P(x;z»)p. 
(3.54 ) 
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Now, if on(x) = 0 [from (3.53)] and oN(x) is such that 
oBex) = 0 [notice that the image of the action of (aB I 
aN) (N) on L 2 ( p) is a p-dimensional subspace of L 2 ( p) ], 
then oL(z) = o. Further, from Eq. (3.41) we see that 

0= oL(N;ei() = 2IEo(N;ei() loIEo(N;ei() I, (3.55) 

so that oIEo(N;ei() I = o. This leads, however, to 
(XE[ - a,b]) 

oEo(N;x) = 0 (3.56) 

[from (3.48)]. Since Eo (N;x) #0, it follows from 

on(x) = Eo(N;X)oN(x) + N(x)oEo(N;x) (3.57) 

that oN(x) = o. Thus, if there are nontrivial solutions to 
(3.53), they are such that oBex) #0. 

To handle this situation, we consider the mapping 
L 2( p)--+OER. P given by Eqs. (3.9). Writting (3.9) in the 
form (3.14), we conclude that, if on(x) = 0, 

o(L(ai ») = (n(x), ± a
2
B oak) =0, 

k= I aaiaak p 

i= 1,2, ... ,p, (3.58) 

with 

oak = 
oFO(ak) 

F~ (N;ak) 
(3.59) 

Multiplying equation "i" in (3.58) by oa i and adding them 
together, we obtain that (3.53) implies the vanishing of the 
quadratic form 

( 
a2B ) Q(oa)=,? n(x), oaioak = O. 

"k aai aak p 
(3.60) 

If there are nontrivial solutions oN(x) to (3.53), then 
oai #0, for at least some i, and (3.60) shows that Q(oa) is 
not definite. However, we shall show that Q(oa) is in fact 
strictly negative definite, if oBex) #0. This shows that, in 
fact, we must have oBex) = 0, if on(x) = O. This leads in 
turn to oN(x) =0 and proves Lemma 3.6. 

To show that (3.60) is negative definite, we resort for 
simplicity to the function F(N;z) of Lemmas 3.3 and 3.4, 
which realizes the extremum of (N,!) p under the condition 
Ilflb,;;;;1. [F(N;z) differs from Fo(N;Z) by a constant fac
tor).] We notice first that, at a change 

F(N;z)-+F(N;Z) + t:Ji'(N;z)=B(z;a + fw)E(N;z), 

the functional (N,f)p decreases strictly. Indeed, using the 
fact that (from Lemma 3.3) 

F(N;ei() = (kN (ei())*/llkN I12' (3.61) 

we see that the constraint IIFCN;z) + t:Ji'(N;z) II~ = 1 im
plies 

2(k ~(ei(),t:Ji'lz/llkNI12 + 11t:Ji'1I~ = o. (3.62) 

[The index 2 on (.,.) shows the scalar product in H ~ (D) 

leading to the norm (1.5).] Then, as claimed, 

(N,t:Ji')p = (k~,t:Ji')2= -11t:Ji'11~lIkNII2/2<0. 
(3.63 ) 

On the other hand, we write this change by means of a Taylor 
expansion as in Lemmas 3.2 and 3.4 and conclude that, using 
Eqs. (3.29) 
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(3.64) 

with O<;O(x)<;l, O<;¢,(O)<;1. Letting aat = APi> AER, and 
allowing A to approach zero, we obtain, for arbitrary direc
tionsPI [and using Eq. (3.35)], 

l(n(x), a a
2

: (x;al ») Pi Pj 
I.k a j aj p 

= -likNII~21T'fIE(N;eiew 

I 
p P(ele'a. )2\2 

X 2.. Pi ' , dO. 
1=1 at 

(3.65) 

The right-hand side of (3.65) is, however, strictly negative 
definite, if 8B(x) #0. Indeed, a comparison with (3.52) and 
(3.59) with 8at = Pi shows that the lastfactorin (3.65) is 
the analytic continuation of 8B(z) to Izi = 1, and it cannot 
vanish identically there. This ends the proof of Lemma 3.6. 

We now discuss the situation when F(N;Z) vanishes on 
Izl = 1. WerestrictourselvestoelementsN(x)EL 2(p) for 
which the following property holds. 

(H) The function F(N;z) has either one simple zero or 
two complex conjugate zeros on Iz! = 1. 

This restriction is made only partly for simplicity; it is 
discussed at the end of Appendix E. It is enough to study the 

case when F(iI;ap+ 1) = O,lap+ 11 = 1,ap+ 2 = a:+ l' 
a p + 2 # a p + 1 ; the situation of one real zero is analogous. We 
consider two types of approximants {Nk (x)h"= 1 to N(x): 
the Hexterior" ones, for which F(N'k;x) vanishes at two 

. e (e )*. hie lIe pomts ap+ I.k' ap+ l.k Wit ap+ I.k > ,ap+ I,k-ap+ 1 

as k- co, and "interior" ones, F(N ~;x) vanishing at a~ + I.k' 
(a~+ l.k )*, la~+ l.k 1< 1. From Eq. (3.51) it is easy to see 
that 

(a~ (iI») = lim a~ (N'k) 
aN e 1<--00 aN 

# lim a~ (NU=(a~ (iI») , (3.66) 
k_ oo aN aN i 

although both limits exist (strongly). In fact, Eq. (3.52) 
gives the difference of the limits [its action on 
8N(x)EL 2( p)] 

[e~(N»)e (~~(N}}](8N(X» 
p+2 8Fo(ak) 

= - 21T'N(x)Eo(N;X) 2.. P(x;ak) . 
k=p+l akF~(N;ak) 

(3.67) 
In Appendix B we shall show that, in fact, both 
«a~ laN)(N»e and (a~ laN)(N»1 have bounded in
verses. 

At such a pointN(x)EL 2( p), we may clearly define the 
Gateaux differentials 8~ (N;8N) in all directions 8N(x); if 
8N(x) is such that Re(8ap+ 1Iap+ 1 ) <0 [8ap+ 1 is given 
in Eq.(3.59) 1, then 
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8~(N;8N) = (a~ (N») (8N), 
aN I 

(3.68) 

whereas, for the other half-space 8~ (N;8N) is obtained 
from (a~ laN)e' The two definitions coincide if 
Re(oop + 1 I ap+ 1 ) = 0, since the Poisson kernel is real for 
lak I = 1 and real analytic. This implies the following gener
alization of Lemma 3.6 to include the boundary points 
N(x), which is of relevance for the algorithm described in 
Sec. VII and amusing by itself. 

Lemma 3.7: If condition (H) is satisfied, the mapping 
L 2( p) -+L 2( p) given by 8'1/ (N;8N) is onto and invertible. 

Proof: The image of the hyperplane Re(8ap+ J 
ap+ I) = 0, which is the same under (a~ laN)(N»; and 
(a~ IaN) (N»)e is a hyperplane containing the origin, since, 
say, (a~ laN){N»); is invertible. There exists then an ele
ment k(x)EL 2(p), determined up to multiplication by a 
scalar, so that this hyperplane is given by 

(k(x),8n(x») = O. (3.69) 

If we denote by p (x) the vector determining the linear func
tional of 8N given by Re(8ap + Jap + 1) [obtainable from 
(3.59) J, then the solutions k 1(x), k2(x) of the two equa
tions 

(a~ (N»)t (kl(X»)=(a~ (N»)t (kz(x)}=p(x) 
aN i aN e 

(3.70) 

are parallel to k(x) and differ among themselves by a scalar 
factor A. Now, the sets of vectors 8N(x) given by (a) 
Re(15ap + 1 lap + d <0 and (b) Re(oop+ I lap + 1) >0 are 
mapped in tum by (a~ IaN) (N) It, (a~ IaN) (N»)e one
to-one onto the half-spaces of elements 8n (x) satisfying 

(3.71) 

The two half-spaces are distinct if A > O. We show in Appen
dix B that this is indeed the case. This ends the proof of 
Lemma 3.7. 

We are now able to formulate a statement concerning 
Eq. (3.47) that determines the extremal function B(N f.i,x) of 
problem (A). We denote by d' the operator from L 2( p) 
into L 2 ( p) whose action is given by 

d'(N(x»=N(x)Eo(N;x) +B(N;x). (3.72) 

Then we obtain the following theorem. 
Theorem 3.2: For any hex) outside Yl' the equation 

d'(N(x») = hex) has a unique solution. The operator d'has 
a continuous Frechet derivative with a bounded inverse at all 
points N(x) such that Fo(N;z) , Eq. (3.36), does not vanish 
on Izi = 1. At those remaining points, for which (H) is true, 
the operator whose action on 8N(x)EL 2( p) is given by the 
Gateaux differential8d'(N;8N) also has a bounded inverse. 

Proof: The first part of the theorem has been already 
proved in comment (b) following Lemma 3.5. The only 
statement to be settled in the second part is the existence of a 
bounded inverse of the Frechet derivative of d'(N(x») at 
pointsN(x) such that Fo(N;z) , Eq. (3.36), does not vanish 
on izl = 1. 

To this end, consider the action of (ad'laN) (N) on 
8N(x), 
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ad 
-(N)(6N(x») = 6n(x) + 6B(x). 
aN 

(3.73) 

We shall show that a constant c > ° exists so that, for any 
6N(x) with 116N(x) lip = 1, 

(6N(X),(~~r(~~)6N(X)t>C. (3.74) 

Since, by Lemma 3.6, (arc laN)(N») has a bounded in
verse, Eq. (3.74) implies that (ad laN)(N») also has one. 
Equation (3.74) is obtained from (3.73) by p-scalar multi
plication with 6n (x). It is clearly enough to show that 

(6n(x),6B(x»)p>0. (3.75) 

This is, however, a consequence of the convexity of Y l' In
deed, consider two functions n(x), n(x) + I1n(x) inL 2( p) 
[corresponding by (3.35) to N(x), N(x) + aN(x)] and 
their associated extremal Blaschke products in YI: B(x), 
(B + aH) (x) Then, the convexity of Y 1 implies both 

(n(x),B(x»)p>(n(x),B + aH) (x»)p' (3.76) 

(n(x) + I1n(x),B(x»)p ..;;(n(x) + I1n(x),(B + aH)(x»)p' 

(3.77) 

We subtract them, use the definition of the Frechet deriva
tive, and divide through by III1N(x) lip 2; we obtain that, for 
any 6N(x)eL 2(p), 116N(x)llp = 1, 6N(x)==I1N(x)1 
IlaN(x)llp: 

(!!!... (N)6N(x), aB (N)6N(X») 
aN aN p 

(
Kn (aN) aB N 6N) (an 6N KB (aN) ) 

+ IlaNllp' aN() p + aN 'lIaNllp p 

(
Kn (aN) KB (aN) ) 

+ IlaNllp' lIaNllp p>o, (3.78) 

with IIKn(aN)lIp,IIKB(aN)llp =o(lIaNllp )' By letting 
lIaNllp-O, (3.75) follows. 

To prove the last statement of the theorem, we have to 
show first that (adlaN) (N»);.(adlaN) (N»)e are in
vertible operators. To this end, we consider again sequences 
NL N~ -N, and notice that, for any fixed 6N(x)eL 2( p), 
and for all NL N~, the quadratic form in 6N(x) given by 
(3.75) is positive. Consequently, this will be so also for 
k - 00. With the reasoning above, we conclude then that 
(ad IaN) (N»);,( (ad laN)(N»)e are invertible. Further, 
the latter operators coincide in L 2 ( p) on the hyperplane 
Re(6ap + Jap + 1) = ° (ifap + 1 =J:a;+ 1)' as one explicitly 
verifies. Consequently, the statement of Lemma 3.7 holds 
also for deN) [see also comment (b) of Appendix B] and 
this proves the last part of Theorem 3.2. 

In Sec. VII, we shall use Theorem 3.2 to set up an algo
rithm for finding the solution No(x) ofEq. (3.49) and thus 
the extremal element of problem (A). 

IV. BOUNDS ON THE NUMBER OF ZEROS OF THE 
SOLUTION OF PROBLEM (A) 

In the previous section, we have shown how the extre
mal element of problem (A) may be obtained by solving a 
certain nonlinear integral equation. The equation has some 
properties that make it amenable to numerical treatment. 
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However, the methods that have been used so far fail to show 
how we may estimate, or find an upper bound on the number 
of zeros of the extremal Blaschke product!o(x) [ B(No;X) 
ofEq. (3.49)], in an a priori manner. They do give a hint, 
however; the analyticity of the function Fo (N;Z), Eq. (3.35), 
in a domain that strictly includes the unit disk makes it intu
itively difficult for too many of its zeros to accumulate in 
Izl < 1. In this section, we make this argument precise and 
derive an upper bound on the number of zeros of!o(x) as a 
functionof h (x) and of a lower bound xi to rmin ( p;h). The 
main idea of the argument is sketched in Sec. II, following 
Eq. (2.17). 

We shall use for our purposes a function related to 
L(n;z) ofEq. (2.25), namely, 

R(n;z) L(n;z)/(z! (n;z»)=k(n;z) - g(n;z). (4.1) 

One can show easily that R (n;z) satisfies the representation 

R(n;z) = J~a n(:),!:;x) 

+ J_b 
a xn(x)(j(n;x»)2 dp(x) (4.2) 

l-xz 
which is analogous to that of Lemma 2.1 for L(n;z). As a 
consequence of Eq. (2.26), one notices that the total vari
ation of the phase of the function R (n;z) along the unit circle 
is - 21T( p + 1), where p is the number of factors of the 
Blaschke product!(n;x). [The counting is done by setting 
equal to zero the phase variation at those, possibly existing, 
points on Izl = 1 whereL(n;z), and thusR (n;z) have double 
zeros.] 

Therefore, each of the functions RR (n;O) 
=ReR(n;eill

), Rj(n;O)=ImR(n;elll
) must vanish 

2( p + 1) times at least on 0..;;0..;;21T. These functions read 

RR (n;O) 

= Jb n(x) [cos 0 (1 - x:t' (n;x)2) - x(1 -! (n;x)2)] 
-a x2-2xcosO+ 1 

Xdp(x), (4.3) 

Rj(n;O) = Jb n(x) sin 0(1 - x:t'(n;x)2) dp(x). (4.4) 
- a x 2 

- 2x cos 0 + 1 
Instead of R j (n;O), it is of more interest to consider 

Rj(n;O) =Rj(n;O)/sinO, (4.5) 

which vanishes at least 2p times in 0..;;0..;;21T. We now prove 
the following lemma. 

Lemma 4.1: There exist constants CR >0, C[ 
> 0, 0< Y < 1, independent ofn(x), such that, iff (n;z) con
sists of p Blaschke factors, 

IRR(n;O)I<CRyP, IR[(n;O) I <C[yp
• (4.6) 

Proof: We consider RR (n;O) only, since the inequality 
for R[ (n;O) is obtained in a clearly similar manner. Let 
RR (n;z) be the analytic extension of RR (n;O) to the com
plex z plane, through cos 0 = (z + lIz)/2. It is a holomor
phic function in the whole z plane except for the "cuts" 
( - 00, - lIa)u[ - a,b]u[ lib, 00 ). Consider now a simple 
closed curve C(f surrounding [ - a,b] and strictly contained 
in Izl < 1 and its image C(f', obtained by reflection across the 
unit circle (thus lying strictly in Izl > 1). We can bound 
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IRR (n;z) I along '?f, independently ofn(x) [and off (n;x)], 
using the Schwarz inequality, the condition lin lip ..;; 1, and the 
fact that If (n;x) I..;; 1, for XE[ - a,b]: 

IR (n;zl < [ fb (IZ2 + 11 + 21zllxl )2 dp(x)] 112 
R _ a I (x2 + l)z - x(r + 1) 12 

==CR (z), zE'?f. (4.7) 

Since RR (n;z) is real along Izl = 1, (4.7) holds also for 
zE'?f'. Let CIR (z) be that function, harmonic in the domain 
~ bounded by the curves Ctf and '?f', which assumes the 
values In CR (z), for z on '?f and '?f'. Further, we introduce 
the Green's function [1 (z;zo) of the domain § with a pole at 
Zo: [1 (z;zo) = 0, for z on '?f and '?f' and (ZoE~) 

[1 (z;zo) =log(1/lz-zol) +IPzo(z), (4.8) 

with IPZo (z) harmonic in ~. With this, we construct the 
difference (the following few lines are actually a derivation 
of "Lindelofs principle,,3?) 

2p+2 
D(z)=lnIRR(n;z)I-CIR(z) + L [1 (Z;Zi)' (4.9) 

;=] 

Writing (Zk = eiBk
) 

2p+ 2 'IJ-
RR (n;z) = II (z - e' k)RR (z) 

k=1 

(4.10) 

and using the definition (4.8) of [1 (z;Zo), we can write 
2p+2 

D(z) = InlRR (z) I - CIR (z) + L IPzk (z) (4.11) 
k=1 

and see explicitly that D(z) is subharmonic in §, since 
InlRR (z) I is so. Now, on the boundary Ctf U'?f' of~, using 
the definition of [1 (z;zo) , D(z) ..;;0. ThusD(z)";;O in all of § 
and we conclude that 

2p+2 
IRR (n;z) I..;;exp[ C IR (z)] II exp( - [1 (Z;Zi»)' (4.12) 

k=1 

Now, [1 (Z;Zi) > 0 for ZE~; in particular 

YI=min [1 (iIJ,ei'P) > O. (4.13) 
IJ.'P 

Then, Eq. (4.12) implies the first inequality in (4.6), if 
z = eiIJ, C = max CIR (e

iIJ ), Y = e - 2y
" and CR = eCy. This 

ends the proof of Lemma 4.1. 
Defining now 

sl(n;x) = n(x)(1-xY(n;x)2), (4.14) 

s2(n;x) = n(x)(1 - f(n;x)2), (4.15) 

we conclude from the inequalities (4.6) that 

(si(n;x),P(x;8)ui (x»)p <CiyP, i= 1,2, (4.16) 

with CI = C[I(21T), C2 = (CR + C[ )/(21T), U I (x) = 1/ 
(1 - x 2), U2(X) = xl( 1 - x 2), and P(x;8) given in Eq. 
(2.11). It is important that we can recover n(x) linearly 
from the Si (n;x) and independently off (n;x): 

n(x) = [sl(n;x) -x2s2(n;x)]!(1-x2). (4.17) 

Clearly, si(n;x)EL 2(p), i= 1,2, and, since If(n;x)I..;;I, 
XE[ - a,b], 

(4.18 ) 

We shall now show that the inequalities (4.16) and (4.18) 
imply an upper bound on the scalar product of the Si (n;x) 
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with any function g(x)EL 2( p); this upper bound tends to 
zero as p increases. Then, with 

hI (x) = h(x)/(l - x 2), h2(x) = x 2h(x)/(l - x 2), 
( 4.19) 

and using 

l(n,h)pl..;;l(sl,hl)pl + I (s2,h2)p I, (4.20) 

we conclude from Eq. (2.14) that X~in ( p;h) may become 
arbitrarily small if p is large. A comparison with the lower 
bound xi to X~in ( p;h) will yield then the desired upper 
bound on the number of zeros. 

The derivation of the bound on (Si (n;· ),g)p for some 
gEL 2( p) runs analogously to Ref. 17, but we give here more 
accurate estimates. We regard the scalar product in (4.16) 
as a compact operator A i mapping L 2 ( p) into L 2 (T) [with 
the norm ( 1.5) ] and denote by Bi the compact positive oper
ator A iA i' We can then write a weaker form of ( 4.16) as 

(spBisj)p = IIAjsj(n;')II~";;C~yP=k;, i= 1,2. 
(4.21 ) 

In the following, we drop the subscript i on the various quan
tities, as the consideration of one index is obviously suffi
cient. With this, the subset of L 2 ( p) delimited by ( 4.18) and 
( 4.21) is weakly compact and the linear functional 
«P(s)=(g,s)p' determined by the given g(x), attains its 
maximum on it. Then, application of a known statement 
about Lagrange multipliers (Theorem 1 of Ref. 31, p. 217, 
Sec. 8.4) shows that, as a consequence of the convexity of the 
function to be minimized and of the constraints (4.18) and 
(4.21), there exist positive numbers A., J.L so that the con
strained minimum of - «P(s) is equal to the unconstrained 
minimum of 

2'(S;,u;v) = - «P(s) + J.L(s,s)p - 1) 

+ v(s,Bs)p - k 2). (4.22) 

The minimum of 2' (s;,u;v) is achieved at the same point as 
the unconstrained minimum So and the Lagrange multipliers 
are such that 

(4.23) 

With this, the following is verified by straightforward calcu
lations. 

Lemma 4.2: Assume k 2 < (g,Bg)pl(g,g)p' Define 

a(g) = lim u(x;g) (4.24) 
x.....o 

with 

(4.25) 

then 

<I> k =k (g,(X+B)-lg)p 
max () (g,B(x + B) -2g)p 1/2 ' 

( 4.26) 

where x = 0 if k 2 < a(g) and is the unique positive root of 
the equation 

u(x;g) = k 2, (4.27) 

if k 2 >a(g). 
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The possibly unclear points in this lemma concern the 
existence of the limit in Eq. (4.24) and the uniqueness of the 
root in Eq. (4.27). Both points are settled by verifying di
rectly that u(x;g) is a strictly monotonically increasing 
function of x. The relation with Eqs. (4.22) and (4.23) is 
established through x = flJv. For most situations, a(g) in 
Eq. (4.24) vanishes. However, ifp(x) is of finite type and B 
does not have the eigenvalue zero, then a (g) > 0, although it 
is, in general, very small. 

We make now a statement concerning the behavior of 
<l>max (k), Eq. (4.26), for small k [i.e., as we increase the 
number p of zeros of the extremal function, cf. Eq. (4.21)]. 

Lemma 4.3: For any E> 0, there exists ko (g;E) such that 
<l>max (k) < E, for any k < ko (k> 0). 

Proof If a (g) > 0, this is obvious from (4.26). If 
a(g) = 0, this is not evident, since x depends on k through 
Eq. (4.27). Let P(No) be the projector in L 2( p) onto the 
subspace spanned by the eigenfunctions {'h }j": No + I of B, 
for some No to be specified (BP(No) =1= 0). Using Eq. (4.25) in 
( 4.26) and applying Schwarz's inequality, we get 

<I> ((1- P(No»)g,(x + B)-I(1 - P(No»)g)p 
max (k)< (g,(x +B)-2g)p 1/2 

+ IIP(No)gllp' (4.28) 

Now, ift/J(No;X;g) denotes the first expression in (4.27) for 
variable x > 0, one verifies that for all x > 0, 

0< ~(No;x;g) <u(x;g) liB -1/2(1 - P(No»)gll~. 

Therefore, t/J(No;x;g)-<l, asx-+O. Letxo(El2) be the small
est value of x for which t/J(No;x;g) = EI2 and let ko(g;E) be 
computed from Eq. (4.27), 

k~(g;E)=u(Xo(E/2);g). (4.29) 

The statement of the lemma follows then from the strict 
monotonicity of u(x;g) and choosing No so that 
IIP(No)gllp <El2. 

It is worth noticing that, even if a (g) =1= 0 [as is generally 
the case if p (x) is of finite type], the estimate obtained by the 
method used for a(g) = 0 yields usually a larger value of 
ko(g;E) than the one obtained directly from (4.26). 

We can now state the main result of this section and 
reinstate to this end the index i [e.g., in Eq. (4.16)]. 

Theorem 4.1: Assume X min ( p;h) > X I > O. Then the 
Blaschke product, which is the solution of problem (A), 
cannot contain more than 

(4.30) 

factors, where k,n = ko(h i ;X I /2), i = 1,2, is obtained from 
Lemma 4.3, Ci is given following Eq. (4.16), and r following 
Eq. (4.13). 

Proof We choose in Lemma 4.3, g(x) = hl(x), Eq. 
(4.19) and E = X 1/2, and obtain in this way a number 
k lO =ko(h l ,X I /2), such that, if CifP<k lO, 

I (sl,h l ) Ip <XI/2. The reasoning can be repeated for i = 2 to 
yield k20. [Notice that the expression ko(g;E) depends itself 
on the index i through the operator B.] Since the second 
term in Eq. (2.14) is positive, X min (p;h) < 1 (n,h) p I. With 
Eq. (4.20), this ends the proof. 

As announced in the Introduction, we now recall short-
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ly the computation ofX~in,2(p;h),Eq. (1.4), which gives 
immediately a possible value of xi in Theorem 4.1. Namely, 
from the duality relation (2.14) and Lemma 3.3 it is clear 
that the extremal function must be of the form (3.36) for 
some N (x)EL 2 ( p). Let A be the compact operator mapping 
L 2( p) into L 2( p) given by the integral in (3.36), with z 
restricted to [ - a,b]. One has then the problem of deter
mining 

X~in,2 (p;h) = inf{llh - AN II~; NEL 2( p)} (4.31) 

under the additional constraint (meaning IIF(N;z) II~ < 1) 

(N,AN)p<1. (4.32) 

With the same discussion concerning Lagrange multipliers 
as the one preceding Lemma 4.2, one verifies easily that the 
following is true. 

Lemma 4.4: Let f-l be the unique positive root of the 
equation 

(h,AcA +f-l)-2h)p = 1, 

then 

X~in,2 (p;h) = III -A(A +f-l)-Ih II~ 
and is attained on 

fO(2)(x;h) =AcA +f-l)-Ih(x). 

(4.33 ) 

(4.34 ) 

(4.35) 

Numerical estimates (see Sec. VII) show, however, that 
the bound (4.30) is usually rather weak, when compared to 
the observed number of zeros of the extremal functionfo (x). 
Its virtue is mainly that it has a weakp dependence, so that it 
stays finite when the number N of jumps of p(x) increases 
indefinitely [with the total variation of p(x) staying finite]. 

V. MINIMIZATION OF X2 WITH A FINITE NUMBER OF 
LINEAR CONSTRAINTS 

In this section, we consider a subset ffl;c (5;W) of ffl 
[Eq. (2.1)] consisting of those function that assume preas
signed values at m given points 51' 52,oo',5m' 5iER, 15i 1< 1, 

f(5i)=WO i=I,2,oo.m. (5.1) 

The set of points {Wi };n~ I ER m for which there exist interpo
lating functions in ff I' satisfying (5.1), is denoted by Y m 

[cf. Eq. (2.5), with N = m]. We wish to discuss problem 
(Ac ): find the minimal value of X2 ( p;h - f) over 
ffl;c (5;W) and describe the extremal function. This discus
sion is a prerequisite to the (numerical) solution of problem 
(C) of the Introduction. 

We start with two preparatory steps. The first step is a 
more accurate description of the set Y m' obtained from the 
Schur-Pick-Nevanlinna interpolation theory. We state this 
as the following lemma. 

Lemma 5.1: Consider for every {Wi };n~ lEY m the qua
dratic form in a, 

1-w.w 
F(a) = I I } aiaj • (5.2) 

i,j 1 - 5i5j 

Then F( a) is strictly positive definite if wEint Y m == Y m 

and vanishes for some set of values {aJ;n~ J =1=0 if 
WEJY m ( = Y m \ Y m ). If WEJY m there exists just one 
functionfEff J, obeying (5.1). This function is a Blaschke 
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product with at most m - 1 zeros. If WEY m' there exists an 
infinite set of functions in :7 1 satisfying (5.1). 

We do not give a proof of this statement, since it may be 
easily abstracted from Ref. 22, in conjunction with the algor
ithms of Refs. 1, 15, and 23. As a consequence of it, we see 
that, if {Wi};:' 1 EB.J" m' the problem of minimization is tri
vial and Ic (n;x ) is uniquely determined by the set 
(Si;WJ7' 1 with the interpolation method of Refs. 1, 15, and 
23. 

The second preparation is formal and necessary for an 
easy application of the results of Sec. II-IV. The first step is 
to enlarge the functionp(x) defined on [- a,b] to a new 
function Pc (x) of bounded variation over an interval 
[ - a, ,8] C ( - 1,1), containing [ - a,b] u{sJ7'= 1 by de
claring all the points Si to have unit measure and the set of 
points in [ - a,,8] outside [ - a,b] UUi }7'= 1 to have zero 
measure. [We assume that, if some of the s;'s lie inside 
[ - a,b], they are of measure zero with respecttop(x).] We 
define further a new data function he (x) by he (Sf) = Wi and 
he (x) hex), for allxE[ a,b ],X#Si' Naturally, L 2( Pc) 

is the Hilbert space of pc-measurable functions g(x) for 
which 

X2
( Pc;g)=llgll~ = f~a g(x)2dpe (x). (5.3) 

We identify L 2 ( p) with that subspace of L 2 ( Pc) made up of 
functions g(x) with g(Si) = 0. We may clearly identify 
L2(pc) with L 2(p)®R m and write, e.g., hc=(h,w), 

hEL 2( p), W = {wJ7'= I' Further, we denote by Wi (x) the 
characteristic functions of the points Si (Wi (Sf) = l,w i (x) 

= O,x#s;). Clearly, wiEL 2( Pe) and, if/EL 2( Pe)' 

(wi>/)e =/(si)' (5.4) 

and (wi,g)c = 0, if gEL 2( p). In fact, one reason for intro
ducing L 2 ( Pc) is that the value of I at Si is a continuous 
linear functional in this space. With this, we rewrite the dual
ity relation (2.14) in a form valid in L 2 ( Pc); in the rest of 
this section we suppress the explicit Sand W dependence of 
:71;c; the symbol Y1;c is clear from Sec. II [following 
(2.1) ], 

inf IIh - I lip = inf lihc - Ille 
fJ,;c ./EY';c 

(5.5 ) 

Now, as in Sec. II, one sees that, since YI;c is convex and 
closed, there exists a unique io;c (x) EY I;c on which the infi
mum in Eq. (5.5) is attained; also from general arguments 
(see Ref. 31,p. l36, Theorem 1), an extremal no;e (x) on the 
right-hand side exists and is in fact unique, in view of the 
equalities [cf. Eqs. (2.16) and (2.17)] 

sup{(nO;c,f)p: IEY1;c} 

( ) 
_ hex) - lo;c (x) 

= (no;c ,/o;c ) p' no·c x - -----'----, Ilh(x) -io;c(x)lip 

(5.6) 
One of the important difference with respect to Secs. 11-

IV is that the set Y I;c is not symmetrical with respect to the 
origin [it does not contain I (x) and - f (x)]. As a conse-

2671 J. Math. Phys., Vol. 27, No. 11, November 1986 

quence, the second term on the right-hand side of (5.5) is not 
necessarily positive. However, Theorems 2.1 and 2.2 can be 
easily generalized to the set :7 I;c' using Lagrange multipli
ers. 

Theorem 5.1: Let n(x)EL 2(p). There exists a unique 
Ic (n;z)E:7I;c' such thatsup{(n,f )p:/E:71;J is attained on 
it; Ic (n;z) is a finite Blaschke product. 

The existence of Ic (n;x) follows from general argu
ments. The setY1;c inL 2(p) is closed in the norm (2.1) and 
convex; hence it is weakly closed and, since it is contained in 
the set II I lip <:;A for some A > 0, it is weakly compact. Thus, 
any linear (continuous) functional attains its maximum on 
it. If {w}7'= 1 EB.J" m' the statement of the theorem follows 
from Lemma 5.1. If {Wi }EY m' it is convenient to switch to 
L 2 (Pc ) and recall that, as a consequence of a general 
theorem concerning Lagrange multipliers (see Ref. 31 and 
Appendix C), there exist numbers Ai (not necessarily posi
tive) such that [using Eq. (5.4)] 

(n,lc(n;x»c = sup (n,f)c 
jE.71;c 

= su,e [(n,f)c + LAi(w"/)c - Wi)]' 
fEY, i 

(5.7) 
where the supremum on the right is achieved at the same 
Ic (n;x). The problem of maximizing the right-hand side of 
(5.7) over :71, for any choice of Ai> is the same as the one 
solved by Theorem 2.1, with the only replacement 
n(x) --+n;., (x), where 

n;., (x) [(1 + itl A 7)112] -'( n(x) + + AiWi(X) ). 

(5.8) 
We conclude from Theorem 2.1 that Ic (n;z) is indeed a fin
ite Blaschke product. The uniqueness of Ic (n;z) is obtained 
through the following consideration: if two different 
Blaschke products Icl ,1c2 lead to the same extremal value of 
(n,f)p over :71;e, then their convex combination Ic", 
= f-llcl + (l - f-l) 1c2 for any f-l, 0 <f-l < 1, leads to the same 

value. However, for no value of f-l # 0, 1 can Ic", (0) have unit 
modulus for all 0, unless Icl = 1c2' as is easy to verify. This 
contradicts the fact that the extremals are Blaschke products 
only and proves Theorem 5.1. 

We may now obviously state, using the first of Eqs. 
(5.6), the following theorem. 

Theorem 5.2.: The infimum of X2 (p;h - f) over:7 l;e is 
realized by a finite Blaschke product io;c (z). 

In the following, we shall assume, unless otherwise stat
ed, that wEY m' Then, as a consequence of Lemma 5.1, the 
extremal Blaschke products in Theorem 5.1 (and thus the 
one in Theorem 5.2) containp;;;.m zeros. Further, Lagrange 
multipliers Ai exist, so that (5.7) holds. This latter allows a 
generalization of Theorems 3.1 and 3.2 of Sec. III to problem 
(Ac ). We notice namely that many arguments ofSecs. II-IV 
may be used without change, except for the replacements 
n(x)--+n" (x), [-a,b]--+[ -a"B], k(n;z)--+k;.,(n;z), 
L(n;z) --+L;., (n;z), for example: 

k ( ) 
k(n;z) +:I7' 1 Ai [lI(Si - z)] 

;., n;z = --------='----=.,.--...::... 
(1 + :I;:' 1 A f) 1/2 

= (n;., (x),lI(x z}}e. (5.9) 
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In particular, LA (n;z) satisfies 

LA (n;z) = 21T(nA (X), P(x;z)fc (n;x}}c. (5.10) 

Expressions (5.9) and (5.10) may be written for any set 
{Ai};: I; we shall, however, need in the following only the 
"correct," but unknown so far, A/S, for which Eq. (5.7) 
holds. In fact, we may characterize these Ai'S by the follow
ing lemma. 

Lemma 5.2: If the Blaschke product that maximizes 
(nA,/)c over Y I assumes the values Wi at the points Si 
(WEY m)' it also maximizes (n,/)p over YI;c' 

The proof is given in Appendix C. With this, we see that 
the generalization of Lemma 3.2 to the present case reads as 
the following lemma. 

Lemma 5.3: Assume W = {Wi }7'= lEY m' The Blaschke 
productB(x;a) is the extremal function fc (n;x) associated 
to n(x) by Theorem 5.1 if and only if m real numbers Ai 
exist, so that 

B(Si;a) = Wi> (5.11) 

(nA(x),B(x;a)P(x;ai)fai)c =0, i= 1,2, ... ,p, (5.12) 

(n A (x) ,B(x;e)P(x;eilJ»)c ;;;>0, o<e < 21T. (5.13 ) 

Notice, at this stage we do not yet know whether the 
Lagrange multipliers associated to a given n (x) and to a set 
{Si ;Wi }7'= I , wEY m' are unique. This is settled by the follow
ing lemma. 

Lemma 5.4: If {Wi }7'= lEY m' there exists a unique set of 
m Lagrange multipliers Ai' for which (5.7) holds. 

Proof' Assume the opposite were true and write out con
ditions (5.12) for two such different sets {AJ7'= I' {A ;}7'= I' 
By Theorem 5.1, fc (n;x) = B(x;a) is the same in both cases 
and thus the p zeros a i are the same. By Lemma 5.1, p;;;>m. 
We multiply each of the equations (5.12) by the normaliza
tion factor (1 + l:i A ~) 1/2 and subtract the equations corre
sponding to the same a i from each other. Using Eq. (5.8) 
and Eq. (3.15), we obtain a set of p homogeneous equations 
for the m quantities aAk = Ak - A k: 

m aB . L aAk - (sk;a) = 0, 1= 1,2, ... ,p. 
k= I aai 

(5.14 ) 

However, the rank of the matrix II (aB faa i ) (Sk ;a) 117::I~pm is 
precisely m. Indeed, if B(Sk;a) #0, for all k, this follows 
directly from Eq. (3.15) and the identity 

det) aB (Sk;a») m =(.:fi 21TB(Si;a») det(P(Sk;ai ) )m, 
aa, "k=1 ,=1 a, I 

(5.15) 

where the last determinant is nonvanishing, by Eq. (2.12) 
evaluated for complex e. If, however, say, B(sm;a) = 0, 
Sm =am , one verifies using Eq. (2.12) that the limit 
am -Sm of the right-hand side of (5.15) exists and is non
zero. This shows that aA k = 0, for all k, and ends the proof 
of Lemma 5.5. 

We summarize next our knowledge in more geometrical 
language: by Theorem 2.1, for any element (n,A.) of L 2 (pc ) 
=L 2(p) ®R m, there exists a Blaschke product B(n;).;x) 
that realizes38 sup{(n,A.;!)c:/EYI} (see Ref. 39). It may 
happen thatB(n;).;z) hasp<m - 1 zeros [as it does, e.g., if 
(n;).) is of the special form (0;).)] in which case the values 
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{Wi};: I lie on aY m' The set of elements (n).) whose asso
ciated B (n;).;x) have this property make up a closed cone % 
in L 2 (pc ). If (n;).) belongs to ff=C%, the values Wi 
= B(n;).;Si) lie in Y m' At fixed n, there is a certain allowed 

region for A, such that (n,A.)E../Y'; as A moves through this 
region, the corresponding B(n;).;Si) moves throughout 
Y m' by Lemma 5.4. By Theorem 3.1, we can generate pairs 
(n,A.);B(n;).;x») by means of the solutions of an H 2(D) 
problem [with respect to the scalar product in L 2 (Pc) ] . Out 
of these pairs, we can pick the solution of our problem, i.e., 
the correct Lagrange set (A I,A.2, ... ,A.m ) by solving for A the 
equation 

Wi = B(n;A;Si), i = 1,2, ... ,m. (5.16 ) 

This we can do, by Lemma 5.4. 
Following Sec. III, we consider, for given pairs (N;A) 

EL 2 (pc), the functions 

f/3 N(x) + l:.A.(().(x) 
Fo;c (N;A;Z) = ' " dpc (x) 

-a 1-xz 
(5.17) 

and their canonical decomposition 

Fo;c (N;A;z) = B(N;A;Z)Eo(N;A;Z). (5.18) 

By Theorem 3.1, B(N;A;z) realizes sup{(n,A.;!)c:/EYI} 
with 

n(x) = N(x)Eo(N;A;x), ( 5.19) 

Ai = AiEO(N;A;Si)' i = 1, ... ,m. (5.20) 

If it happens that the point with coordinates {Wi }7'= I given 
by (5.16) lies in Y m' then, by Lemma 5.2,B(N;A;z) realizes 
even sup{(n,J)p: /EYI;c (S;w)}. 

We generalize next the integral equation (3.47) to the 
situation of this section. The role of the unknown is played 
by a pair (No;c;Ao) inL 2(Pc). From the second ofEqs. (5.6) 
and from (5.16), we obtain, by means of (5.18)-(5.20) the 
set 

no;c (x) = No;c (x)Eo(No;c;Ao;x) = hex) - B(No;c;Ao;x), 

(5.21 ) 

(5.22) 

It is easy to show that the set of equations (5.21) and 
(5.22) has a unique solution ifwEY m' Since, given {wJ7'= 1> 

there exists a unique no;c (x) satisfying 

no;c(x) =h(x) -/(no;c;x) (5.23) 

[cf. Eq. (5.6)], it is enough to show that the set of equations 
given by (5.19) and (5.22) has a solution for any pair (n;w) 
in L 2(p) ® Y m' Now, the mapping W c: L 2(pc) 
-+L 2(p) ® Y m given by Eqs. (5.19) and (5.22) may be 
written as 

(5.24) 

with W; themappingL 2 (Pc ) -L 2(pc) given by (5.19) and 
(5.20) and pjJ the mapping R m-+Y m given, at fixed 
nEL 2(p), by (5.16). But Lemma 3.5 applied to L 2 (Pc ) 
shows that W; is one-to-one and onto and Lemma 5.4 shows 
that pjJ is invertible, if wEY m' Clearly, the solution 
(No.c;Ao) lies in the set ff2 = (If?;) -Iff. We conclude that 
the ~et of equations (5.21) and (5.22) has indeed a unique 
solution. 
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We now state directly the analog of Theorem 3.2. Let 
.1# e (N;A) be the mapping from 

Jl/2CL 2(Pe) ->L 2(p) ® Y m 

given by 

.1#e (N;A;X) = (N(x)Eo(N;A;X) + B(N;A;x),B(N;A;Si»)' 
(5.25) 

Recalling the definition of he (x) preceding Eq. (5.3) and 
assuming weY m' we state the following theorem. 

Theorem 5.3: For any hex) outside YI;e' the equation 

.1# e (N;A;X) = he (x) (5.26) 

has a unique solution in Jl/2' The operator .1# e has a contin
uous Frechet derivative with a bounded inverse at all points 
of Jl/2 such that Ye;o (N;A;z) , Eq. (5.18), does not vanish 
on Izl = 1. At those points of Jl/2' which do not have this 
latter property, but for which conditon (H), Sec. III, is true, 
the operator whose action L 2 (Pc ) is given by the Gateaux 
differential lJ.1#e (N;A;lJN;lJA) also has a bounded inverse. 

It may appear unfortunate that we have to restrict the 
statement to the setJl/2' whose description is complicated. It 
turns out, however, that, in a numerical search, at least if m 
is small ( = 1 or 2), we never get outsideJl/2' [That is, the 
functions F(N;A;z), Eq. (5.17) have p>m zeros in Izl < 1.] 

Proof Consider first the situation when Fe (N;A;Z) does 
not vanish on Izl = 1. We write .1#e as the composition 
.1# e = .1#; 0 f!JJ 0 1&'; with .1#; the mapping from L 2 (p ) 
® Y minto itself given by n(x) ->n(x) + B(n;x;w), w->w; 
B(n;x;w) is the Blaschke product realizing the extremum in 
Theorem 5.1, with the w dependence explicitly shown. We 
shall show that .1#; has a continuous Frechet derivative; 
then, by the convexity argument of Theorem 3.2 applied to 
Y I;e [in L 2 (p ) ], it follows easily that this derivative has a 
bounded inverse. Further, by Lemma 2.6 applied in L 2 (Pc), 

the derivative al&';/a(N;A) exists, is continuous, and has a 
bounded inverse. Thus, we have to show that af!JJ faA exists 
and is invertible at points of JI/, i.e., that the Jacobian 
(aWJaAk );:'k = I is nonvanishing. 

To this end, we use Lemma 3.3 in L 2 (Pc ) and consider 
the decompositions (5.18) corresponding to two functions 
Fe,o (N;A;Z), Fe;o (n + t1n;A + t1A;Z), where N, A, !!.N, t1A 
are so chosen that l&'e(N;A) = (n;Jc), l&'e(N +!!.N; 
A + t1A) = (n;A + t1A) for a given n(x) and given sets 
{A)7'= I, {t1A)7'= I' Such a choice is possible by Lemma 
3.5 applied in L 2 (Pc)' We consider now the variation of the 
functional (N,A;F)e as the Blaschke product B(N;A;Z) 
-B(n;A;Z) changes to B(n;A + t1A;Z); the functional de
creases, by Lemma 3.3. Equation (3.63) gives a quantitative 
expression for this change: 

(N,A;E(N;A)B(n;A»)e - (N,A;E(N;A)B(n;A + t1A»)e 
m 

= - (n,t1A B(n;A»)p - L Ai t1A Wi 
;=1 

(5.27) 

where the symbols t1AB(n;A), t1A wi denote finite differ
ences. On the other hand, 
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(N + !!.N,A + t1A;E(N + !!.N;A + t1A)B(n;A + t1A»e 

- (N + !!.N,A + t1A;E(N + !!.N;A + t1A)B(n;A»)e 
m 

= (n,t1A B(n;A»)p + L (Ai + t1Ai )t1A Wi 
i=1 

= ~ f IE2(N + !:JV;A + t1A;O) IIt1AB(n;A;O) 12 dO>O . 

(5.28) 
We now add Eqs. (5.27) and (5.28), write t1Ai =PiE 

for some fixed nonzero vector {Pi }7'= I , divide through by c, 
and let E->O. The finite differences go over into derivatives, 
which exist by virtue of the fact that the mapping 1&'; has a 
bounded inverse Frechet derivative. We obtain 

i Pi awi Pj = j IE2(N;A) Iii Pi aB(n;A;O) 12 dO. 
;,j= I aAj j i= I aA; 

(5.29) 

The last expression is strictly positive, for any choice of 
the {P)7'= I #0, if the functions (aB faA; )(n;A;O) are lin
early independent. We show briefly that this is the case in
deed. To this end, we notice that, under the assumption that 
the zeros of B(n;A;Z) are simple, it follows from (3.52) that 
(a faA; )(B(n;A;Z») is a meromorphic function of z; thus if 
the functions (aB /aAi ) (n;A;O) were linearly dependent, 
nonzero Pi'S would exist so that, for all z (p>m, since 
weY m)' 

i P; ± B(z;a) P(z;aj ) aaj =0. (5.30) 
i= I j= I aj aAi 

This implies, by the linear independence of the P(z;aj ) that, 
for allp, 

m aa. L Pi -' = 0, j= 1,2, ... ,p. (5.31) 
i=1 aA i 

However, differentiation of any subset of m identities (5.12) 
with respect to Ai> multiplication of the results by Pi> and 
addition over i yields, using (5.31), 

m aB L Pi -(5i) = 0, k = 1,2, ... ,m, (5.32) 
i=1 aak 

and this implies, with the reasoning of Lemma 5.4 that all 
Pi = O. Thus, the right-hand side of (5.29) is positive for any 
choice of the Pi and consequently the Jacobian 
(aWJaAj );:'j= I is nonzero. Thus, I&' e = f!JJ 0 I&';has an in
vertible Frechet derivative. It also follows that we can solve 
(5.16) at fixed left-hand side and obtain a function 
A = A (n;w;5) with a continuous Frechet derivative with re
spect to n(x). Substituting it in B(n;A;x), xe[ - a,b], we 
obtain a Frechet differentiable mapping with respect to n (x) 
from L 2 (p ) into L 2 (p). It follows that .1#; has a continuous 
Frechet derivative at (n;w), which, as argued at the outset, 
must be invertible. This disposes of the situation 
Fe (N;A;Z) #0, for Izi = 1. 

Now, as in Sec. III, if Fe (N;A;Zo) = 0, for zo on Izl = 1 
and the zero is simple [cf. condition (H), Sec. III], we may 
build distinct "exterior" and "interior" limits for a I&' J 
a(N;A) and these, by Lemma 3.6, have bounded inverses. It 
follows that the derivative af!JJ / a(n;Jc) has two distinct lim
its at points (n) = 1&'; (N;A). One must show that both 
these limits have nonvanishing Jacobians. This is done by 
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takinl,the "exterior" and "interior" limits, in turn, (nk,A.k) 
_ (n,A.), at fixed directions Pj, for both sides of the identity 
(5.29) and verifying that the right-hand side remains strictly 
positive in this process. The limit of the left- and right-hand 
sides, as (n,A.)-(n)) exist in both cases, since the corre
sponding limits of afff c (N;A)la(N;A) as (N,A)-(N,A) 
exist. As above, we may then look for consequences of the 
hypothesis that, for some {f3j};: I' the right-hand side of 
(5.29) would vanish. For the "exterior" limit, there is no 
change in the argument and we can derive again Eq. (5.32) 
and thus conclude (aw;laAj)e(n;l') #0. In the "interior" 
process, Eq. (5.31) is true only for those zeros staying in 
Izl < 1; it has to be modified for those zeros that approach 
Izl = 1. However, one can verify t~at conclusion (5.32) is 
still correct, so that (aw;laAj)j (n,A.) #0. 

Finally, it follows that 

a.I£; = (1 + a&J + a&J aA )(n;w) 
an an aA an 

has two distinct limits as (n,w)-(n,w) according to the 
position of (n,w) with respect to the image through 
afffJa(N,w) of the plane Re(8ap+ 1 lap + I) ~ O. Taking 
the limit n,w-n,w in Eq. (3.75) [referring to .71;c (s;w)], 

we conclude that, as in Theorem 3.2, both (a.I£;lan)e' 

(a.I£;lan)j are invertible. Now, both (a.I£ela(N;A))e,j 
have the same action on the plane Re(8ap+ 1 lap + I) = 0 
and .I£ e is one-to-one in a neighborhood of he. The argument 
of Lemma 3.7 leads then to the statement of the theorem. 
This ends the proof. 

Theorem 5.3 justifies the performance of an iteration of 
the Newton type for the solution of problem (Ae). 

We now present briefly the mechanism that limits the 
number of zeros of the extremal function of problem (Ae), 
leading to a statement similar to Theorem 4.1. With the 
changeL 2(p) -L 2(Pe), we may take over many of the argu
ments of Sec. IV. There are, however, two difficulties, with 
one common root. 

(a) The argument of Lemma 4.1 provides a bound like 
( 4.16) [or (4.21)] in terms of the number p of zeros of the 
extremal function io;e (n;x), 

l(sj;,t,P(x;O)(7j(x))el<;Cj;ey~=kj;e' i= 1,2, (5.33) 

with Cj;e, Ye obtained similarly to Cj, yofEq. (4.16) with the 
geometry appropriate to the replacement [- a,b] 
-[ - a,p]. In Eq. (5.33), Sj;,t (n;x) is related to n,t (x), Eq. 
(5.8), by Eqs. (4.14) and (4.15). On the other hand, as one 
sees from Eqs. (5.5) and (4.30), one needs to show that, asp 
increases, the quantities S; (n;x) related to n(x) by (4.14) 
and (4.15) and which do not contain the Lagrange multipli
ers A; tend weakly to zero, as p increases. 

(b) The set .71;e is asymmetrical, so that, as observed 
following Eqs. (5.6), we have to place a bound also on the 
second term in the duality relation (5.5). With the notation 
ofEq.(5.1O), it follows from the saturation of inequalities 
analogous to (2.23) that 

1 A: ( )1/2 
(n,fc(n;x))p = 211" j L,t (n;O) dO 1 + ~A; 

(5.34 ) 
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The integral is bounded by the estimates (5.33) and vanishes 
exponentially with p. Thus, we have again the task of show
ing that, for a sequence {nk (x)}k'= 1 such that fc (nk;x) 
have an increasing number of zeros, the corresponding Aj,k 
tend to zero. Thus we need the following lemma. 

Lemma 5.7: For any Ee > 0, there exists K,t (Ee) so that 
1..111 <Ee, 1= 1,2,oo.,m,if kj;e <K,t (Ee), i = 1,2. 

Proof: We apply Lemma 4.3 inL 2(Pe) choosing in turn 
g(x) = WI (x), 1= 1,2,oo.,m [WI (x) is the characteristic 
function of SI]' Let the corresponding functional be 
CP(WI;')' Then, with i = 1, 

..11(1- STWT) 
CP(WI;SI;,t) = - (wl,su (n;'))e = (1 l:m ..12) 1/2 

+ J=I J 

(5.35) 

The statement of the lemma is then obvious, if we choose 
K,t (Ee) = min;,1 kO;j (WI;Ej;I)' where kO;i is the function of 
Lemma 4.3 and Ej;1 is an appropriate function of Ee , obtained 
from (5.35) [e.g., if Ee <; (1lm) 1/2, E1;1 = Ee (1 - S TWT)/2]. 
This ends the proof. This lemma shows again the advantages 
of introducing L 2(Pe)' 

With this, the problem of obtaining a bound on the num
ber of zeros of fc (n;x) is solved with precisely the same 
argument and qualitatively with the same result as in 
Theorem 4.1. We skip the details, to be obtained from Ref. 
40. 

VI. THE STABLE ANALYTIC CONTINUATION OFF A 
CERTAIN SET OF INTERIOR POINTS 

In this section, we show how the developments of Secs. 
II-V allow us to give a numerical solution to problems (B) 
[and (Be)] and (C) of the Introduction. 

In relation to problem (B), we recall the definition of 
the stable extrapolate: to each E> 0, we associate a data func
tion hE (x)eL 2 (p), so that 

(6.1 ) 

where !, (x) is the true, unknown, analytic function, 
!,Ell'R (D), that is being measured. Consider the family 
CP(EA) offunctions fEll'R (D), for which 

X2(p;hE - f)<;X~E. (6.2) 

Any fECP(E;hE) is a valid extrapolation of hE to Izl < 1. A 
procedure of analytic continuation is a prescription for 
choosing a unique Ie out of CP(E;hE), given E and hE" The 
procedure is called stable (in Izl < 1) if, as E-D, for any 
choice of hE in (6.1), Ie (EA;z)-!, (z), for allz in Izl < 1. 
The function Ie (E;hE;Z) chosen by a stable procedure is 
called a stable extrapolate to Izl < 1. 

Consider now the following prescription: for each E and 
hE (x), define 

Mo(EA) =inf{llfll",: x2(pA - f) <;X6 E, fEll'R(D)} 

(6.3 ) 

[cf. Eq. (1. 8) ]. We show below that there exists a unique 
Ie (EA)Ell 'R (D) which realizes the extremum in (6.3). 
The claim is that Ie (E;hE) is a stable extrapolate to /z/ < 1 
(cf. the related problem of Ref. 41 ) . 

This is a consequence ofTykhonov's criterion for stabil-
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ity (Ref. 4, p. 28, §1l), which we may state in our case as 
follows: If the set of extrapolates Ie (E), for 0 < E < Eo is con
tained within a set Y, compact with respect to the uniform 
convergence on compact subsets of Izl < 1, then!. (E) pro
vides a stable extrapolation of the data to Izl < 1. Now, the 
set off unctions uniformly bounded in Izl < 1 makes up such 
a compact set (see, e.g., Ref. 29, Theorem 14.6) and one has 
to show that all functions defined by (6.3) obey such a 
bound, i.e., that the sequence Mo(Ek;h Ek ) is bounded as 
Ek -+0. But It(z)e<l>(E;h E), for all E, so that Mo(E;h E) 
< II It II 00 < 00, which shows that Tykhonov's criterion is sat
isfied. We now prove the following lemma. 

Lemma 6.1: There exists a unique!. (E;h E) which real
izes the infimum in Eq. (6.3). It is of the form MoBMo (z), 
with BMo (z) a finite Blaschke product. 

Proof: One considers the function of M [recall definition 
(2.1) ] 

(6.4) 

It is easy to verify that X min (M) is in fact a strictly monotoni
cally decreasing convex function of M on some interval 
[O,Mmax ] (Mmax may be infinite). Strict monotonicity fol
lows from the uniqueness of the function in Y M that realizes 
the infimum. From Theorem 2.2, it follows it is of the form 
MBM(z), with BM(z) a finite Blaschke product. The two 
inequalities [pCb) - p( - a) = 1], 

X~in (0) - X~in (M)<M(M + 211hEllp) (6.5) 

and 

- (hE ) 8 
Xmin(M)<MX p; M+8 -BMH + M+8"hE"p 

<Xmin (M + 8) 

8 -
+ M + 8 (lihElip - Xmin (M + 8)}, M>O, 

(6.6) 

show that X min (M) is a Lipschitz continuous function of M. 
Therefore,it assumes any value between Xmin (0) = IIhE lip 
and X min ( II It II 00) exactly once. In particular, Mo is the 
unique root of the equation 

Xmin (Mo) = XoE. (6.7) 

The function !.(E;hE) realizes Xmin(Mo)' This ends the 
proof of Lemma 6.1. 

We now prove a similar statement for problem (C) of 
the Introduction. Let 

a(M;E) = sup{f(xo): feY(M;E)}, (6.8) 

{3(M;E) = inf{f(xo): feY(M;E)}, (6.9) 

where 

Y(M;E) = Y Mn{f X(p;h - f) <XoE, feL 2(p)}. 

(6.10) 

The functions a(M;E), {3(M;E) are, at fixedM, defined only 
for XoE>Xmin (M). We prove, namely, the following lemma. 

Lemma 6.2: There exists a unique function in Y(M;E) 
assuming the value a (M;E) atxo. It is of the formMBM (z), 
with BM(z) a finite Blaschke product. The same is true for 
{3(M;E). 

Proof: We consider the function 
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Xmin (fo;M) = inf{x(p;h - f): feY M; f(xo) =/o}, 
(6.11 ) 

and shall show, similarly to Lemma 6.1, that it is a strictly 
monotonically increasing, Lipschitz continuous function of 
/0, on the interval [fOM (xo),M], where /oM (z) is the 
unique function of Y M on which X min (M) is achieved. It is 
convenient to introduce 

X min (/o;M) = inf{x(p;h - f): feY M; f(xo) > /o} 
(6.12 ) 

and show first that it is attained on the same function as 
X min (/o;M) (and thus has the same value). To this end, it is 
of advantage to switch to the space L 2 (Pc ) (see Sec. V), 
where f(xo) = (wo,J)c and recall that (Ref. 31, p. 217, 
§8.3, Theorem 1) in view of the convexity of Y M' of the 
functional X (p;h -f) and of the constraint 
/0 - (wo,J) c <0 (which is fulfilled at least by f = M) a 
Lagrange multipler 11<0 exists so that 

Xmin (fo;M) 

= inf{x(p;h - f) + 11 (wo,J)c - fo): feY M}' 
(6.13) 

Further, for the extremal function 1,11 (wo,]) c - fo} = O. 
If (wo,]) c =/; fo' we conclude that 11 = 0 which means 
X min (fo;M) = X min (M). This is, however, impossible, by 
Theorem 2.2, if fo > fOM (xo), since X min (M) is attained on a 
unique function fOM (z). 

It is thus evident that X min (/o;M) = X min (fo;M) and, 
in view of Theorem 5.2, that the unique extremal functions 
are the same. As in Lemma 6.1, it follows now that 
X min (fo;M) is a strictly monotonically increasing, convex 
function of fo' on [fOM (xo),M]. [Strict monotonicity fol
lows from the uniqueness in Y M of the element achieving 
X min (fo;M).] To show the Lipschitz continuity of 
Xmin (fo;M) , we consider two values /o1,J02,JOM(XO)</o1 
< /02 <M and their corresponding extremal elements in 
Y M;c (xo;/o;), MB(z;/o;)' i = 1,2. Then, using the Schur
Pick-Nevanlinna algebra (Refs. 1 and 23), we may write 
(i = 1,2) 

B(z;/o;) = /oJ M :}: P(z)B; (z) (6.14) 
1 + /o;{3(z)B; (z)IM 

with P(z) = (z - xo)/( 1 - zxo) and B; (z) are Blaschke 
products. Then 

-. I".M ('h _ M /o21M + P(x)B1 (x) ) 
Xmm (J02' ) <X p, 1 + /ozP(x)B I (x)IM 

<X(p;h - MB(x;/ol)} 

+ M ( 
. f021M +P(x)BI(x) 

X p, -
1 + fol3(x)B I (x)IM 

_ /0 11M 7 P(x)BI (x) ) 
1 + fot/3(x)B I (x)IM 

<Xmin (fol;M) 

1 + 11M + lf02 - fOIl , - 2' 
[mlllxE [ _ a,b J (1 - 1{3(x) I)] 

(6.15 ) 

which shows the Lipschitz continuity of X min (fo;M). With 
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the same reasoning, we establish that X min (/o;M) is a strictly 
monotonically decreasing, Lipschitz continuous, convex 
function of 10 on the interval [ - M,JOM (xo)]. It follows 
that the equation for 10' 

Xmin (/o;M) = XoE (6.16) 

has, for each E>O, at most two distinct roots Ill' 1l2' 
- M <'Il I <. 10M (xo) <'1l2 <.M; we agree to let Il I = - M, if 

XoE>X(p;h(x) +M) andll2 =M, ifXoE>X(p;h(x) -M). 
Now, if IOM(xo)<.lol<'1l2' there exist functions lEY M' 
x(p;h - I) <'XoE assuming the value 101 at xo, e.g., 
MB(z;!ol)' However, if /01 > 1l2' in view of the equality X min 

(M;/o) = Xmin (M;!o) , there exist no such functions. Thus, 
112 = a(M;E) and, similarly, III = {3(M;E). This ends the 
proof of Lemma 6.2. 

With this, problems (B) and (C) have been reduced to 
the solution of two equations, (6.7) and (6.16), with known 
right-hand sides. The evaluation of the left-hand sides for 
given M and 10 require the numerical solution of problems 
(A) and (Ae). The Lipschitz continuity of Xmin (M) and 
X min (M;/o) , Eqs. (6.5) and (6.6) and (6.15), show that we 
can achieve any desired precision in the determination of the 
roots of (6.7) and (6.16) by solving problem (A) or (Ae) 

only for a finite set of values of M or of 10' Thus, we have to 
describe in detail the numerical computation of Xmin (M), 

X min (M;!o) , for given M and 10' 
Before turning to this, we make two remarks. 
(a) There is no difficulty to allow for further constraints 

in problems (B) and (C), e.g., require their solution under 
the conditions I (Si) = Wi> for several fixed points Si and 
values Wi' One can always reduce the problem to a sequence 
of numerical solutions of problems (Ae ). 

(b) In a series of papers (see, e.g., Refs. 42-45), an 
equivalent method for the solution of problem (C) was used. 
One computes, for every fixed E, the value 

MO(E;!O) = inf{11/11 00: IEll R (D), 

X(p;h - I) <'XoE; I(xo) =/o}· (6.17) 

The set [{3(M;E) ,a(M;E)] of possible values atxo is given by 
the set of values 10 for which Mo(E;!o) <.M (see, also Ref. 
40). The curves Mo(E;/o) are sometimes quite spectacular, 
and may be used to indicate the quality of the extrapolation 
even if M is unknown. However, their computation requires 
more effort in our case than the solution of Eq. (6.16). 

In principle, according to Theorem 4.1 and to the dis
cussion of Sec. V, following Lemma 5.7, the solutions of 
problems (A) and (Ae) are equivalent to minimizations in a 
finite-dimensional space of parameters. It is shown in Ref. 40 
that the dimension of this space may be chosen independent
ly of the value of M. However, as shown on examples in Sec. 
VII, the bounds on the dimension of this space are consider
ably larger than the number of factors of the extremal func
tion, which is observed in actual calculations. The method 
based on the solution of the nonlinear integral equation, 
Eq. (3.47) [or of the set (5.21) and (5.22)], turns out, how
ever, to be quite efficient. 

Before considering this, we discuss an apparently 
straightforward method of numerical solution, which uses 
Lemma 3.5. One tries, namely, to minimize directly the non-
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linear functional of N(x)EL 2(p), 

X2(p;h - B) = (h(x) - B(N;x),h(x) - B(N;X»)p' 
(6.18 ) 

This functional is Frechet differentiable at all N(x)EL 2(p), 
with the exceptionofthoseN(x) for which zeros ofFo(N;x) , 
Eq. (3.36), cross Izi = 1; there is no difficulty to account for 
the latter (see Lemma 3.7). One may then attempt to mini
mize (6.18) by the method of steepest descent (see Ref. 31, 
§1O.5, Ref. 46). Since the action of (aB(N;x)laN) on 
8NEL 2(p) is obtained through the finite set of linear func
tionals (aaJaN) [Eq. (3.59)], the procedure is equivalent 
to a minimization with respect to the parameters ai' whose 
number is varied in a controlled manner, when zeros of 
F(N;x) cross Izl = 1. Lemma 3.5 is invoked to make sure 
that we scan in fact the whole space of normals n (x) EL 2 (p ) . 

This is an improvement of principle over the direct minimi
zation described above. However, it has the drawback that it 
is not well defined everywhere in L 2 (p ). In other words, if 
the Frechet derivative of (6.18), which is the element of 
L 2(p) given by 

~~ (N;X) = - 2 (;!(N;X) r(h( . ) - B(N; . »), 

( 6.19) 
vanishes at some N(x), it does not follow the corresponding 
B(N;x) is the extremal Blaschke product. To understand 
this, we return to Eqs. (3.9) and (3.10) and remark that, 
replacing there n(x) by hex) - B(N;x), problem (A) may 
be regarded as that of finding the unique number p and the 
unique set ofp values for the a/s so that (3.9) and (3.10) are 
satisfied. There are, in general, may solutions to (3.9) alone; 
all of them lead to vanishing ax2/aN(N;x) , as is easily veri
fied. The remarkable fact is that only one of them-the ex
tremal function-satisfies (3.10), i.e., with the replacement 
above: 

(6.20) 

No similar problems of false extrema appear if one at
tempts a solution ofthe integral equation (3.47). This may 
be achieved by minimizing: 

~(N) = IId(N)(x) - h(x)II~. (6.21) 

The functional ~(N) has only one finite local minimum, at 
the solution No(x) of Eq. (3.47). Indeed, at any point 
NI(x)=!=No(x), the (Gateaux) derivative of~(N) in the 
direction 8N is given by 

a~ 
aN(NI )8N = 2(d(NI ) - h,8d(NI;8N»). (6.22) 

By Theorem 3.2, choosing either 

8NI = - (~~ (NI ) Y(d(NI ) - h) (6.23) 

or 

(6.24) 

the expression (6.22) is strictly negative. (We have used the 
symbol ad IaN even at points where it is not defined; how
ever, there is no ambiguity, in view of Lemma 3.7.) Conse
quently, there exist points N(x) near NI (x), with ~(N) 
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< <I>(N1 ), as asserted. The choice (6.23) corresponds to the 
method of steepest descent and (6.24) to Newton's method 
(see Ref. 31, Chap. X, Ref. 47, Chap. XV and XVIII, Ref. 
48). In an actual calculation, for a given Nl (x) and a given 
choice of oNi , we locate numerically the minimum of the 
function of one variable f (A) = <I> (N1 + AoNi ), obtain 
this way a new point N2 (x), and continue in this manner. If 
all steps of the minimization lie inside a domain in which a 
uniform lower bound on II (ad IaN) (N)oN lip, for 
lioN lip > I or a uniform upper bound on III (ad / 
aN) (N) )-lilp is known, and if the distance of the points Nk 
from the separating surface F(N;ei8

) = 0 can be controlled, 
we can show that this procedure converges to the solution of 
Eq. (3.47). Indeed (see Ref. 31, p. 289, for similar reason
ing), ifweasume that 11(ad laN)(Nk ) )-lilp <K, indepen
dently of k, and that Taylor's second-order formula (see 
Ref. 36, p. 77, Theorem 5.6.1) may be applied [which ig
nores the discontinuities of (ad IaN) ] we would have at the 
(k + 1)st step for the choice (6.24) the majorization 

<1>( Nk - A [ ( ~~ ) (Nk ) ] - I (d (Nk ) - h) ) 

(6.25) 

where B is an upper bound on the second derivative. Choos
ing A = l/2BK 2, Eq. (6.25) implies 

<I>(Nk+) ) - <I>(Nk )';;;; - <I>(Nk )/(2BK 2). (6.26) 

Now, the condition <I> (Nk ) > 0, for all k and Eq. (6.26) are 
consistent only iflimk_ 00 <f)(Nk ) = O. Further, this fact and 
the existence of the inverse Frechet derivative (ad I 
aN)(N»)-) show that the corresponding sequence Nk(x) 
tends toNo(x) inL 2(p) norm, ifF(No;zh60, for Izl = 1. In 
Appendix B [comments (a) and (b)], we show that, even if 
the latter is not the case, the convergence <f)(Nk ) ..... <f)(No) 
impliesNk (x) ..... No(x) inL 2(p). The calculations we pres
ent in Sec. VII are based on the algorithm described above. 
Unfortunately, as we have pointed out, the reasoning leading 
to (6.26) is not complete. We can turn nevertheless the argu
ments above into rigorous convergence statements provided 
we restrict hex) to a sufficiently small neighborhood of 
d (N) and we slightly modify the prescription (6.24) for 
the minimization step. This is done in Appendix D and suf
fices in fact to justify the systematic use of the integral equa
tion (3.47) for the solution of problem (A). Indeed, it is 
enough to find solutions, within a sufficiently good approxi
mation, for functions hpi (x) = (1 -,ui ) d(N) (x») 
+ ,uih(x), for a finite number of,ui' lying close enough to 
each other. This allows us to formulate the conclusion of this 
section in the following theorem. 

Theorem 6.1: The algorithm based on the minimization 
of<l>(N) with the choice (6.4) for the direction ofminimiza
tion and the modifications of Appendix D provides a se
quence of Blaschke factors B(Nk;x), uniformly convergent 
in Izl';;;; I to fo(x), the solution of problem (A), provided 
<I> (N) is sufficiently small. 

It is possible, although somewhat laborious, to obtain a 
quantitative characterization of this convergence and we 
skip this point. In view of Theorem 5.3, a statement analo
gous to Theorem 6.1 may obviously be formulated for prob
lem (Ae). 
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VII. NUMERICAL EXAMPLES AND CONCLUSIONS 

We consider 15 points {Xi }:~)' distributed equidistant
lyon [ - a,a],a >0. Usually, we shall take a = 0.5. At these 
points, we prescribe a data function h (x) with constant er
rors, of magnitude u. The data function is obtained by per
turbing the values f (Xi) of a certain f (Z)EY 1 with ran
dom numbers obeying a Gaussian distribution with standard 
deviation u. We wish to obtain a numerical feeling for the 
procedures described in Secs. III-VI. 

The bounds on the numbers of zeros of the best Blaschke 
product (Sec. IV) involve quantities CR , C/, and r (Lemma 
4.1) which are purely geometrical (except for the p-depen
dence in C Rand C/). Their computation requires knowl
edge of C R (z), Eq. (4.7), along a closed curve ~ , surround
ing the data domain and lying in Izl < 1 and on a closed curve 
~', situated in Izl > 1 and avoiding ( - 00, -l/a]u[l/ 
a, 00 ). It is convenient to choose ~ and ~' as level lines 
I;(z) I = const of the mapping ;(z) leading from the plane 
cut along (- 00, -l/a]u[ -a,a]u[l/a,oo) to an annulus 
with radii 1, R in the; plane (as obtained by means of the 
incomplete elliptic integraI9

•
1O

). As is well known, R is a 
monotonically decreasing function of a,R (a)-l, as 
a-I (a > 1). The computation of the Green's function and 
thus of the bounds in Lemma 4.1 for a circular crown with 
radii R 1,R2, 1 <R) <R2 <R, is straightforward. On one 
hand, the bound rl' Eq. (4.13), decreases quickly towards 
zero as R2IR)-1, but on the other hand, the functions 
CR (z), C/ (z), Eq. (4.7), for zon ~, ~', increase indefinite
ly as R) approaches unity or R2 approaches R. Thus, a ba
lance has to be achieved and, as a rule, it is profitable to 
compute the bounds for Rl = 1.1, R2 = R ILL The con
stants CR ,C/ are then of the order of unity (1 < CR , 

C/ < 10). The dependence on p(x) (in particular on the 
number of points on [ - a,a]) is negligible (a few percent 
for N~ 10). 

FromEq. (4.30), one sees that, ifr< 1, the bound on the 
number of zeros is likely to be good. From Table I we see that 
r is depressingly close to unity if a ~ 0.5 so that the bound 
gets very weak for increasing a. The values of k;o depend on 
hex) but are, in general, much smaller than unity (see Table 
I). The operators Bi' Eq. (4.21), are again determined 
(apart from a weak p-dependence) on geometrical grounds; 
they have eigenvalues which decrease rapidly to zero; as a 
consequence, a(g), Eq. (4.24), is, for "usual" g's, very small 
[ - 10 -7 for (7.1)] and only the estimate of k;o obtained by 
the method used in Lemma 4.2 for a (g) = 0 is of relevance. 

In Table I, we show the values of the upper bound Eq. 
( 4. 30) on the number of zeros of the best fit to the data 
function obtained by perturbing 

fl(z) = l/(r + 2), (7.1) 

for ZE [ - a,a] with noise. The interesting feature is the rapid 
increase of the bound with a. For small a, the bound (4.30) 
turns out to be tight. Its rapid deterioration may be seen as an 
expression of the "thickening" of the body Y N as a in
creases; the correlation of the values of f (z) EY I at two 
different points becomes weaker as the distance between the 
points increases. We recall that the derivation of the bound 
(4.30) was done neglecting the second term in the duality 
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TABLE I. Numerical values for the quantities appearing in Sec. IV and the upper bound N max for the number of zeros of the best fit; the data function was 
obtained by perturbing example (7.1) with 5% errors [of /(0) J. The data are given at 15 points distributed equidistantly on ( - a,a); the constants Ci are 
defined following Eq. (4.16), Y following (4.13), and kol , k02 are defined in Lemma 4.3. The bound Nmax is essentially controlled by y, which is of purely 
geometrical origin. 

a XI C I C2 

0.1 0.0199 0.21 4.74 
0.2 0.0192 0.215 1.93 
0.3 0.0180 0.240 1.42 
0.5 0.0162 0.302 1.13 
0.7 0.0176 0.353 0.70 

relation (2.14); the latter describes the "thickness" of Y N 

[in the direction n (x) ] . 

Numerical experience shows, however (Refs. 1, 16, and 
20), that even for larger a, the number of zeros of the best fit 
does not increase, in general, as badly as indicated in Table I. 
The method of determining the best fit by means of the non
linear integral equation (3.47) [or of the minimization of 
«P (N), Eq. (6.21) ] allows a control over the number of zeros 
at each step of the iteration. A possible starting point for the 
minimization of «P(N), Eq. (6.21), is the function No(x) 
with 

No(x) = hex) - Fo(x) (7.2) 

and Fo(x) the best fit to hex) under the L Z condition 
11/112,1, Eq. (1.5). If the direction of N(x) is fixed, one can 
still minimize easily «P(N) as a function of the magnitude of 
N(x). If (N(x),h(x) - B(N;x»)p >0, the minimal value of 
«P(N) is obtained for N' = cos ()oXN and is equal to 

«P(N') = IIh(x) - B(N;x) liZ sinz ()o (7.3) 

with ()o the angle between Nand hex) - B(N;x). We start 
the minimization from this value of N (after having verified 
that cos ()o > 0). If IIN(x) II p is small and thus also Eo(N;x) , 
- a <x <a, the first term in the Frechet derivative ad IaN, 

Eq. (3.73) is small numerically compared to the second one. 
The operator (aB IaN) (N) is fromL 2( p) intoR P and has 
no inverse. Thus, although (ad IaN) -I exists, its condi
tioning may be not very good (although manageable). We 
start from the function II (z), Eq. (7.1), and generate hex) 
as explained above, choosing u = 0.05 II (0). It follows that 
dp(x)ldx = 1/( 15~)~:: I o(x - Xi)' We wish to find the 
set of allowed values of the functions lEY I and obeying 
x(p;h-/),I, at the points XI =0.6, xz=0.7, and 
X3 = 0.8. The procedure described in Sec. VII was applied 
and the results are shown in Fig. 1 as curves Xmin (1;/oi) vs 
10i' The precision can be made arbitrarily high. The function 
II(z) has no zeros in Izl < 1; its best approximants in Y I, 
with fixed values IOi at Xi' are Blaschke products with four to 
six factors. The construction of the curves is quickly conver
gent, once a run has led us from the L 2 solution to a solution 
of problem (Ae), for a certain 10i' 

To sum up, we have presented a systematic method to 
solve the problem of determining the best analytic approxi
mant in the usual least squares sense, within the class of 
functions uniformly bounded and holomorphic in the unit 
disk. The essential point of the method is the solution of a 
certain nonlinear integral equation, which leads itself to an 
approximation scheme, related to the Newton-Kan
torowich procedure.47 
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InklO/CI In k 201C2 Iny Nmax 

- 8.47 - 8.74 - 1.48 6 
-7.91 -7.94 - 0.82 10 

- 11.03 - 13.42 - 0.51 27 
- 10.69 - 11.73 -0.18 63 
- 10.60 - 11.77 -0.044 260 

The geometrical meaning of the integral equation is 
clearest in the form (3.1). The equation may be obviously 
written for many other problems which require the deter
mination of the minimal distance to a convex set SEL 2 ( p). It 
gives the solution in all cases when the "linear" problem of 
finding the element I (n;x) which realizes sup{(n,J),JES} 
maybe solved for all n(x). In fact, we have shown that, if the 
nonlinear dependence on n(x) of I (n;x) is known, and if its 
Frechet derivative with respect to n (x) is a compact opera
tor, then the operator 

d(n(x») = n(x) + I(n;x), (7.4 ) 

has a Frechet derivative with a bounded inverse. Indeed, this 
follows from the convexity argument of Theorem 3.2. In 
problems of analytic continuation and interpolation, the set 
S is also compact in L 2( p), so that I(n;x) is a compact 

oX min (p; hI 

0.021 

0.019 

OD17~~~~~--~--~--~~--~--~ 
0.4 0.3 0.2 0.1 - 1 + 0.1 0.2 0.3 0.4 

x2+ 2 fOI 
I 

FIG. 1. Curves Xmin (1;/01) as a function of /01 for the data function ob
tained from (7.1). The curves are obtained by solving the set of integral 
equations (5.24) and (5.25) with the procedure described in Sec. VI. The 
set of possible values atxo1 = 0.6, 0.7, and 0.8 in turn is given by the segment 
delimited by these curves on the line Xmin = 0.025(1(0) XO.05). 
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operator and, crudely speaking, we expect also its Frechet 
derivative to be so. As an example, consider the H 2 problem, 
treated in Lemma 4.4. The analog of Eq. (3.1) is (using 
Lemma 3.3) 

N(x) +-- x dp(X') =h(x). 1 Jb N( ') 

IIkNI12 -a I-xix 
(7.5 ) 

If we assign a certain value IL to IlkN Ib Eq. (7.5) is Fred
holm of the second kind, without positive eigenvalues. The 
difficulty is, clearly, that, given N). (x) for a certain choice of 
IL, we are not sure that IIkNA 112 = IL. Thus, in principle, we 
have to solve the equation for alllL > 0 and find that value IL 
for which IIkNA 112 = IL. This is implicitly done in Lemma 4.4. 
On the other hand, the Frechet derivative of the left-hand 
sideofEq. (7.5) is [its action on8N(x)eL 2(p)] 

ad (N)8N = 8N(x) + _1_ Jb dp (x') 
aN IIkNII2 -a I-xix 

(8N,F(N;x) )p 

IlkNII~ 
(7.6) 

and is obviously the identity plus a compact operator from 
L 2 ( p) into L 2 ( p ). Thus, we can achieve the same ends as in 
Lemma 4.4 by solving (7.5) as a nonlinear integral equation 
by the Newton method. This is too complicated in this case, 
but is of general applicability and may be used in other situa
tions when f(n;x) is known (see below). 

In the problem treated in this paper, the dependence 
I (n;x) was, however, not known; most of the work in Sec. 
III and V was then dedicated to showing that we can indeed 
"scan" the whole spaceL 2( p) offunctions n(x) and gener
ate the corresponding extremal functions I (n;x) (Blaschke 
products) by varying another function N(x), related to 
n(x) by Eq. (3.35). The function N(x) gives also rise, via 
Eq. (3.36) to the Blaschke product associated to n(x). The 
fact that the correspondence n(x)~N(x) is invertible and 
with an invertible Frechet derivative (with the exceptions of 
Lemma 3.6) appeared to the author as remarkable. 

Further, the generalization of these results to the case 
when several values I (5i) = Wi are given in advance-as is 
the case in any application-is not obvious; the most intri
cate part is contained in the proof of Theorem 5.3. 

One should also mention that a pleasant feature of the 
integral equation (3.47) is the virtual independence of its 
method of solution on the number N of experimental points. 
Indeed, for continuous data distributions, the only limita
tion is given by the precision of the solution of a Fredholm 
equation of the second kind [i.e., the construction oft (ad / 
aN)(N»)-I(d(N) - h)]. 

Condition (H), Sec. III, restricts the set ofvectorsN(x) 
through which the iteration may proceed. The set of ex
cluded points may· be regarded as exceptional; it never oc
curred in our numerical experiments. Further (see Appen
dix E), part of (H) may presumably be relaxed, without any 
change of the results. It is of interest to understand how the 
solution of d (N) = h may be recovered, if Fo(N;z) has a 
multiple zero on Izl = 1. 

Clearly, the interest in the results of this paper lies most
ly in their exact character. Also, one may presumably state 
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that problems (B) and (C) of the Introduction represent 
analytic continuation problems in a "pure" form: if a model 
for the stabilizing condition is available, then it is likely to 
take the form I I (ei(J) I <,M«(), which, by means of (1.10), is 
the same as the one treated here. Unfortunately, there are 
few problems in high energy physics (the one treated in Ref. 
1 is an exception) where this stabilizing condition is known 
with sufficient confidence. 

However, a problem closely related to the present one is 
that of the inversion of a large number of moments of a func
tion I(x), positive definite on some interval (a,b), if the 
moments are affected by errors. The usual methods of mo
ment inversion rely on the assumption that the moments are 
consistent with the positivity constraint on I (x). A very 
small amount of noise invalidates this assumption, however, 
in the same manner as discussed in Sec. II for the body Y N' 

The best fit to error affected moments is then, in analogy to 
Sec. II, given by the moments generated by a function lo(x) 
consisting of a few positive 8-functions placed on (a,b). The 
problem arises to find a systematic method for the determin
ation of the position of their support. An equation similar to 
(3.1) seems to be appropriate. The author hopes to return to 
these questions in the future. 

ACKNOWLEDGMENTS 

The author became aware of the special role played by 
Blaschke products in problems (A)-(C) ofthis paper dur
ing his collaboration with H. RasziIlier and W. Schmidt sev
eral years ago. He also profited very much from the interest 
D. Atkinson had in the problem of analytic continuation at 
that time and from his encouragement. 

APPENDIX A: ON THE NUMBER OF ZEROS OF THE 
EXTREMAL BLASCHKE PRODUCT f (n;z) 

In this Appendix, we are concerned with a measure 
p(x) of finite type, with N jumps at the points 
Xi,X I >X2 >X3 > '" >xN · The possible values 11,/z, ... ,fN as
sumed by functions in YI;oo atx l ,x2, ... ,XN make up the con
vex and closed set Y N' Eq. (2.5), in R N. By means of the 
Cayley transformation 

Wi = (1 + .I: )/0 - .1:), (Al) 

the points of Y N are placed in one-to-one correspondence 
with those of the cone K N of points with coordinates given by 
the possible values assumed at {Xi };V= I by the functions ho
lomorphic and with positive real part in Izl < 1. Using the 
results of Ref. 22 (Chap. VI), the positivity of the determi
nant (2.10) and of its minors and the fact that the transfor
mation (Al) is monotonical, i.e., leads a set.l:_ <.I: <.1:+ ' 
i = 1, ... ,N, into a set Wi (.1:- ) < Wi < Wi (.1:+ ), one verifies 
that (a) the boundary of Y N consists of two (N - I)-di
mensional manifolds ("surfaces") in R N, generated by all 
Blaschke products with precisely N - I zeros and their com
mon closure, generated by products with less than (N - 1) 

zeros; (b) if two points with coordinates (/1, ... ,jN)' 
(Ii , ... ,j~) belong to Y Nand 

(_I)N-klk«_I)N-kl", k=I, ... ,N, 

then the whole set of points with coordinates lk' 
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(-I)N- kfk« -1)N-k]k« _1)N- kf" also belongs 
to Y N; and (c) the planes tangent to Y N at the points of the 
two surfaces are given by 

N 

L ni (/; - /;0) = 0, (A2) 
i=1 

where the {nJf= 1 have alternating signs (see Ref. 22, § l.S, 
Theorem S.3). There are several planes tangent to Y N at the 
points of the common closure of the two surfaces ("edges," 
see, also, Ref. 17). 

As we have seen in Sec. II, for large N, Y N gets very 
flattened. Consider then a point {hJf= 1 Eint Y N; we may 
construct the largest parallelepiped (h,li) in R N that is con
tained in Y N' so that hk ( _1)N - k<hd - 1)N - k 
<lid - I)N - k. If we wish -to extrapolate the "data" 
{hk}f=1 with "errors" (~k,lik)f=1 toapointxE( -1,1), 
x=/=x;, i = 1,2, ... ,N, we may apply the method described in 
Sec. II, in relation to Eq. (2.S). Assume now {hJf= 1 is 
affected by errors ( - I)N - iAEi,A,Ei > 0, with increasing A. 
Already for very small A, the point {hi }f= 1 crosses the sur
face of Y N and the problem of extrapolation is reduced to 
that of finding X~in ( p;h), Eq. (1.3). For small A, the latter 
is realized by a point on the surface that has been crossed, 
i.e., by a Blaschke product with N - 1 zeros. The normal 
{n i.O }f= 1 of the plane tangent to Y N at f (no;z) has, as 
mentioned above, components with alternating signs. Thus, 
f (no;z) has as many factors as there are sign variations of 
{ni;o}f= I' Now, if A increases or if we choose a different 
direction of displacement, the point {hi }f= 1 will in general 
move outside of Y N in such a way that its minimal distance 
to Y N is attained on an "edge," i.e., on a Blaschke product 
with less than N - 1 factors. It is amusing that some relation 
persists between the number offactors of f (no;z) and that of 
the sign variations of the corresponding {n i;O }f= 1 

= {hi - f(nO;xi )}f= I' Namely, for any normal {nJf= I' 
Theorem A1: The number of zeros of the extremal 

Blaschke product f (n;z) is at most equal to the number of 
sign variations of the normal {nJf= I' 

Proof We show first a similar statement for the Cayley 
transform (A 1 ). We recall (see Ref. 22, Chap. IV) that the 
boundary of KN is made up of points with components wr, 
given by (k<N, Ref. 22) 

wr = jtl p(xi;eilj)Aj=P P(X;ej()dab (0) (A3) 

with Aj > 0; the angles OjE[0,21T) are the zeros of a polyno
mial 

N 

g; (n;ei() = L njP(xi;ei() , 
;=1 

(A4) 

which is positive on [0, 1T ]. Such a polynomial is, by reflec
tion symmetry, in fact positive on [0,21T) , so that all its zeros 
are at least double. In Eq. (A4) the ni 's are the components 
of the normal of a plane tangent to K N at {wnf= 1 • With this, 
we claim that the number of distinct zeros of g; (n;ei

() on 
0<0 < 21T cannot exceed the number of sign variations of the 
set {n);"'= l' 

To see this, we notice thatthe function g; (n;z)lzhas2N 
poles at Xi and l/x;, with residua equal to ni; it vanishes 
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twice at infinity and has 2N - 2 further zeros either falling in 
pairs (Zi' l/z~) or lying on Izl = 1. Ifnini + 1 > 0, there must 
be a zero lying between Xi and Xi + 1 and therefore a zero 
between l/Xi+ 1 and l/xi. Consequently, ifV(n) is thenum
ber of sign variations of {ni }f= I' the number of zeros lying 
on [xN,xd and its reflection across Izl = 1 is 2N - 2 - 2V. 
Thus, at most V(n) double zeros lie on Izl = 1, which proves 
our claim. 

LetthecoordinatesofapointinRN be (fl, ... ,jN)' Then 
a plane tangentto Y N at (f~ , fi , ... ,jfj. ) may be written in 
the form (A2). If {/;}f= 1 EY N' /; =/= f?, then 

N N 

L ni/; < L nJ? (AS) 
;=1 ;=1 

From (AI) it follows that all points of KN with coordinates 
{wJf= 1 obey [w? = Wi (f?)' w =/= WO] 

° ~ (wi -l W?-I) S(w,w )= £.. ni ------- <0. 
i= 1 Wi + 1 w? + 1 

(A6) 

Consider now the plane tangent to S(w,wo) = Oat wO, 

° ~ 2ni ° T(w,w )== £.. (Wi - Wi) = 0. 
i=1 (1+W?)2 

(A7) 

We claim that, in fact, T(w,wo) = ° is tangent to KN at WOo 
To this end, consider any point {Wi }f= 1 EK N and join it to 
{w?}f= 1 by a line segment, which is contained in KN. All 
points of the line obey 

SeA) =S(Aw + (1 -A)wo,WO) <0. (AS) 

This implies that, for any WEKN [S(O) = 0] 

dS 
0> dA = T(w;wo). (A9) 

Thus, T(w;wo) = ° leaves KN on one side and touches it at 
least at wO. In fact, considering the ray AwoEK N, A > 0, it is 
easy to see that 

N N 2ni ° L n;w?= L w· = 0, (AW) 
i= 1 i= 1 (1 + W?)2 I 

so that T( w;wo) = ° passes through the origin in w-space. It 
follows that the polynomial g; (n;;z) has at most V(n) dou
ble zeros on Izl = 1 and that the function of, (0) generating 
W?EKN by means of (A3) has at most V(n) positive jumps 
on [0,21T) and is otherwise constant. The Cayley transform 
(A 1 ) shows that the phase variation of the Blaschke product 
f(n;z) with f(n;Xi) =f?is then at most 21TV(n), and this 
ends the proof of Theorem A 1. For the extremal f (no;x) 
this means the number of its zeros is at most equal to the 
number of its oscillations around hex). 

APPENDIX B: COMPLEMENT TO SEC. III 

In this Appendix, we wish to show that (a~ I 
aN)(N»)e' (a~ laN)(N»), Eq. (3.66), have bounded in
verses. It is easy to see that both (a~ laN)e, (a~ laN)i are 
the sum of an operator with bounded inverse [E(N) Xiden
tity] and a compact operator, i.e., they are of Fredholm type. 
For our statement, it is thus enough to argue that each of the 
equations 

(a~ (N») (aN) = 0, 
aN e 

(a~ (N») (aN) = ° 
aN i 
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implies /jN = O. We proceed by analogy to the proof of 
Lemma 3.6 and show first that (B 1) imply, for their possible 
solutions /jNeL 2 ( p), in turn, 

( aB) (/jN) = 0, (aB) (/jN) = 0. (B2) 
aN e aN , 

Equations (B2) are obtained by considering in turn the lim
its N'k-N, N~_N of the identities 

;t (1f(N~i);aj(Nf»)(13N) = 0, (B3) 

valid for every 13NeL 2( p) [cf. Eq. (3.58)]. If 13N satisfies, 
say, the second of the equations (B 1), then (B3) implies, 
similarly to Lemma 3.5. the vanishing of the quadratic form 

Q, (N;/ja) = P±2 (n(N), ( a
2
B ) (N») 13a,13aj = O. 

',j aa,aaj i p 
(B4) 

In (B4), we have considered the case of two complex zeros 
a +1> ap+2 =a:+ 1 approaching Izi = 1, and have used 
the fact that the zeros a, have a continuous Frechet deriva
tive with respect to N(x). (This follows from the assumption 
that F(N;Z) has only simple zeros in Izl < 1.] 

To evaluate (B4). we consider the limitN ~ -+ N, at fixed 
directions p " of the identity (3.65). The left-hand side obvi
ously has a limit (as in (B4)]. On the right-hand side, we 
obtain again the modulus squared of E(N;ei~) times the ana
lytic continuation to Izl = I of(aB laN)(N»)i (13N)(x). If 
13N exists so that (a1f laN)(N»); (13N) = 0. but (aB I 
aN)(N»)i (13N) ,#0, we obtain a contradiction with (B4). 
Thus, the second equation (B2) must be valid, if (BI) is 
true. The same argument shows that the first equation (B I) 
implies the first of (B2). 

Now, the condition (13B)i (x) = ° does not imply that, 
for all k, I <k<p + 2, 13ak = 0. Indeed, the functions 
P(x;ap + I ), P(x;ap + 2 ) are identical if ap + 1 

= a: + 2' lap + I I = 1. Since the functions {P(x;ai )}f,;; 11 are, 
however. linearly independent [see Eq. (2.12)], we con
clude that (13B)i(X) =0 means 13a; =0 only for 
i = 1,2, .... P but still allows 13ap + I ,#0 if Re(13a: + lap + 1 ) 

= 0. No such possibility is allowed if ap + 1 is real. 
We consider next the representation (3.39) and (3.40) 

for L(n;z), and take at fixed z, the Frechet derivative with 
respect to N(x); it is a continuous function of N(x), even at 
points like N(x), with F(N;eiB ) vanishing for some O. Tak
ing limits N ~ -+ N, N'k -+ N. one easily verifies that 

aL (N;z) (/jN) = ((a1f (N») (/jN)(X),B(X;a)p(x;z») 
aN aN i p 

+ (n(x).(a~C:»)i (13N)(X)P(X;Z»)p 

=((~~ (N»)e (13N)(X).B(X)P(X;Z»)p 

+( n(x), (;! (N»)e (13N)(X)P(X;Z») p . 

(B5) 

In view of (Bt) and (B2), it follows that the possible solu
tions /jNeL 2 ( p) of any of the equations (B 1) satisfy, for all 
z, 
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aL -- (N;Z)(/jN) = o. (B6) 
aN . 

We now show that (B6) implies, however, for all z 

aFo (/jN) (z) = o. (B7) 
aN 

The latter. in view of the representation (3.50) means 
/jN(x) = 0, a.e.-p and proves our point. 

To show (B7), we consider Eq. (3.39) for L(n;z) [cf. 
Eq. (3.40)] and write, for z = eiB( lap+ 1 (N) I = 1), 

L (n(N);z)=e-2iB(eiB - ap+ 1)2 

X (eiB - (l/ap+ 1 »)2L 1(n(N);eiB ). (B8) 

We also write 

Fo(N;z) = B(N;Z)(z - ap+ I)(Z - (l/ap+ 1 »)E1 (N;z) , 
(B9) 

withE,(N;Z) ,#0 in Izl<l. From (B8) and (B9), we deduce 
that [it = n(N)] 

(BlO) 

We now compute the variation of the double zeros at N, if 13N 
is constrained by (B6). A double zero is generated by the 
twocoincidentzerosap + 1 (N). a;+ I (N) = l/a:+ 1 (N) of 
Fo(N;Z), F~(N;l/z*). each of which is Frechet differentia
ble with respect to N. We obtain a constraint on the individ
ual variations of these zeros by considering those of their 
symmetric combinations, e.g., their sum 

13ap+ 1 + /ja; + 1 = ~ i z/j (aL laz (N»)(Z)dz = 0, 
2m j L 

(Bll) 

where the integration is carried out on a contour enclosing 
ap+ 1 and no other zero ofL, and we have used (B6). How
ever, /ja;+ 1 = - /ja:+ t/(a:+ 1)2 and 13ap+ 1 =).,Pp+ 1 is 
constrained by Re(13ap+ 1 a: + 1 ) = 0. It is easy to verify that 
these two constraints imply 13ap + t = 0. If ap + 1 = a: + 1 , 

then, we have seen that 13ap+ t = ° anyway. 
Now, using (B6), we conclude that, for all 0, 

e-2iB(eiB ap+ 1 )2(eiB - (l/ap+ 1 W/jLt(n(N);eiB ) = 0, 

(BI2) 

which, in view of the analyticity of 13L)(n(N);z) around 
Izl = I implies 13Lt(n(N);eiB ) = 0. Through (BlO), we ob
tain /jlE1 (N;eiB ) 1 = ° and, using the representation offunc
tions nonvanishing in Izi < 1 [cf. Eq. (3.48)], we deduce 
that, for those /jN obeying (B 1 ), for all z. 

13Et(N;Z) = 0. (Bl3) 

Now, taking the variation of (B9) and using also (B2), 
we obtain (B7), as announced. 

We next give an interpretation of the results of this ap
pendix and also settle the proof of Lemma 3.7. We assume 
condition (H) is true. The position of the zero a(N), which 
tends toap+ 1 asN(x) approachesN(x), is a Frechet ~ffer
entiable functional in a certain neighborhood UJt of N; the 
critical surface ~ on which the discontinuity of (a1f I 
aN) (N) occurs is a level surface of the functional 
!feN) =a(N)a*(N). namely. !feN) = 1. The operator 
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'If(N) of (3.35) is Frechet differentiable in 
~ n(.P' (N) < 1). We can define now an "analytic continu
ation" of 'If to .P' (N) > 1 by deforming slightly the contour 
of integration (Izl = 1) of Eo(N;z) , Eq. (3.48). We allow, 
namely, for two semicircles around a p + I ,a;+ I leaving 
these points in the interior of the contour. For all N(x) for 
which .P' (N) < 1 (NE~) the operator 'If; defined this way 
through (3.35) coincides with 'If. It does not do so for those 
N in a sufficiently small neighborhood ~ I e ~ of N, for 
which a(N) still lies inside the modified contour, but 
.P' (N) > 1. However, 'If; (N) has a continuous Frechet deri
vative throughout ~ I and (a 'If JaN) (N) = (a'lf I 
aN) (N»);. By the results of this appendix and the implicit 
function theorem, 'If; realizes a diffeomorphism of a neigh
borhood r e ~ I of N onto a neighborhood rr of 
n = 'If (N). Let l:' be the image ofl: under 'If;; it is a level 
surface of ,q'; (n) = ,q' ('If;~ I (n»). It is easy to see that its 
tangent plane at 'If (N) is given by 

(BI4) 

with kl(x) defined in Eq. (3.70). Here 'If;(N) maps 
rn(,q' (N) < 1) onto rrn(.P'; (n) < l) in a one-to-one 
manner. 

Similarly, we may define an analytic continuation of 
'If (N) from ,q' (N) > 1 to ,q' (N) < 1. For this, we take semi
circles around a p + I ,a; + I leaving these points outside the 
contour. We obtain this way another diffeomorphism 
'If e (N) oftheneighorhood r ofN onto a neighborhood rrl 
of n. Also, we may define ,q' e (n) = ,q'('If e~ I(n»). The sets 
rn(,q' (N) ~ 1) are mapped one-to-one and onto 
rrl n(,q'e(n)51). Also, in rro=rrnrrl' the sets 
,q' e (n) = 1 and ,q'; (n) = 1 coincide. As a consequence, one 
may verify the following: the set rron(,q'e (n) > 1) either 
coincides with rr 0 n (,q' ; (n) < 1) or is disjoint from it. In the 
latter situation, it coincides with rron(,q'; (n) > 1). 

To settle this ambiguity, we use the fact that the opera
tor 'If(N) is one-to-one in L2(p) (Lemma 3.5). Conse
quently, the images of the sets rn(,q'(N) < 1) and 
rn(,q'(N) > 1) are disjoint. These images contain in tum 
the sets rron(,q'; (n) < 1) and rron(,q' e (n) > 1); thus, 
these latter sets must be disjoint. We conclude that 
rron(,q'e (n) > 1)= rron(,q'; (n) > 1). The latter set con
tains points n(x) such that (a) the whole segment 
J-ln + (1 - J-l )n, 0 <J-l < 1 is contained in it [cf. Appendix D, 
following Eq. (D3) 1 and (b) (kl(x),n(x) - n(x»)p >0. 
For such an n(x), it is true that 

O<,q'e(n) - ,q'e(n) 

= ,q'('If e~ I(n») - ,q'('If e~ I(n») 

( (
a'lf _) - I ) 

= p(x), aN(N) e (n-n) p +o(lln-nllp )' 

(BI5) 

Dividing by lin - nllp and letting then lin - nllp tend to 
zero, we obtain that, for ~n = (n - n) III n - n lip, both 

(kl(x),~n(x»)>O, (k2(x),~n(x»)>0, (BI6) 

where we have used Eq. (3.70). Since kl(x) = Ak2(x), 
A # 0, (B 16) implies A > O. This ends the proof of Lemma 
3.7. 
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Next follow some comments. 
(a) The reasoning above shows that, in fact, 'If ~ I (n) is 

a continuous operator from L 2 ( p) into L 2 ( p). Indeed, giv
en a neighborhood r of 'ii, it is enough to choose 
rre 'If e (r) n 'If; (r) to make sure that 'If~1 (rr) e r. 

(b) The same reasoning may be repeated for the opera
tor deN), Eq. (3.72). We may write, by analogy, 

d; (N) = N(x)Eo;; (N;x) + F(N;x)IEo;; (N;X) , (BI7) 

where Eo;; (N;x) is the outer function defined on the modi
fied contour described above, and similarly for de (N). In 
the course ofthe proof of Theorem 3.2 we have shown that 
cad IaN) .. (ad IaN); have bounded inverses. This, to
gether with the fact that d (N) is one-to-one in neighbor
hoods of Nand h (see Theorem 3.2) shows that Lemma 3.7 
is true also for deN). Similarly, d~l(h) is continuous. 

(c) The argument of this Appendix concerning the exis
tence of (a'lf I aN) e~ 1 may be applied even if several simple 
zeros approach Izl = 1, staying away from each other. [This 
goes beyond hypothesis (H).] There are in this case several 
relevant approximating sequences {Nk } to N, corresponding 
to some of the zeros lying outside Izl = 1 and the others 
inside. Associated limiting Frechet derivatives can be de
fined and they have bounded inverses. 

APPENDIX C: SOME STATEMENTS ON LAGRANGE 
MULTIPLIERS 

We prove two theorems concerning Lagrange multipli
ers. 

Theorem C.I: (See also Problem 7, Chap. 8, Ref. 31.) If 
F(a), Eq. (5.2), is strictly positive definite, there exist 
numbers A; such that Eq. (5.7) is true. 

Proof: By Lemma 5.1, the point with coordinates 
{wJ7'~ I is contained in the open, convex set Y m' We de
fine, for YEY m the function 

'1'( Y) = sup{(n,J)p: fEY I ; f(s;) =Y;, 

{yJ7'~ lEY m}. (Cl) 

Let !c ( Y) be a function on which the supremum is attained. 
Then, ifYI'Y2EY m' 

,1,'1'( YI) + (1 - ,1,)'1'( Y2) 

= (n,A,!c(YI) + (1-A)!c(Y2»)p 

«n,!c(AYI + (1-A)Y2))p = 'I'(AYI + (1-A)Y2)' 

(C2) 

so that 'I' ( Y) is a concave function. Consider then in R m X R 
the convex set ff given by the points (y,g), with YEY m' 

g<'I'( y) and letg + l:A; Y; = const be a supporting hyper
plane (Ref. 49, Theorem 11.6) through the point (w,'I'(w»). 
The fact that the coefficient of g may be chosen equal to 1 is a 
consequence of the condition wEY m' It is obvious that the 
coefficients A; of this hyperplane are the desired Lagrange 
multipliers. 

Theorem C.2: Assume sup{(n,J)p + l:;A;(f{s;) 
- w;); fEY I} is attained on a function !C.). (z) with 
!c;). (s;) = Wi' Then, if n#O, sup{(n,J)'p; fEY I , 

f(s;) = w;} is attained on the same!c;). (z). 
Proof; If the second supremum is attained on a different 
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function fc, it is true that (n,fc)p > (n,fc;)., )p, since we have 
seen (Theorem 5.1) that fc is unique. However, if this is so, 
fc;)., cannot be the function on which the first supremum is 
attained, since fc gives a larger value to the quantity in 
brackets. This ends the proof (and gives Lemma 5.2). 

APPENDIX D: A CONVERGENT ALGORITHM FOR THE 
SOLUTION OF Ea. (3.47) 

In this Appendix, we describe an algorithm for the mini
mizationof4>(N), Eq. (6.21), for which convergence can be 
proved. More precisely, we show that if 4>(N,) is small 
enough, we can construct a Cauchy sequence {Nk}k'= , con
verging to the solution No of 4>(No) = 0 by modifying suit
ably the Newton-Kantorowich iteration. It is profitable to 
make explicit the dependence of4>(N) on h and write in the 
following 4> (N;h ). If N, does not lie on a separating surface 
'£:F(N;e i8

) = 0, for some Oon [0,17], then, by Theorem 3.2, 
the usual form of the implicit function theorem applies to the 
equation d(N(x») = h(x), and one knows that there exist 
neighborhoods ~ of N, and r of d (N,) and a continuous 
differentiable operator d - , defined on r with values in ~ , 
so that d-'(d(N,») = N, and for all x in r, 
d(d-'(x») = x. The construction of d- ' maybe done by 
the usual Newton iteration (see, e.g., Ref. 36, p. 57ff) so that 
our statement requires no further comment. As N, ap
proaches '£, the neighborhoods ~,r of N"d(N, ) shrink 
indefinitely, since the proof of the theorem requires the con
tinuous differentiability of d in a certain neighborhood of 
N ,. However, we have shown in Appendix B that d (N) still 
provides a bicontinuous correspondence between neighbor
hoods ~ of N, and r of d(N, ) even if N, lies on '£. We 
shall now describe a slight modification of the Newton pro
cedure, which allows the explicit construction of d-'(N) 
also in this case. 

From the outset, we point out that the difficulty in prov
ing the convergence of the iteration near points of'£ is that 
one cannot apply Taylor's second-order formula to estimate 
the variation of 4> (N;h ). To circum vent this, we part the step 
of Newton's method into two: one part up to '£, the other 
following it. However, we need to make sure that we no 
longer meet '£ while performing the second step, after a too 
short distance. This is achieved by moving in a direction that 
is "sufficiently normal" to '£. 

In the following, if N, (X)E'£, the symbol II «ad I 
aN)(N,»)-'llp meansmax(1I (ad laN)(N'»)e- 'lip, 1I(ad I 
aN)(N,»);-'IIp )' Now ifll(ad laN)(N,»)-'IIp = K

" 
then 

it is easy to show that, if K > K I , there exists a neighborhood 
~(N,;r) ofN,(x): liN -NIII <r(K) such that, for all Nin 
~(N,;r(K»), II «ad IaN) (N»)-tll <K. We skip the proof of 
this statement. 

We shall use restriction (H), Sec. III, and assume thus: 
(a) F(Nl e

i8
) = o only for two real values of 0, -17<0<17, 

8 t, - 8 t, Zl = ei8
,; and (b) F'(NI ;ei8

, ) #,0. With this, we 
restrict ~ (Nt;r) even further as follows: (i) given 1',0" > 0, 
sufficiently small, there exists r t (1',0") <,r(K) such that, for 
all N in ~(Nt;rl(1',O"»), F(N;Z) vanishes only once in 
Iz - Ztl < l' and IF' (Nt;z) I > 0" if Iz - ztl < 1'; and (ii) we 
choose r<rt (1',0") such that for all NE~ (Nt;7) , F(N;z) #,0 
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for z on Izi = 1, except for points contained in disks of radius 
l' around z t,zt. 

We now discuss how to control the direction of the step 
of minimization as we cross the surface '£. To this end, we 
notice that '£ may be viewed as a level surface of the (nonlin
ear) functional .:r (N) =zo(N)zt(N), with zo(N) the root 
ofF(N;z) in Iz -ztl <1'. Since Fa (N;z) #,0, for Iz -Ztl <1', 
.:r (N) isin fact of class C 00 withrespecttoNin ~ (Nt;r); its 
Frechet derivative at Nt (x) is determined by the vector in 
L 2 (p), 

g(Nt;x)=Re e-' , , " 
[ 

'8 1 1] 
1 - xe,8, F'(Nt ;e,8,) 

(01) 

Let now B be an upper bound on the norm of the Frechet 
derivative of g(N;X) for N in ~ (Nt;1-). Then, if N', 
N"E~(NI;r), it is true that 

Izo(N')zt(N') -zo(N")zt(N") - (g(N"),N" -N')pl 

(02) 

With this, if we confine ourselves to the cone of directions 
!:J.N given by, say, 

(03) 

then any line N + J.!:J.N, originating at NE~ (Nt;r) with 
zo(N)zt(N) = 1 intersects the surface '£ only once in 
~ (N,;1-), namely, for J. = O. This follows from (02) and a 
mean value theorem for IIg(Nt) - g(N) lip. Condition (D3) 
is meaningful only if 

I" = 3Brlllg(Nt ) lip < 1. (04) 

This may be achieved by simply choosing a smaller r, if nec
essary. 

We next give a prescription for choosing the general step 
(the k th) of the algorithm for minimization, !:J.Nk' The pre
scription depends on the magnitude of the component of the 
standard Newton step 

(
ad )-t 

!:J.No,k = aN (Nk ) (d (Nk ) - h ) (D5) 

on the direction of g(Nt ). Namely, if 

I (!:J.No,k , g(N,»)p 1>1"11 g(Nt ) lip II!:J.No,k lip, (D6) 

then we choose 

!:J.Nk = !:J.NO,k' (07) 

However, if (D6) is violated, we let 

!:J.Nk = !:J.Nok + g(Nt )[ ak 4>t/2(Nk;h) 

- (g(N,),!:J.Nodplllg(Nt )lip 2], (08) 

where ak is a constant, with modulus independent of k, but 

sgnak = sgn(g(Nt),!:J.Nok)p (D9) 

and 

(010) 

This choice of step ensures that the modulus of the compo
nent of !:J.Nk on g(Nt ) either satisfies (D6) or is equal to 
a4>1/2(Nk;h). We choose further a in such a manner that, 
besides (D 10), condition (D 3) is fulfilled. If (D6) is false, 
then, according to (D8), 
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II.:lNk lip';;; lI.:lNok lip + allg(NI ) lip <l>1/2(Nk;h) 

.;;; (K + allg(NI ) lip )<I>1/2(Nk;h) (D11) 

and one sees that (D3) is fulfilled if, e.g., 

a = flK Illg(NI)llp (1 - fl) (D12) 

[consistent with (D 10) ]. It follows that, in case (D6) does 
not hold, 

II.:lNk lip ';;;K<I>I/2(Nk;h)/(l - fl)· (DB) 

The estimates (D 11) and (D 13) are meaningful only if the 
whole sequence {Nkho=1 belongs to o//(Nd·). We shall 
show below that, if Ild(NI) - h(x)II~=<I>(NI;h) is suffi
ciently small, this will be the case. 

Assuming for a while that this is true, if N k el:, then the 
line Nk + A..:lNk, O,;;;A.,;;; 1 no longer intersects l:1' However, 
for arbitrary Nkeo// (NI;r), it is possible that we meet l: at 
N ~ = Nk + A..:lNk, 0 <A..;;; 1. We wish to make sure that 
<I>(N~;h) <<I>(Nk;h). To this end, we apply Taylor's sec
ond-order formula along the segment joining N k ,N k' If r is 
further chosen so that, for some C,B> 0 and any 
Neo// (NI;r), both 

II ~~ (N)g(NI ) lip <C, 

II ~:: (N) lip <B (NEEl:), 

(D14) 

and assuming first that (D6) is violated, we obtain [using 
(DB)] 

<l>1/2(N"h).;;;[1-A.(l-aC) +A.2 K2 
k> (l_fl)2 

<l>1/2(N 'h)] 
XB 2 k> <l>1/2(Nk;h). (D15) 

The function of A. in the brackets is less than unity for all 
o <A. < 1 if it is less than unity for A. = 1, i.e., if 

(D16) 

where we have used the induction hypothesis 
<I>(Nk;h) < <I>(NI;h). With the expression (DI2) for a and 
Eq. (D4), we see that, if both rand <l>1/2(NI;h) are suffi
ciently small, we can satisfy (DI6). In case (D6) is fulfilled, 
then only the second term occurs in (DI6), which is thus 
automatically obeyed. 

IfthelineNk +A..:lNk meetsl:atNk,weletN k be the 
new starting point and continue. We obtain this way a se
quence of points NI, ... ,Nk,Nk,Nk+ I"'" where some of the 
indices may appear at most twice, and a corresponding de
creasing sequence <I>(NI;h), ... ,<I>(Nk;h),<I>(N~;h), ... such 
that <I> (N k+ I ;h ) /<1> (N k ;h ) .;;;p2 < 1. It follows that the se
quence <I> (N k ;h) tends to zero. Also 

liNk + I -Nkllp.;;;IINk+1 -Nkllp + liNk -Nkllp 

< [2K I( 1 - fl) ]<I>1/2(Nk;h) 

.;;;[(2KI(l-fl)]pk<l>I/2(NI;h), (DI7) 

which shows that {Nk } k = I is a Cauchy sequence. All terms 
Nk,N k of the sequence stay in a ball around NI of radius R 
given by 
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k-I 

liNk - Ndlp';;; L liN; + I - Ndlp 
;=1 

«~)<I>1/2(NI;h) _1_==R. (DI8) 
I-fl I-p 

Clearly, R may be made smaller than Hf<l>I/2(NI;h) is suffi
ciently small. Ifthis is so, then N b = limk_ oo Nk belongs to 
all (NI;?) and, since <I>(N;h) is continuous, 

lim <I>(Nk;h) = 0 = <I>(Nb;h) , 
k-oo 

it follows that N b = No, the solution of the equation 
<I>(No;h) = O. 

To sum up, we have shown that, if r is chosen so that 
(D4) and (DI4) are true, the quantity aC < 1 [cf. (DI6)] 
and the conditions preceding Eq. (D 1) are met, then for any 
hex) such that <I>(NI;h) satisfies (DI6) and gives rise in 
(DI8) to R';;;r, the equation <I>(N;h) = 0 has a solution in 
all (NI;r) and this solution may be found by the modified 
Newton iteration described above. This solution is unique by 
Theorem 3.2. This establishes the claim made in this Appen
dix. 

It is clearly possible to replace the Newton method with 
the minimization procedure of Sec. VI, provided we confine 
ourselves to a search over a (uniformly with respect to k) 
finite number of steps (D8) and choose the constants in 
(D 18 ) appropriately. This justifies Theorem 6.1. 

APPENDIX E: MULTIPLE ZEROS 

The theorems presented in this paper are true regardless 
of the multiplicity of the zeros of the extremal Blaschke 
product B(N;Z) in Izl < 1. However, several steps of the 
proofs [cf., e.g., Eqs. (3.52), (3.59), and (3.60)] and even 
the statements of some of the lemmas (3.2, 3.4, and 5.3) 
make use of the assumption (introduced preceding Lemma 
3.2) that the zeros of B(N;z) are simple. In this appendix, we 
describe a general procedure to treat multiple zeros and 
complete this way the justification of the theorems of Secs. 
III and V. 

First, expressions (2.25) and (3.2) for L(n;z) suggest 
that, if, say, a l is a zero ofthe rth order of B(n;z), then r - 1 
ofthe equations (3.9) must be replaced by 

(
n(X),B(X;a») ak(p(a~)lal)) = 0, k = 1,2, ... ,r - 1. 

aa l p 

(E1 ) 

The first part of the proof of Lemma 3.2 under this condition 
is obtained from the requirement that the expression on the 
right-hand side ofEq. (3.18) is holomorphic in Izl < 1 [cf. 
comment following Eq. (3.23)]. In particular, all negative 
Laurent coefficients in the expansion of (3.19) around 
z = a l (possibly ale[ - a,b)) should vanish. Using (3.2) 
this shows that (E1) are necessary conditions. The second 
part of the proof stays unchanged. 

Similarly, under the conditions above, r - 1 of Eq. 
(3.29) of Lemma 3.4 must be replaced by 

(
N(X),F(N;X) ak(p(a~)lal») = 0, k = 1,2, ... ,r - 1. 

aa l p 

(E2) 
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The proof that Eqs. (3.2) are necessary conditions for 
F(N;x) to be extremal for (3.25) (even if alE[ - a,b]) is 
obtained by differentiating with respect to z the identity 
[which uses (3.26)] 

( N(X), F(x) - F(Z») = (N(x),F(X) _x_) (E3) 
x-z p l-xzp 

and letting z = a I' The integrands are holomorphic func
tions of z, for ZE [ - a,b], so that differentiation poses no 
problems. Thus, Theorem3.1 isjustifiedforallN(x)EL z( p) 

indeed. 
The difficulty that appears in the arguments of Lemma 

3.5 if we allow for multiple zeros is that the functionals 
a; (N) describing the dependence of the position of a zero of 
F(N;Z) [and thusofB(N;z)] onN(x), are no longer Frechet 
differentiable. Indeed, the condition for application of the 
implicit function theorem (Fo (N;Z) #0) fails. However, the 
symmetric combinations 

p 

YI(N) = - L a;(N), 
;=1 

p 

Yz (N) = L a; (N)aj (N), 
i<j 

p 

Yp (N) = ( - 1) p II a; (N) (E4) 
;=1 

are always Frechet differentiable. This is obtained by ex
pressing them as polynomials in the symmetric sums 

P 

Uk (N) = L a; (N)k (E5) 
;=1 

(by means of Newton's formulas, see Ref. 50) and writing 
the latter as 

Uk (N) = _1_ i zk(aF(N;z)laz) 
211'i J'G' F(N;Z)dz 

(E6) 

where Crfj is a contour surrounding thep zeros of F(N;Z) and 
no others and F(N;zE'fJ »p > O. From (E6) it is clear that 
all Uk'S and thus all y;'s are Frechet differentiable function
als of N. 

Now, the Blaschke products can be expressed conve
niently in terms of Y; (N): 

~!' y.(N)?-; 
B(N;Z) = 1=0 1 . (Yo(N) = 1), (E7) 

~f=OYi(N)Z' 

and, instead of the a; 's, we may take the Y; 's as parameters. 
As in Lemma 3.2 we obtain another form of the p conditions 
for B(n;z) to be the extremal function associated to n(z), 

(
n(x), aB(N;X») = 0, i = 1,2, ... ,p. 

ay; 
(E8) 

The reasoning of Lemma 3.6 following Eq. (3.57) may be 
done again with no other change but the replacement of the 
8a; with the 8y;, which are always well-defined quantities. 

The changes in Lemma 5.3 are the same as in Lemma 
3.2, whereas in Lemma 5.4 it is sufficient to verify that the 
determinant (2.10) stays nonvanishing even if P(Sk ;a; )Ia; 
is replaced by a(p(sk;a;)la;)laa;, for some i. The state
ment of Theorem 5.3 is obtained by taking the Yj' Eq. (E4), 
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as parameters and resorting to (E8) instead of (5.12). The 
functions (aB laYj) (z) are indeed linearly independent; this 
follows from the fact that, if constants p; existed so that 

p aB(N;Z) L p; 0, 
k=1 ay; 

(E9) 

then they are also such that, for /z/ = 1 (Yo = 1), 

ImCto Yk
Zk

) Ctl :=) = O. (E1O) 

The first factor has only zeros in /z/ > 1 and the second factor 
cannot produce sufficiently many zeros conjugate to these 
with respect to the unit circle, since its degree is less than p. 
Thus f-ti = 0, for all i. 

We may now inquire whether it is possible by this means 
to get rid of the restriction (H) of Sec. III. e.g., to allow for 
multiple zeros to ~ross the circl~ /z/ = 1. In any neighbor
hood of a point N, so that F(N;Z) has a double zero on 
/z/ = 1, thereexistpointsN, sothatF(N;z) has a simple zero 
at a(N) in /z/ < 1 and another simple zero at a 1 (N) in 
/z/ > 1. For such points N, we can again write the Fr6chet 
derivatives of (aB IaN) (N) by means ofEq. (3.52). How
ever, contrary to the situation of Appendix B, as N ap
proaches "II, the Frechet derivative of a (N) with respect to N 
diverges, and the limit of (aB IaN) (N) does not exist for all 
8NEL z ( p ). This cannot be cured by the method above and a 
different treatment of these points is required. The author 
has not pursued this item further. 

On the other hand, it may be possible to relax that part 
of (H) referring to several simple zeros lying on /z/ = 1 for 
some N. As pointed out in Appendix B, comment (c), the 
various inverse Frechet derivatives exist in this case. How
ever, it appears difficult to give a proof of Lemma 3.7 for this 
situation in sufficient generality. The author presumes its 
statement stays nevertheless true. 
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Inverse scattering for geophysical problems when the background 
is variable 
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An exact method for finding an inhomogeneity for a variable background from the knowledge 
of the scattered field on some manifolds is given. 

I. INTRODUCTION 

Let 

[V2 +a/n(x) +w2v(x)]u(x,y,w) = -8(x-y), XER3. 

(1) 

Here u is the acoustic field generated by a point source situ
ated at the point y in an inhomogeneous medium described 
by the refraction coefficient n(x) + vex), where n(x) is the 
known variable background and vex) is a compactly sup
ported inhomogeneity. We want to find vex) from the mea
surements ofu(x,y,w) for all x andy running through some 
manifold M and 0 < w < wo, where Wo is a small fixed fre
quency. If the manifold is the plane P = {x: X3 = O}, the 
background n(x) = 1, or 

n(x) = {
I, 

no = const, 

the inverse problem was solved in Refs. 1 and 2. In Ref. 2 the 
cases when M = SRI = {x: Ixl = RJ or M CRI 

= {x: xi + x~ = R i} were studied, R I > R and supp v 
eRR {x: Ixl<R}, where supp v is the support ofv. We 
assume (without loss of generality) that v = 0 if X3>O. 

There are two basic results in this paper. The first is a 
linear integral equation for finding vex) for a fairly general 
background n (x). The second is an analytic exact method of 
finding vex) in the case when v = V(XI,x3)' and M = II U/2, 

where II = {x: XI = a, X 2 = o}, 12 = {x: XI = - a, 
x 2 = O}, a > R, xE/I' yE/2• In geophysics this is the well-to
well exploration scheme. 

The method we use was developed in Refs. 1 and 2, but 
here some new ideas are added. 

In Ref. 3 the exact inversion theory originated in Ref. 1 
is presented in a systematic way. Many authors used a refer
ence background for inversion assuming that the difference 
between the reference and actual backgrounds is small in 
some sense (e.g., Ref. 4). Here this "smallness" assumption 
is dropped and the inversion problem is treated globally, 
without using perturbation theory. 

II. BASIC EQUATIONS 

Let us assume that the Green's function 

!::..G + w2n(x)G = - 8(x - y) 

is uniquely defined for 0 < w < wo, and 

lim G=go (41Tlx yl)-I. 
",_0 

(2) 

(3) 

Since n (x) is assumed to be known, the function G can be 
considered known. 

Equation (1) can be written as the integral equation 

u(x,y,w) = G(x,y,w) + w2 f G(x,z,w)v(z)u(z,y,w)dz, 

(4) 
where the integral is taken over the support of v. As in Ref. 1 
one can prove that (4) is solvable by iterations if w is small 
enough, e.g., if 

w2 maxx f IG(x,z,w)v(z)ldz<l, 

and the following limit exists: 

j(x,y)=16r lim (u - G)w- 2 = f v(z)dz . (5) 
w--.O Ix - zl Iz - yl 

Here we use (3). The left side of (5) can be measured. The 
functionj(x,y) is our datum. Equation (5) is formally the 
same as Eq. (2.9) in Ref. 2. The basic new point is that we 
use u - G as the scattered field now while in Ref. 2 the scat
tered field was 

u - exp(iwlx yl)[ 41Tlx - yl] I, 

which corresponds to the constant background n(x) = 1. 
Here the scattered field corresponds to the variable back
ground n (x). The important fact, which makes the method 
work, is that for fairly general backgrounds n (x) the limit 
(3) does not depend on the background, although for w ¥ 0 
the Green's function G depends on the background. 

In Ref. 2 Eq. (5) was solved analytically for the case 
when x,yEP, and, under additional assumptions on v (z), for 
the case when x,yel = {x: XI = X 2 = o}, which corresponds 
to the model logging problem. Here we study the basic equa
tion (5) in the casewhenxE/I andYE/2, which corresponds to 
well to well exploration. We assume that 

n = n(z3) . (6) 

The assumption n = n (Z3) is convenient in geophysical ap
plications. Equation (5) is a linear integral equation of the 
first kind for v and can be solved numerically by means of a 
regularization method. 

III. INVERSION FOR A VARIABLE BACKGROUND 

(i) First, consider the problem when the manifold, on 
which one measures the data, is M = P = {x: X3 = O}. 

There are two basic steps in solving the inverse well-to
well problem. First, one computes the dataj(x,y). This com
putation needs the measured field u and the computed (or 
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calculated analytically) field G. Second, one solves numeri
cally Eq. (5) with the data found in the first step. In this 
paper we discuss the first step under the assumption that the 
background is 

X 3 >0, 
- d <X3 .;;0, (7) 

X3 < - d, no < 1. 

One can compute G, the solution to (2), for the background 
(7), using the Fourier transform in variables x I and X 2: 

wherekl > Oifw2no >A 2, kl = i(A 2 _ w2 no) 1/2 ifw2no <A 2, 
and h ± are the solutions to the equation 

h" + [w2n(x3 ) - A 2]h = 0, (12) 

which are given for X3 > 0 by the formula 

h ( + 'k) 0 ko = (/.,2 _ 1 2) 1/2. ± = exp _ I oX3' X3 > , LV /\, 

(13) 

Ifd = 0, then 

1 ( kl ). 1 ( kl ) h+ =- 1 +- exp(lkoX3) +- 1--
2 ko 2 ko 

Xexp(-ikoX3)' x 3 <0, ko=~w2-..12, 
(14) 

(15) 

If d > 0, then expressions for h ± are more complicated. In 
the interval 0> X3 > - d, Eq. (12) is 

h" + (w2 -A 2 + [w 2 (1 - no)/d ]x3 )h = 0, (16) 

and its two linearly independent solutions can be written by 
means of Bessel functions. Indeed, let a = w 2 

- A 2, 

{3=w2(1-no)-I,S=a+{3x3. Then (16) takestheform 

hss+{32Sh=0. (17) 

This equation is solvable in Bessel functions (Ref. 5, formula 
8.491.7) 

h(S) =AS 1/2JI/3(; s3/2) + BS 1/2J_1/3(; S3/Z) , 

S = a + {3x3 , (18) 

whereA and B are arbitrary constants and Jp (x) is the Bessel 
function. Therefore one can find h ± (x3 ) explicitly: h ± are 
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G=_1_JGexP(U.X I )dA, dA=dA l dA 2, 
(21T)2 

Xl = (XI' X2, 0) , 

G = J G exp( - iA . Xl )dXI . 

(8) 

(9) 

Note that G(x,y) = G(x i - YI; X2 - Y2; X3'Y3)' Taking this 
Fourier transform ofEq. (2) one obtains 

2-

d G + (a?n(x3) _ A 2)G = _ /j(X3 _ Y3)exp( _ iA . yl), 
dx~ 

A 2 =Ai +A~. (10) 

Thus, G is the Green's function of the one-dimensional equa
tion (10). It can be written as 

(11) 

given by (13) in the region X3 > 0, by 

h = A ~ 1/2 J ( 2f3 ~ 3/2) + B ~ 1/2 J ( 2{3 S 312) 
± ± !> 1/3 3!> ± !> - 1/3 3 ' 

- d < X3 < 0, S = a + {3x3 , (19) 

and by 

" 
h ± = C ± exp(iklx 3) + D ± exp( - ik1x 3), X3 < - d . 

(20) 

The coefficients A ± ,B ± ' C ± ,D ± are to be found from the 
requirement that the functions h ± (x3 ) and 
h/± (x3 ) = dh + /dX3 are continuous at X3 = 0 and at 
X3 = - d. This requirement leads to a linear system of four 
equations for each of the sets of four coefficients (A +, B +, 

C +, D +) and (A _, B _, C _, D _). The coefficients can be 
written explicitly. The formulas for the coefficients are com
plicated and therefore omitted here. Our point is that the 
Green's function G can be written analytically for n (x3 ) giv
en by (7). If G is known then G is given explicitly by (8). 
One can check that (3) holds. Therefore one can compute 
/(x,y) in (5) and obtain the linear integral equation (5) for 
v (z). If x, yEP this equation is solved analytically in Ref. 2. 

(ii) Let us now consider the case when v = v(x l , x 3 ). 

This means that v is not compactly supported: it is constant 
as a function of X 2. Nevertheless one can prove that in this 
case Eq. (5) is still valid, and the limit on the left side of (5) 
exists. Let us assume that xEl l = {x: XI = - a, X 2 = 0, 
X 3 <O} and YEl+ = {x: XI = a, X 2 = 0, X3 <O}. Equation 
( 5) takes the form 

(5') 

where 
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where formula 3,152 from Ref. 5 is used and K(q) 
= F( 1T12,q), and where 

F(t/J,k) = r dt/J 
Jo ~ I _ q2 sin2t/J 

is the elliptic integral of the first kind. If 
(x + a)2 > (y - a)2, then the right side of (21) is 

1T ([ (x+a)2- (y_a)2]1I2) 
[(x+a)2+~1/2] K (x+a)2+~ . 

Equation (5') is a linear equation of the first kind for v. The 
integral in (5') is taken over the support ofv in the planez l 

and Z3' This equation can be solved numerically by a regular
ization method. 

IV. INVERSION FOR n(x,,) OF THE SEISMIC DATA 

Assume that v = 0, y = 0, and n(x) = n(x3 ) in (1), 

X3 = z in what follows. Take the Fourier transform of ( 1) in 
Xl to get 

d 2G --+(m2n(z) -A2)G= -c5(z). (22) 
dzZ 

The data are the values u (Xl, Z = 0, y = O,m), 0< m < mo, 
where mo is a (small) fixed number. The Fourier transform 
U (A, z = 0, y = 0, m) = G(A,O,m) is known. Let us assume 
that n(z) = 1 ifz>O, n(z) = no ifz< - d. We wish to find 
n (z) in the region - d < z < ° from the knowledge of 
G(A,O,m). It follows from (22) that 

G(z) = r(z) + m2 f: 00 r(z - z')n(z')G dz', 

r(z) = exp( - Alzl) . (23) 
U 

Equation (23) is uniquely solvable by iteration if 
A 2>m2 max n(z). We have 

f(z,A)=4A 2 lim (G - nm-2 

w-+O 

= f:oo exp( -Alz-z'!>n(z')exp( -Alz'!>dz'. 

(24) 

Set z = ° in (24) to get 

f(O,A)=t/J(A) 

= Loo exp( - U Iz'l)dz' + no 
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x f--~ exp( - U Iz'l)dz' 

+ ld exp( - U Iz'!>n(z')dz' . 

Denote 

F(p) = t/J(A) _ ~ _ exp( ~ Ud), A = ~ , 

and n ( - t) = f(t). Then (25) can be written as 

[ exp( -pt)f(t)dt=F(p). 

(21 ) 

(25) 

The function F(p) is defined for p>O. We can compute 
fN (t), which approximates f( t) with a prescribed accuracy 
in L 2[0,d ] iffeL 2 [in C[O,d] iffEC( [O,d])] using the data 
F(p) on the interval ° <p < b, where b > ° is a fixed number, 
by the formulas3

•6 

fN(t) = f dPF(P)HN~- ~)exp(pt), 
where 

and 

HN(P) = (21T)-1 f:oo c5N (iy)exp( -iyp)dy, 

H N (p) = 0, if p > b 12 or p < - b 12 , 

c5N(iy) = (~)1I2(1 +L)N 
41Td 2 4d 2 

(
sin(vb 12(lN + q) ))2N + q 

X ybI2(2N+q) , q;>l, 

where q;> 1 is an arbitrarily fixed number. The following esti
mate holds: 

IIfN(t) - f(t)II<E(N) -+0 as N-+ 00 , 

where the norm is L 2( [O,d])(C( [O,d]») if 
feL 2( [O,d] )(C( [O,d]»). 

IA. G. Ramm, Phys. Lett. A 99,258 (1983). 
2A. G. Ramm, Inverse Problems 1,133 (1985). 
lA. G. Ramm, Scattering by Obstacles (Reidel, Dordrecht, 1986). 
·V. H. Weston, J. Math. Phys. 22, 2523 (1981). 
51. Gradshteyn and I. Ryzhik, Tables of Integrals, Series and Products 
(Academic, New York, 1965). 

6A. G. Ramm, "Signal estimation from incomplete data," J. Math. Anal. 
Appl. (to appear). 
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A topological structure on the space of supernumbers is introduced, with which this space 
becomes a Frechet space. The definition of supermanifold and "superprojective space" are 
given. The superprojective space is one of paracompact Hausdorff supermanifolds. 

I. INTRODUCTION 

There are some different ways of defining the topologi
cal structure on the space of supernumbers. 1-4 However, it 
seems, at least to the authors, that each way has its merits 
and demerits. The topological structure of Rogers3 is richer 
in that it is nontrivial in the soul part of supernumbers. On 
the other hand, the coarser topologies used by De Wite and 
Batchelor2 are much easier to study, because there is no ne
cessity for considering the convergence of norms. In this 
article we attempt to define a topology that has both merits 
mentioned above. 

In Sec. II we define our topology; Sec. III contains a 
discussion of the differentiability of functions of super
numbers. In Sec. IV, we give the definition of supermanifold 
and consider "superprojective space" as an example of a 
paracompact Hausdorff supermanifold. 

II. SUPERNUMBERS 

Let A", be an infinite-dimensional Grassmann algebra 
over complex number field C. Let ta, a = 1,2, ... , be a set of 
generators for A"" which anticommute; tatb = - tbta 
for all a and b. The elements of A 00 are called supernumbers. 
Every supernumber can be expressed in the form 

where UB is an ordinary complex number and 

The numbers UB and Us are called the body and the soul of 
the supernumber u, respectively. 

If a supernumber u has the form 
00 

U = L L ual .. ·a2.tal···ta2., 
n=O Qt<···<a2n 

then it is called a c-number. If u has the form 

then it is called an a-number. The set of all c-numbers is a 
commutative subalgebra of A 00 , which is denoted by Ce • The 
set of all a-numbers is denoted by Ca. 

Let N 00 denote the set of sequences a = (a!> ... ,an ) 

where the a's are natural numbers and a l < ... <an' then the 

elements t al···t an, (al, ... ,an )eN 00 , form a basis for A", . For 

an element a = (al, ... ,an ) in N"" we define t a by tal···t an. 
With this convention every supernumber can be expressed in 
the form 

LetNm (m = 1,2, ... ) be subsets ofN '" so that (1) N m is 
a finite set for all m, and (2) ifJ is in N I , N m CNn for m <n, 
and 

(Here ifJ represents the empty sequence in N 00 .) Let 
Pm: A", -+R (m = 1,2, ... ) be defined by 

Pm(U) = L Iual, 
aeNm 

where 

Then the P's are seminorms on A", and we have PI(U) 
<'P2(U)<' •.• for all u in A",. Set 

Vm.l(u) = {vEA", IPm (v - u) < lit}. 

Here U is in A", and m, I are natural numbers. Then A", has a 
topology such that {V m,l (u)} m.l is a fundamental neighbor
hood system of u. As is easily seen, this topology admits the 
second countability axiom. Furthermore we can make A", 
into a metric space by defining a metric 

d 
~ (l/2m)Pm (u - v) 

(u,v) = L.J . 
m=1 I+Pm(u-v) 

A sequence {tI}j = 1.2.... of supernumbers converges to a su
pernumber U ifflimj _ '" I tla - ua I = 0 for all a in N 00 • Hence 
the metric d is complete. Thus with our topology A", be
comes a Frechet space.5 It is the purpose of this article to 
demonstrate that our topology has desirable properties for 
analysis over supernumbers. 

III. SUPERANAL YTIC FUNCTIONS 

In this section we discuss an analytic theory offunctions 
of c-numbers and a-numbers. 

Consider first Ce • Let Ube an open neighborhood of an 
element u in Ce and let! be a mapping from U into A",. 
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Then/is said to be superanalytic at U ifthere exists a function 
E(h) (hECc ) and an element a in A~ such that 

(1)/(u + h) - feu) = ah + E(h)h (hECc ), 

(2) E(h) --+0 (h--+O) with respect to our topology. 

The supemumber a is called the derivative of/with respect 
to U and denoted by (d / du )/( u). If/is superanalytic at 
every point u in U then/is said to be superanalytic on U. 

Our definition of a superanalytic function may be re
garded as a mathematically rigorous form of that of 
DeWitt. I Actually we can prove exactly the following theo
rems, which are described by DeWitt without proofs. 

Theorem 1: Let/ be any ordinary complex holomorphic 
function on an open set Yin C. Then we can extend/unique
ly to a superanalytic function 

(1) 

wherepnl denotes the nth derivative of/and the definition is 
valid for all c-numbers u such that u B is in V. 

Theorem 2: The general form of a superanalytic func
tion on a connected open set of Cc is 

feu) = L f. (u)t a
, 

aeN~ 

where the f. (u) are functions like (1). 
Here we give a proof only of the first theorem. 
Pro%/ Theorem 1: We first note that the right-hand 

side of (1) converges with respect to our topology. We have 

feu + h) -feu) 

= f 1-{pnl(UB +hB)(uS +hs)n_pnl(uB)uS
n} 

n~O n! 

Therefore,f is a superanalytic function on U = {u in Cc I 
u B is in V}. To prove the uniqueness of the extension, we let g 
be a superanalytic function on U such that g(z) = 0 for all z 

in V. Expand g in the form 

g(u) = L ga (u)t a (ga: U--+C). 
aeN~ 

For a natural number m, let Aoo,m be the finite-dimensional 
subspace of Aoo spanned by the set {t bib in N m}. Then we 

00 

can see that CC A~,I C Aoo ,2 C ... and m ~ I A~,m is a 

dense subset of A . Now, for fixed a and m, we restrict the 
domain of ga (u) t~ un A 00 ,m' Then we can regard the func
tiong" (u) as an ordinary holomorphic function of the com
plex variables ub , bENm. Since (d /du)g(u) = 0 for all UEV, 
the ordinary derivatives of ga (u) at u in V with respect to ub , 

bENm, are all zero. Hence ga (u) = 0 for all u in UnAoo,m' 
Thus we obtained that g(u) = 0 for all u in 

Un( U A~,m).Since U t:.~,misdenseinAoo,g(u)=O 
m~1 m~1 

for all u in U. Q.E.D. 
Rogers3 uses a II norm to define her topology on the 

space of supemumbers. Therefore, there are frequent occa-
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sions when it is imperative to verify convergence of norms. 
On the other hand we use seminorms {Pm (U)}m to define 
our topology, consequently there is no such problem. As a 
result we may deal much more easily with an infinite series of 
supemumbers. [For example, see (2).] 

Using Theorem 2, we can show the following theorem. 
Theorem 3: Let/ be superanalytic on a connected open 

set U of Cc. Set UB = {ZEqz = U B for some U in U}, and 
setU={uECcluB is in UB}.Then/hastheuniqueexten
sion to a superanalytic function on U. 

A superanalytic function of a-numbers is defined simi
larly: 

feu + h) - feu) = ah + E(h)h = hfJ + hp(h) (hECa ), 

E(h)~ and p(h)~ (h~). 

The supemumbers a andfJ are called, respectively, the right 
<-

and left derivatives of/and are denoted by feu) (d /du) and ... 
(d /du)/(u). 

This definition is also a mathematically rigorous form of 
DeWitt's one. We can show the following theorem. 

Theorem 4: The general form of a superanalytic func
tion on a connected open set U in Ca is 

feu) = a + bu (UEU), 

where a and b are arbitrary supemumbers. Therefore, any 
superanalytic function on a connected open set in Ca is ex
tensible to a superanalytic function on Ca. 

Let tP be a mapping from an open set of Cc m X Ca n to 
Cc m' X Ca n'. This mapping is said to be superanalytic if the 
coordinates u,j (j = 1,2, ... ,m' + n') of the image point tP(u) 
are superanalytic functions of the coordinates ui 

(i = 1,2, ... ,m + n) of the point u. 

IV. SUPERMANIFOLD AND SUPERPROJECTIVE SPACE 

Since DeWitt and Batchelor use a coarser topology on 
the space of supemumbers, their supermanifolds are not 
even Hausdorff. However our supermanifold may be as
sumed to be Hausdorff. Our definition of supermanifolds is 
as follows. 

A superanalytic manifold M of dimension (m,n) is a 
Hausdorff topological space with a collection of pairs 
(Ui , tPi), where 

(1 )each Ui is an open set of M and its associated tPi is a 
homeomorphism of Ui onto an open set in 
Cc mXCa n, 

(2)U i Ui =M, 
(3) tPi . tPj - I is superanalytic on tPj ( Ui n ~ ). 
In the rest of this section we will consider a generaliza

tion of the complex projective space pm(c). 
For non-negative integers m and n, we set 

Am + I,n = {UI, ... ,Um + I ,vl, ... ,vn ) in Cc m + I 

Let 
Cc '" = {A in Cc lAB #O}, 

i.e., Cc '" is the set of all invertible c-numbers. We define an 
equivalence relation on Am+ I,n as follows: (u,v)=(u'v') if 
there exists an elementAECc ... such that u' = AU and v' = Av. 
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Letpm,n(A oo ) be the set of all equivalence classes of Am + I,n. 
For (u,v) in Am+I,n, let [u,v] be the equivalence class of 
(u,v). Give P m,n (A 00 ) the topology that makes the mapping 
11': (u,v) -- [u,v] continuous. Then it is seen that 11' is an open 
mapping and P m,n (A 00 ) is a Hausdorff topological space 
that admits the second countability axiom. Let 

U;={[u,v]l(u,v) inAm+I,n, U;B¥=O} 

(i = 1,2, ... ,m + 1) and let !/J; be the mapping from U; to 
Cc m X Co R defined by 

(
U I U;_I U;+I um + 1 VI Vn) 

!/J;([u,v]) = -, ... ,--, --, ... ,--, -, ... ,- . 
U; U; U; U; U; U; 

Then with the collection {( Ui> !/J;) L we obtain the super
manifold P m,n (A 00 ) of dimension (m,n). 

When we consider integration over P m,R (A", ) (see Ref. 
6), the following theorem is useful for us. 

Theorem 5: pm,n(Aoo ) is paracompact. 
Proof' Since P m,n (A 00 ) is a Hausdorff space that admits 

the second countability axiom, it is enough to show that the 
space is regular. Letpo and A be a point and a closed subset of 
pm.R(Aoo ), respectively, such that Po is not inA. Let qo be a 
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point in Am + I,n such that 11'(qo) = Po. Then qo is in the open 
set 11'-1 (A C). On the other hand, Am + I,n has a metric p. 
There is a positive number {j such that 
{q in Am + I,RJp(q, qo) < {j} does not have the intersection 
with 11'-1 (A). Let 

U = {AqlA. in Cc·, p(q, qo) <M2}. 

Then 

U = {AqIAECc ., p(q,qo) .;;;M2} 

and 1{'-1 (A) C UC. Therefore, we obtain thatpo is in the open 
set 11'( U),A is contained in the open set 11'(UC), and the open 
sets 11'( U), and 11'(UC) have no intersection. Thuspm,n(Aoo ) 
is regular. Q.E.D. 

lB. DeWitt, Supermanifolds (Cambridge U.P., Cambridge, 1984). 
2M. Batchelor, Trans. Am. Math. Soc. 253, 329 (1979); 258, 257 (1980). 
3A. Rogers, J. Math. Phys. 21,1352 (1980). 
4y. Manin, in Lecture Note in Mathematics, Vol. 1111 (Springer, New 
York, 1985). 

~J. Dieudonne and L. Schwartz, Ann. Inst. Fourier (Grenoble) 1, 61 
(1949). 

6g. Matsumoto and K. Kakazu, in preparation. 
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A Killing tensor is one possible way of generalizing the notion of a Killing vector on a 
Riemannian or pseudo-Riemannian manifold. It is explained how Killing tensors may be 
identified with functions that are homogeneous polynomials in the fibers on the associated 
cotangent bundle. As such, Killing tensors may be identified with first integrals of the 
Hamiltonian geodesic flow, which are homogeneous polynomials in the momenta. Again using 
this identification, it is shown that in flat spaces the dimension of the vector space of Killing 
tensors is maximal and that the Killing tensors are generated by the Killing vectors. Finally, 
using Riemann's model for the metric in spaces of constant curvature, a comparison argument 
is used to show that similar results are valid in that more general context. 

I. INTRODUCTION 
A Killing tensor field on a Riemannian or pseudo-Rie

mannian manifold is one possible way of generalizing the 
familiar concept of a Killing vector. Killing tensors have 
been studied extensively by relativists, since they are essen
tially identical with first integrals of the dynamical field that 
are polynomial in the momentum variables. 1-4 More recent
ly, it has been pointed out that Killing tensors also playa role 
in the search for first integrals in the context of classical 
mechanics.5 Indeed, many authors have in effect solved Kill
ing's equations, without explicitly isolating the notion of a 
Killing tensor. 6-9 

In this paper I shall primarily be concerned with the 
structure of Killing tensors in spaces of constant curvature. 
Specifically, in Sec. IV I shall show that in such a space the 
number of independent Killing tensors is maximal and that 
every Killing tensor consists of a sum of symmetrized prod
ucts of Killing vectors. The proof of this result is somewhat 
indirect; I establish the result first for flat spaces and then use 
a comparison argument based on Riemann's model for the 
metric in spaces of constant curvature, to obtain the general 
result. In Secs. II and III I give some background material on 
Killing tensors, some of which is not well known. In particu
lar, in Sec. II I shall describe how S(M), the graded algebra 
of symmetric, contravariant tensor fields on a smooth mani
fold M, carries naturally the structure of a graded Lie alge
bra that extends the Lie structure of the vector fields on M. 
When M is a Riemannian or pseudo-Riemannian manifold, 
this Lie structure enables one to give an elegant characteriza
tion of Killing tensors as those elements of S(M) that com
mute with the (contravariant) metric tensor G. I shall also 
describe how S(M) with its two algebraic structures may be 
identified with a subspace of F( T * M), the ring of smooth 
functions on the cotangent bundle of M. This isomorphism 
gives a very convenient description of Killing tensors as 
functions on T * M that are homogeneous polynomials in the 
fibers, which is used throughout the paper. In Sec. III I ex
plain the relationship between Killing tensors and first inte
grals in mechanics, in terms of the machinery developed in 
Sec. II. 

Before giving my notational conventions I should like to 
mention two points that are potential sources of confusion in 

the paper. First of all, I shall have occasion several times to 
deal with Riemannian or pseudo-Riemannian manifolds 
(M,g) that are flat; by this I mean that the Riemann tensor 
determined by g is zero. It follows that (M,g) is locally iso
metric to Rn with an inner product whose signature is the 
same as that of g. 10-12 However, such an isometry need only 
be locally defined, the obstruction to extending it to a global 
isometry being the fundamental group 1T 1 (M) of M. In the 
sequel, several results involving flat spaces are to be inter
preted as global theorems in case 1T1(M) is trivial, or local 
theorems otherwise. In particular, it is only in the former 
case that it is valid to speak of global, linear coordinates on 
M. 

The second possible point of confusion concerns the Lie 
algebra of Killing tensors on a Riemannian or pseudo-Rie
mannian manifold (M,g). S(M) with its commutative alge
bra structure may be considered to be either a graded or 
filtered object. 13 In terms of the isomorphism mentioned 
above with the subspace of F( T * M), this amounts to the 
distinction between functions on T*M that are homogen
eous or inhomogeneous polynomials in the fibers, respec
tively. In fact it is only in Sec. III that I shall briefly wish to 
allow for inhomogeneous polynomials because there I shall 
consider mechanical Hamiltonians in which there is a poten
tial function in addition to the kinetic energy term. Other
wise, I shall be concerned with Killing tensors that corre
spond to first integrals which are homogeneous in the 
momentum variables. I shall, however, show in Sec. IV that 
the components of a Killing tensor in flat space are polyno
mial and, moreover, that each homogeneous part is also a 
Killing tensor. Thus the term "homogeneous Killing ten
sor" will be used only in flat space and will correspond to a 
function on T * M that is a homogeneous polynomial in both 
the position and momentum variables. 

As regards notation, M will denote a smooth, that is 
Coo , manifold of dimension m. Further .Y and V will de
note, respectively, Lie and covariant differential operators, 
V corresponding to the Riemannian or pseudo-Riemannian 
metric g. The graded algebra of symmetric and skew-sym
metric contravariant tensor fields on M will be represented 
byS(M) andA(M), respectively. Ishall use1T: T*M-+M to 
denote the cotangent fibration of M and {f,g} for the Pois-
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son bracket of two elements f and g of F( T * M), the ring of 
smooth functions on T * M. In addition, I shall employ the 
notation of the classical tensor calculus with range and sum
mation conventions in operation unless otherwise stated (in 
particular in Proposition 4.6) and AU, ... i

n
) will denote the 

symmetric part of the valence n covariant tensor field Ai""i
n 

• 

II. KILLING TENSORS 

Let (M,g) be a Riemannian or pseudo-Riemannian 
manifold, with M of dimension m. A symmetric, covariant 
tensor field K on M of valence n is said to be a Killing tensor 
if 

(VX,K)(X2, ... ,xn+I) + (Vx2K)(X3,· .. ,xn+I,xI) 

(2.1) 

for any collection ofn + 1 vector fieldsXI,x2, ... ,xn + I on M. 
Equivalently, introducing a local coordinate system (Xi), K 
satisfies the index condition 

(2.2) 

Forn = 1, (2.1) or (2.2) reducestotheusualdefinitionofa 
(covariant) Killing vector (or one-form) on M.1O It is well 
known that for n = 1, (2.1) is equivalent to the following 
condition \1, 14 

(2.3 ) 

where now K is the contravariant vector field dual to K via 
the metric g. For future reference I should also recall that in 
Euclidean n-space with the standard metric whose compo
nents relative to the natural coordinates are flij' the solution 
of Killing's equations [(2.2) with n = lor (2.3) thought of 
as a first-order system of partial differential equations for the 
unknown functions Ki] leads to the following basis for the 
Lie algebra of Killing vectors: 

a T. = - (l<;i<;m) , (2.4) 
I axi 

. a . a 
R .. =Xl __ XI- (l<;i<j<;m). (2.5) 

IJ axi Jxj 

Ti andRij are the well-known symmetries which correspond 
to the conservation laws of linear and angular momentum 
via Noether's theorem. 15 

I shall next describe how (2.3) may be generalized and 
thereby give an alternative, intrinsic definition of Killing 
tensors.4 To do this, it is necessary to consider Schouten's 
bracket on the algebra of symmetric contravariant tensor 
fields S(M) on M. The collection of (contravariant) vector 
fields on M has, of course, the structure of a real Lie algebra 
under the Lie bracket of vector fields. This bracket structure 
can be extended as a biderivation (of degree zero) to S(M). 
Specifically, one extends the bracket to decomposable, sym
metric contravariant tensor fields and then extends by lin
earity to the whole of S(M). One easily checks that this 
endows S(M) with a well-defined structure of a real Lie 
algebra. If A,BeS(M) with valence P and q, respectively, the 
bracket of A withB, which I denote by [A,B] and which is of 
valence P + q - 1, is given in component form by 
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[The Lie structure on S(M) just described, which is known 
as the Schouten bracket, should be distinguished from a 
structure on A (M) (the algebra of skew-symmetric contra
variant tensor fields on M), which goes by the same name. 
This structure is also of current geometric interest and is 
obtained by extending the Lie product to A(M) as a bideri
vation of degree 1 (see Ref. 16).] In terms of the Schouten 
bracket, a (contravariant) Killing tensor is simply one that 
commutes with g. 

In addition to its Lie structure, S(M) of course enjoys 
another algebraic structure, namely, it is a commutative al
gebra with respect to the symmetrized tensor product, which 
I shall denote by AGB [A,BeS(M)]. These two algebraic 
structures are related by 

[AGB,C] = [A,C]GB + AG[B,C] , (2.7) 

where A,B,C,E.S(M); that is to say, the Schouten bracket 
acts as a derivation with respect to the commutative algebra
ic structure on S(M); indeed that is how it is defined. 

I shall now consider an apparently very different way of 
viewing the algebraic structures on S(M) just described, in 
terms ofthe geometry of the cotangent bundle T * M associat
ed to M. The starting point for this is the observation that an 
element A of S(M) defines naturally a real-valued function 
on T*M (a homogeneous polynomial in the momenta), 
which I shall denote by a. Specifically, if A has valence n, 

a(p) = A (p, ... ,p) , (2.8) 

wherepET*M and there are n arguments on the right-hand 
side of (2.8). If (Xi,Pi) is a coordinate system adapted to 
T*M, then (2.8) may be written in component form as 

a(xi,pi) =A i'"'i"(Xi)Pi,''' Pin' (2.9) 

Consider now the various algebraic structures of 
F( T * M) (the set of smooth, real-valued functions on T * M) . 
Then F( T * M) is naturally a commutative algebra, with 
multiplication simply the pointwise product of functions. 
Moreover F( T * M) is a Lie algebra with respect to the Pois
son bracket { , } arising from the canonical symplectic 
structure on T * M. These two algebraic structures are related 
by 

{ab,c} = {a,c}b + a{b,c} , (2.10) 

where a,b,cEF(T*M). 
The similarity between (2.7) and (2.10) is not coinci

dental: indeed one has the following result. 
Theorem 2.1: The map described above from S(M) to 

F(T*M) by A~ is an isomorphism (into) of both the Lie 
and commutative algebra structures. 0 

The proof of Theorem 2.1 may be effected either by us
ing local coordinates, or, more elegantly, by establishing the 
result on tensors of valence 0 and 1, respectively, and then 
using (2.7) to deduce the general case by induction.4 

III. KILLING TENSORS AND FIRST INTEGRALS 

In this section I shall explain how Killing tensors figure 
into the calculation of first integrals in mechanics. This pro
vides an application of the formalism developed in Sec. II 
and, in particular, of Theorem 2.1. I shall consider systems 
of "standard" mechanical type, that is to say, the dynamics 
is that of a particle on a Riemannian or pseudo-Riemannian 
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manifold moving under the influence of a force term which is 
the gradient of a potential function. As such, the Hamilto
nian formulation is available. 

The Hamiltonian h is a function on T*M, say 

h =! Gij(Xk)PiPi + V(xk) , (3.1) 

where (Xi,Pi) is an adapted system on T*M, Gij the inverse of 
the metric gij and V the potential function. Exploiting the 
isomorphism described in Sec. II, I may write 

H=!G+1T*V, (3.2) 

where 11': T * M_M is the canonical submersion. The Hamil
tonian vector field Xh associated to h is given by 

X - Gij a av a (33 
h - 'Pi axi - axi api . . ) 

Suppose that now f: T*M_llt is a first integral of Xh that is 
polynomial of degree n in the momentum variables. Then 
once again, by the isomorphism of SCM) with the subspace 
of F(T*M), I may write 

F=Kn +Kn_ 1 + ". +Ko, (3.4) 

where Ko,Kw",Kn are symmetric, contravariant tensors of 
valence 0,1,2, ... ,n, respectively. Now by Theorem 2.1,jis a 
first integral of Xh , that is XJ = 0 iff the Schouten bracket 
[H,F] vanishes. On equating grades, the latter condition is 
clearly equivalent to the following 

[G,Kn] = 0, 

[G,Kn _ I ] = 0 , 

[G,Kn_2] +2[1T*V,Kn] =0, 

[G,Kn_ 3 ] +2[1T*V,Kn_d =0, 

[G,Ko] + 2 [11'* V,K2] = 0, 
[1T*V,Kd =0. 

(3.5) 

From (3.1) it is apparent thatKn andKn _ I are Killing 
tensors. Moreover, the equations decouple into two sets in 
such a way that it suffices to consider first integrals of purely 
odd and purely even degrees. Of course when the function V 
is zero and one is considering simply the geodesic flow of g, 
every Ki is Killing and corresponds to a homogeneous po
lynomial first integral. The conditions (3.5) have been given 
before in local coordinates and used to determine' several 
new systems with polynomial first integrals.5 

IV. KILLING TENSORS IN SPACES OF CONSTANT 
CURVATURE 

It is immediately apparent from the intrinsic characteri
zation of Killing tensors given in Sec. II, that the symme
trized product of two Killing tensors is also Killing. In parti
cular this also applies to Killing vectors. The principal result 
in this section asserts that in a space of constant curvature, 
any Killing tensor is generated by Killing vectors; that is to 
say, a Killing tensor consists of sums of symmetrized prod
ucts of Killing vectors. Before dealing with spaces of con
stant curvature, I shall consider flat spaces and then deduce 
the more general result in the shape of Proposition 4.6 and 
Theorem 4.7. 

Proposition 4.1: Let (M,g) be a flat Riemannian or pseu-
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do-Riemannian manifold. Then a (covariant) Killing tensor 
fieldK of degree n, is a polynomial of degree n relative to any 
system of linear coordinates (Xi) on M. 

Proof: Let (Xi) be a system of global, linear coordinates 
on M [this of course is possible, if and only if (M,g) is an 
inner-product space, but there is an obvious corresponding 
local result]. Also, let differentiation relative to the Levi
Civita connection of g be denoted by a comma. I shall show 
by induction that for O<k<n, 

K '('" ') =0. 't''''k It·'"./n - ~}II- k + 1"-),. + I 
(4.1 ) 

Then (4.1) for k = n yields the required result and for k = 0 
the first step in the induction, which is valid because it is 
precisely the Killing condition (2.2). 

Suppose then (4.1) holds where O<k<n - 1. Then 

0= Kil·"ik«i!-·-j. _",i._ k+ I "-j.)ik + I) 

= (n -kin +k)Kjl".ik+I(i!,,-jn_k_l.i._k,,-jn+l) 

+ (k + 21n + 2)Kil"'ik(i!"-jn_",i._k+I"-jn+l)ik+1 ' 

(4.2) 
since K is totally symmetric and the order in which partial 
derivatives are computed is immaterial. But now by the in
duction hypothesis, the second term on the right-hand side 
of ( 4.2) is zero, whence so is the first and the proof is com
plete. 0 

Proposition 4.2: let (M,g) be a flat Riemannian or pseu
do-Riemannian manifold. Let K be a covariant Killing ten
sor field of valence n (corresponding to a first integral of the 
geodesic flow which is homogeneous in momenta). Let 
K = Ko + KI + .. , + Kn, where the components of each Kr 
relative to a linear coordinate system (Xi) are homogeneous 
polynomials [in the position variables, such a decomposition 
being possible by Proposition (4.1) ]. Then each K r is also a 
Killing tensor. 

Proof: In a system of linear coordinates, (2.2) assumes 
the form 

(4.3) 

The result follows immediately by equating coefficients in 
(4.3). 0 

Suppose now that (M,g) is a Riemannian or pseudo
Riemannian manifold that is not necessarily flat. The tech
nique used in the proof of Proposition 4.1 may be adapted to 
show the following: if K is a covariant Killing tensor field of 
valence n and (Xi) a local coordinate system on M, all de
rivatives of K of order greater than n are expressible in terms 
of derivatives of K of order less than or equal to n, together 
with the metric g and its derivatives. I shall illustrate this 
explicitly for the case n = 2, which is perhaps the most inter
esting case from a physical point of view,l-4 and it should 
then be clear how one deals with Killing tensors of arbitrary 
valence. 

Let the components of K be Kij in the coordinate system 
(Xi). Then notice first of all that (2.2) is equivalent to 

(4.4) 

where r;k are the Christoffel symbols of the Levi-Civita con
nection associated to g. Next, it is straightforward to check 
the following identities: 

(4.5) 
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K1m,ijk = K1(i,ikm) - 3K1U,ik)m . (4.6) 

From (4.5) and (4.6) one obtains, with one additional sym
metrization, 

K1m,ijk =! KOm,ijk) - i [Kw,kl)m + Kw,km)l] + 3K(ij,k)lm . 

(4.7) 

Hence, from (4.4) and (4.7) 

Since the rJk'S depend on g and its first-order derivatives, 
( 4. 8) gives K1m,ijk in terms of derivatives up to second order 
of Kim' and derivatives up to third order of g. In particular, if 
g is flat, coordinates can be chosen so that the right-hand side 
of (4.8) vanishes, which reiterates Proposition 4.1 in the 
case n = 2. To obtain formulas analogous to (4.8) for Kill
ing tensors ofvalence n, one would have n identities instead 
of just (4.5) and (4.6); these would enable one to obtain a 
general formula, for which (4.7) corresponds to the case 
n = 2. In conjunction with (4.4), one could then derive a 
formula for K il '''in,h-'1. + I in terms of derivatives of K andg up 
through orders nand n + 1, respectively. 

The preceding considerations are useful in the proof of 
the following theorem. In the theorem there occur two posi
tive integer parameters: m (the dimension of the ambient 
manifold) and n the degree of the Killing tensor being con
sidered. The case m arbitrary, n = 1 is ciassicallo

,I7 and the 
case m arbitrary, n = 2 has been proved much more recently 
by Kalnins and Miller. IS 

Theorem 4.3: The collection of analytic ( covariant) 
Killing tensors of valence n on M is a finite-dimensional vec
tor space of dimension, say K;:'. Moreover, 

K;:'<. em + n -l)!(m + n)! 
(m - l)!m!n!(n + I)! 

and equality holds if M is flat. 
Proof: Let K be an analytic covariant Killing tensor on 

M of valence n. (In terms of the isomorphism given by 
Theorem 2.1, K corresponds to a first integral of the Hamil
tonian geodesic flow which is a homogeneous polynomial of 
degree n in the fibers of T * M.) Now consider K together 
with its derivatives of all orders evaluated at some point p in 
M. I have already indicated how the derivatives of K of order 
n + 1 may be expressed in terms of derivatives oflower order 
(together with g and its derivatives which are known). Thus 
all derivatives of K of order greater than n may be expressed 
in terms of derivatives of order less than or equal to n. 

Now (2.2) is equivalent to the following, of which (4.4) 
corresponds to the case n = 2, 

(4.9) 

Next consider (4.9) and the totality of equations obtained 
from it by differentiating at most n times. This may be 
thought of as a homogeneous system of linear equations in 
which the unknowns are 

There are 
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nil (m + r - 1) (m + n - 1) 
7=0 r n 

such unknowns. On the other hand, it is not difficult to check 
that the number of independent linear equations is 

nil (m + r - 2) (m + n) 
r= I r 1 n + 1 

[one obtains all such independent equations by differentiat
ing (4.9) first of all with respect to xi- (l<JI<.n), then with 
respect to xi, and xj, (1<.jl<'j2<.n), then with respect to 
xi',x i" and x j

, (1 <'jl <.j2<.n) etc.]. Thus the excess of the 
number of unknowns over the number of equations is 

nil (m + r - 1) (m + n - 1) 
r=O r n 

= 

nil (m + ~ - 2) (m + n) 
r= 1 r 1 n + 1 

(m + n - 1 )!(m + n )! 

(m - 1 )!m!n!(n + I)! 
(4.10) 

The functions Kil ... i• and their derivatives are all being 
considered at a fixed point pin M. If one confines one's atten
tion to Killing tensors that are real analytic, it should be 
clear that the integer appearing on the right-hand side of 
( 4.1 0) gives an upper bound on the dimension of the vector 
space of Killing tensors; that is to say, it represents the maxi
mum number of free parameters if one attempts a power 
series solution aboutp of (4.9), considered as a system of 
first-order partial differential equations. Thus 

K m (m+n-l)!(m+n)! 
n <. . 

(m - 1)!m!n!(n + 1)! 

In general one will have a strict inequality, because there will 
be integrability conditions constraining the derivatives of the 
K il ... ;. of order n + 2 and higher. In a flat space these condi
tions are satisfied identically, that is to say, the system of 
partial differential equations obtained by differentiating 
(4.9) no more than n times, is completely integrable in the 
sense of the Frobenius theorem. 0 

The integrability conditions alluded to in Theorem 4.3 
can be obtained in the case n = 2 as follows. Consider (4.8) 
and differentiateKlm,ijk with respect toxn , say. The resulting 
expression for Klm,ijkn will contain derivatives of the Kim'S of 
order three which can be eliminated using (4.8). If one in
sists that two such expressions K1m,ijkn and K1m,ijnk are equal, 
one obtains conditions relating the Kim'S and their first and 
second derivatives. If M is fiat, then (4.8) reduces simply to 

K,m,ijk = 0 ( 4.11 ) 

and hence the integrability conditions are satisfied identical
ly. We shall also see presently, by an indirect argument, that 
they are also satisfied identically in spaces of constant curva
ture. 

We have already seen from Propositions 4.1 and 4,2 that 
in flat spaces, Killing tensors are polynomials and that each 
homogeneous part of such a Killing tensor is also Killing. 
We may therefore ask for the dimension of the space of Kill
ing tensors of valence n whose components are homogen
eous polynomials of degree r, where O<.r<.n; denote this 
number by K;:jr. Such homogeneous Killing tensors are of 
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considerable significance if one has in mind applications of 
Killing tensors to classical mechanics.s.ls 

Corollary 4.4: 

K'::r=(n-r-l) (m+r-2)!(m+n-1)! 
I r!(n + l)!(m - 1)!(m - 2)! 

Proof: Referring to the proof of Theorem 4.3, the num-
. m+r-l m+n-l 

ber of unknowns of degree r IS ( r ) ( n ) and the 
number of independent linear equations they satisfy is 

(m~~~2) (:~~) (wherer=O,thislatterquantityshouldbe 

interpreted as zero). Subtraction of (m~~~2) (:~~) from 
m+r-l m+n-l . hId 0 

( r ) ( n ) gtves t eva ue for K ~r state . 

I show next that in a flat space (M,g), the Killing ten
sors are generated by the Killing vectors. I shall exploit the 
isomorphism given by Theorem 2.1 and prove the result by 
lifting to T*M. To facilitate the proof, it is convenient to 
introduce the following four vector fields on T * M. Letting 
(Xi,Pi) be an adapted coordinate system on T*M induced 
from a linear coordinate system (Xi) on M let r be the vector 
field on T*Minduced by the position vector fieldxi(a laxi) 
on M, in virtue of T * M being (locally) isomorphic with 
Me M *. Let !l. = Pi (a lap i) be the Liouville vector field, 
X = Pi (a laxi) the dynamical field (the Hamiltonian flow 
determined by any flat metric on M) and Y = xi(a lapi)' 
One may readily check that r,!l.,x, and Y satisfy the rela
tions of a four-dimensional algebra, but the only Lie bracket 
relations I shall need are 

[r,!l.] =0, 

[X,Y] =!l.-r. 

( 4.12) 

(4.13) 

Notice also that a function! T * M_R is homogeneous in the 
position or momentum variables of degree n iff r/ = n/ or 
!l./ = nf, respectively. 

I have shown quite generally in Sec. II that when one 
looks for first integrals of a geodesic flow that are polynomial 
in the momenta, it suffices to look for homogeneous polyno
mials. It also follows from Proposition 4.2 that, in a flat 
space, it is even sufficient to consider first integrals which are 
homogeneous in the position variables. 

Theorem 4.5: In a flat Riemannian or pseudo-Rieman
nian manifold (M,g) the Killing tensors are generated by the 
Killing vectors, that is to say, any Killing tensor consists of 
sums of symmetrized Killing vectors. 

Proof: Again I shall make use of the isomorphism given 
by Theorem 2.1 and show that a first integral/ of the geodes
ic flow X, which is a homogeneous polynomial of degree n in 
the momenta, consists of sums of products of first integrals 
of degree one. I may also assume that/is homogeneous in the 
position variables of degree r, where O.;;;r';;;n. Thus/satisfies 

r/=rj, 
!l./= n/, 
X/=O. 

(4.14 ) 

(4.15 ) 

( 4.16) 

The idea of the proof is to apply the second-order differ
ential operator 

. . (a 2 a2
) (x'pj - x'Pi) -.- - -.-

aX'apj aX'api 
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to f This has the effect of decomposing / into a sum of 
terms, each of which has as a factor the angular momentum
type integral XPj - xiP;o which corresponds to the Killing 
vector Rij [see (2.5)]. The result will then follow by induc
tion. Thus 

. . (a 2
/ a2

/ ) (x'pj - x'Pi) --. - - --. -
ax' apj ax' api 

= 2r(!l./) _ 2xpj ~2/ 
aX'apj 

= 2r(!l./) - (X(Y/) + Y(X/) - r/ - !l./) 

= 2r(!l./) - ([X,Ylf + 2Y(X/) - r/ - !l./) 

= 2r(!l./) - (!l./ - r/ + 2Y(X/) - r/ - !l./) 

= 2r(!l./) - 2Y(X/) + 2r/ 

= 2r(n + 1)/. (4.17) 

The penultimate equality here is an identity and the last 
equality follows from (4.14)-(4.16). 

Now it is straightforward to check that each of the quan
tities 

a 2
/ _ a2j 

axi apj axi api 

is a first integral whenever/is a first integral of X. Moreover, 
if/is homogeneous of degree nand r in the p/s and xi's, 
respectively, each 

a2j _ a 2
/ 

axi apj axi api 

will be homogeneous of degree n - 1 and r - 1, respectively, 
provided i is different fromj. The result now follows by in
duction on n: it is evidently true when n = 1 and if true for 
n - 1, then (4.17) demonstrates that it is true for n provided 
thatrf:O; however, ifr = 0, then/is a polynomial in thep;'s 
alone and thus corresponds to a Killing tensor that consists 
of a sum of symmetrized products of the Killing vector Ti • 

Thus the result is also valid when r = O. 0 
It is important to observe that although Theorem 4.5 

shows that in flat space the Killing tensors are generated by 
the!m(m + 1) Killing vectors Ti andRjk' it is not necessar
ily true that a basis for, say, the valence n Killing tensors 
consists of all n-fold products 

For example, if m>3 and i <j < k, 

TiRjk + TkRij + TjRki = 0 

( 4.18) 

( 4.19) 

is a nontrivial relation involving the Ti 's and Rjk 'so Despite 
this, one may choose as a basis for the Killing tensors of 
valence n whose components are homogeneous polynomials 
of degree r, a certain number of products of the form given by 
(4.18) (in fact, 

( 1) 
(m+r-2)!(m+n-l)! 

n-r+ 
r!(n + 1 )!(m - 1 )!(m - 2)! 

such products according to Corollary 4.4). 
It is a well-known classical result that an m-dimensional 

Riemannian or pseudo-Riemannian manifold possesses a 
full complement, that is to say, ~m (m + 1) linearly indepen-
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dent Killing vectors iffit is a space of constant curvature. 10.17 

It is also a well-known result, originally due to Riemann, 
that such a space of constant curvature K, say, has a local 
coordinate system (Xi) such that the metric gij assumes the 
form 

gij dxidxi 

[1 + (K 14 Hel (Xl)2 + e2(x2)2 + ... + em (xm )2)] 2 ' 

(4.20) 

where each ei is plus or minus one, and the total number of 
negative ei's determine the signature of g.10-12.17 I shall now 
give the explicit local form of the Killing vectors in a space of 
constant curvature, relative to which the metric takes the 
form given by (4.20); these do not appear to have been stated 
in the classical references. 10.17 

Proposition 4.6: In a Riemannian or pseudo-Rieman
nian manifold (M,g) of constant, nonzero curvature K, 
there are !m (m + 1) linearly independent Killing vectors. 
A basis for the space of Killing vectors is given by 

(4.21 ) 

(4.22) 

j#; 

where (Xi) is a coordinate system in which the metric as
sumes the form given by (4.20) and it is to be understood in 
( 4.21) and (4.22) that the summation convention does not 
apply. 

Proof: Once more it is convenient to identify a Killing 
vector with a real-valued function on T*M. As such, if the 
Killing vector is written locally as Ki(a laxi) , one must 
demand that the ~'s satisfy the following condition: 

{( 
K m )2 m m } 

1 + 4 i~1 ei (x
i
)2 j~1 ej(pj)\~1 KkPk = 0, 

(4.23) 

where again the summation convention is suspended. 
When (4.23) is expanded, one finds that the Ki,s must 

satisfy 

aK i aKj .. 
--. - --. = 0 O<l,;<n), 
ax' ax' 

(4.24) 

aKj aK i .. 
ei --. + ej --. = 0 O<l<;<n), 

ax' ax' 
(4.25) 

i ekKxkK k - 2 (1 + K i ek (Xk)2) aK;i 
k=1 4 k=1 ax 

= 0 (1<i<n), (4.26) 

and again the summation convention does not apply in 
(4.24)-(4.26). The system of partial-differential equations 
consisting of (4.24)-( 4.26) is linear in the sense that the 
solutions form a linear space. It is straightforward now to 
check that the components of the !m (m + 1) linearly inde
pendent Killing vectors in (4.21) and (4.22) constitute a 
basis for the solution space. 0 
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The following and final theorem subsumes all the results 
of this section. 

Theorem 4.7: Let (M,g) be a Riemannian or pseudo
Riemannian manifold of constant curvature K. Then the di
mension of the space of (covariant) Killing tensors K:;' is 
equal to 

(m + n - 1)!(m + n)! 

(m - 1 )!m!n!(n + I)! 

Moreover, any Killing tensor on (M,g) consists of sums of 
symmetrized products of Killing vectors. 

Proof: The idea of the proof is to show that, roughly 
speaking, there are as many linearly independent Killing 
tensors in a space of constant curvature, as there are in fiat 
space; since a fiat space admits the maximum number of 
linearly independent Killing tensors, then so too must a 
space of constant curvature. 

Now let (K 01 , ... ,K 0 •. ), (K :, ... ,K: ) , ... , (K ~ , ... ,K 7) be 
o I n 

bases for the Killing tensors in fiat space of valence n whose 
components are homogeneous polynomials of degree 
O,I, ... ,n, respectively. The set of these (n + 1) bases collec
tively form a basis for the space of Killing tensors of valence 
n, in view of Propositions 4.1 and 4.2. Moreover, as was 
explained in the remarks following Theorem 4.5, each of the 
tensors Ki (O<r<n, l<i<i,) consists of sums of symme
trized products of the Killing vectors Tk and Rim' Thus I 
shall write K~ = K~ (Tk,R lm ) and remark that each sum
mand in k ~ contains n - r Tk's and r Rim's. 

The considerations of the previous paragraph con
cerned a linear space (or at any rate, an open submanifold of 
a fiat space) and as such did not require the introduction of 
local coordinates. Suppose now, however, that coordinates 
(Xi) are introduced on a space of constant curvature relative 
to which the metric assumes the form given by ( 4.20). I shall 
then write K { = K { (Tk,R 1m ) to signify that K { is the same 
polynomial function of Tk and Rim [See (4.21) and 
(4.22)] as K{ is of Tk and Rim' Next, let A~,A ~, ... ,A~, 
respectively, be linear combinations of (K~ , ... J(%), 
(K II , ... ,K: ) , ... , (K ~ , ... ,K 7 ) , respectively, suppose that 

I n 

AoA~ +AIA~ +"'+AnA~ =0, (4.27) 

where each AiER. Then it is apparent from (4.21) and 
( 4.22) that each A ~ contains no term of degree lower than r 
in the Xi'S; but then (4.27) implies either Ai = 0 or Ai = O. 
Thus the subspaces spanned, respectively, by (K~ , ... ,K?), 
(K :, ... ,K I, ) , ... , (K ~ , ... ,K 7) intersect mutually in a trivial 
fashion. It follows that the dimension of the space of Killing 
tensors of valence n in a space of constant curvature is at 
least the sum of the dimensions of the subspaces spanned by 
(K~, ... ,K%), (K: , ... ,K:,) , ... ,(K~, ... ,K7.), respectively. 

Now consider the subspace spanned by (K ~ , ... ,K~). It 
is clear from (4.21) and (4.22) that the lowest-order terms 
of this subspace of polynomials, that is, those of degree r, 
agree with those of the subspace spanned by (K ~ , ... ,K~) 
considered as homogeneous polynomials in the Xi,S of degree 
r. It follows from Corollary 4.4 that the dimension of the 
subspace spanned by (K ~ , ... ,K ~r) is at least 

(n-r+l) (m+r-2)!(m+m-l) . 
r!(n + 1)!(m - l)!(m - 2)! 
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All in all, one may conclude that the dimension of the space 
of Killing tensors in a space of constant curvature is at least 
as great as that in the corresponding flat space. Since this 
latter dimension is maximal, these two dimensions are actu
ally equal. It is clear from the comparison argument just 
given that in a space of constant curvature the Killing ten
sors are generated by the Killing vectors. 0 
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A concrete realization of the Milnor-Lichnerowicz spinor bundle by algebraic spinors is 
considered in the case when the holonomy group ofthe Levi-Civita connection is equal to the 
Crumeyrolle group. Some relationships between the existence of parallel spinor fields on a 
space-time manifold ~ and its topological invariants are given. 

I. INTRODUCTION 

In the physical as well as in the mathematical literature 
the most popular approach to the problem of spinor struc
ture is given by the Milnor-Lichnerowicz one. However, 
starting from the Sauter, Edington, and Sommerfeld investi
gations algebraic spinors are also studied intensely. Algebra
ic spinors were defined as elements of a minimal left ideal of 
an appropriate Clifford algebra. 

At the beginning of this paper we show how we can 
introduce the structure of the left Clifford modules on the 
Milnor-Lichnerowicz (ML for short) bundle 5s [C4

]. It al
lows us to consider, for example, the Clifford multiplication 
of vectors and ML spinors. But it does not mean that this 
bundle can be identified with a bundle of minimal left ideals; 
quite the opposite is the case. For example, for a Riemannian 
manifold S 4 we can introduce ML spinors together with 
their Clifford left module structure but we cannot construct 
any algebraic spinor structure (given by a global field of 
primitive idempotents) on it. 

In this paper we are interested in a Lorentz space-time 
manifold. Fortunately for this case the topological obstruc
tions for the ML spin structure and for an algebraic spin 
structure are exactly the same. However, we restrict our con
siderations to the case when the holonomy group of the Levi
Civita connection is equal to the Crumeyrolle group. In this 
case the parallel transport of algebraic spinors given by the 
Levi-Civita connection lifted to the Clifford bundle is exact
ly the same as given by the spin connection. Equivalently we 
can say that the global field/ex) of primitive idempotents is 
parallel as well as a section of the Clifford bundle and also as 
a section of the section of the spinor bundle. 

We will see that in this case we have a totally geodesic 
codimension-l foliation of vI(. However, because the normal 
~undle of this foliation is isomorphic to the isotropic tangent 
hne bundle we meet many difficulties. To avoid them we 
construct a concrete Riemannian metric that seems to be 
quite natural in our case. Then we prove a lemma that allows 
us to know the holonomy group of this Riemannian metric 
as well as to see that this is a bundlelike metric compatible 
with our foliation. Now we can, using the result of Johnson 
and Naveira, relate the existence of parallel spinor fields on a 
~ore~tz manifold vi( with the vanishing of the Pontryagin 
nng 10 the top dimension. 

We will denote by R s.t and (s + t = n)-dimensional 
vector space equipped with a quadratic form of signature 
(s,t) and by R s•t its universal Clifford algebra. 

II. DIRAC OPERATOR AND ITS SQUARE 

Let vi( be a semi-Riemannian oriented four-manifold of 
signature (s,t). Let us suppose that the bundle 50 of oriented, 
orthonormal frames over vi( lifts to give a principle 
Spin + (s,t) bundle 5s. Now we can define via the spin repre
sentation a vector bundle 

(2.1) 

called the bundle of Dirac spinors. 
However, owing to the metric structure g on vi( we have 

a semidefinite quadratic form on the tangent bundle T vI(. 

Thus we can associate to vi( a Clifford bundle Ctff C ( T· vI() in 
a natural way. Its fiber at a point xeJi is the complexified 
Clifford algebra of the tangent space (Txvl( ,g(x»). So we can 
study bundles of modules over these bundles of algebras. 

As a matter off act the group Spin+ (s,t) can be defined 
as a subgroup of the group of units of the Clifford algebra 
R ~t and a complex representation of the Spin + (s,t) can be 
given by a minimal left ideal of R ~t. This is also a module for 
the Clifford algebra R ~t and the action of Spin+ (s,t) is in
duced by the Clifford multiplication. 

It is known I that any minimal left ideal A is given by a 
primitive idempotent P = / of R ~t' 

A =R~J (2.2) 

Any global field of primitive idempotents on a spin manifold 
vi( defines a bundle 'J1 of left modules over the bundle of 
algebras '6'c(M,g). We will call 'J1 the bundle of algebraic 
spinors. 

However, we can give to Y = 5s [C4
] also the structure 

of a left module bundle. 
Let {Ea} aEA be local trivializations of 50 related to some 

contractible covering { 'PI a} aEA of vi( such that 

Ca (x) = cp (x)gPa (x), 'tIxE'PI an'PI p, (2.3) 

and 

gap: 'PI a n 'PI p .... so + (s,t). 

Now we can use the canonical maps2 

Oa: Ea (x) .... O(e)<-+R~" 

Op: Ep (x) .... O(e') <-+ R ~t. (2.4 ) 

Here e = {eJ as well as e' = {e;} is an orthonormal basis in 
R s,t related by the transformation gpa (x) given by (2.3), 

e = e'gPa (x), (2.5) 
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and fJ: R s"~R ~, is the canonical embedding, Now using 
(2.4) we can write 

, , - I • 1 4 ~D C (26) e = YfJae;YPa' 1= , ... ,' YPa tn s,l' • 

Let {ia}aeA be local trivializations of ss related with 
{~a,Ca}aeA' From (2.6) we obtain thatss can be seen as a 
principal bundle whose structural group is given by elements 
of Spin+ CR ~, [we will denote the group Spin+ (s,t) by 
Spin+ for short] 

ia (x) = ip (x)YfJa (x), YfJa (x)ER ~,. (2.7) 

Now for any element uE6. we can construct the element 

[ia (x),u]: = (ia (x),u)Spin+ = (iP (x)YPa (x),u)Spin+ 

= [ip(x)'YfJa (x)u]. (2.8) 

In other words we can construct the bundle s.[6.] of left 
modules over the bundle of algebras c,: C (M,g). It is nothing 
more than Ss «(:4) with the identification of (:4 with 6.. We 
will see later [(2.17)] that in a general case Ss [6.] cannot be 
identified with a bundle of minimal left ideals of the Clifford 
bundle. Nevertheless the isomorphism between 6. and (:4 

together with (2.4 )-(2.8) allows us to consider the Clifford 
multiplication of, for example, vectors and spinors. 

Let us take any vector u-ER S". We define 

[ia (x),u-]: = (ia (x),u- ) Spin + = (ip (x)YPa (x),u- )Spin+ 

= [iP (x)'YfJa (x)u-Yp-;' I(X)]. (2.9) 

It means that when we understand the structure group of Ss 
as given by some elements of the Clifford algebra R ~, ac
cording to (2.6) and (2.7), then 

ss [R 4] = Lit. (2.10) 

Moreover from (2.4), (2.6), and (2.9) we obtain immedi
ately that 

ss [R ~t] = C(ffc(JI,g) (2.11) 

and 

[ia (x),lO' ]: = (ia (x),lO')Spin+ 

= (ip (x)YfJa (x),lO' ) Spin + 

= [ip(X),YPa (X)lO'Yp-;.I(X)], 

'tilO'ER ~t. 

Now let us take some section rp(x) of the bundle 

\11: = ss [6.] 

(2.12) 

and some section lO'(x) of the bundle c,:c(JI ,g). According 
to the above formulas we have 

and 

lO'(x) = [ia (x),lO'] 

= [iP (x),YPa (x)lO'Y';' I (x)], lO'ER ~t' (2.14 ) 

for every XE~ an~ p' We can define their Clifford multipli
cation in the following way: 

lO'(x)rp(x) = [ia (x),lO'] [ia (x),u]: 

= [ia (x),lO'u] 

= [ip (x),YPa (x)lO'u] by (2.8). (2.15 ) 
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It is easy to see that by multiplication of 
[ip (x),YPa (x) lO'Y';' I (x) ] by [iP (x),Ypa (x)u] we obtain 
the same result. Thus although in a general case ss [6.] can
not be given as a bundle of minimal left ideals of the Clifford - , 
bundle (2.11) we can always consider \11 as a bundle of Clif-
ford modules. 

But why can we not always consider ss [6.] as a subbun
dIe of c,:c(M,g)? 

According to (2.2) 6. is a minimal left ideal of R ~t de
fined by some primitive idempotent/ER ~,. Now for every 
XE~ a elements [ia (x),f] define a local field, saY/a (x) of 
primitive idempotents of 

C(ffc(JI,g)I~a' 

Similarly [iP(X),f] defines a field/p(x). However, in a 
general case 

/a(x) = [ia(x),f] # [ip(x),f] =/p(x), XE~an~p. 
(2.16) 

If the structural group of ss can be reduced to an appropriate 
subgroup we can still have the possibility that 

C(ffC(JI,g)I~d"1~/l/a(x) = c,:C(JI,g)I~d"1~/l/p(x). 
(2.17) 

But in a general case this condition is not satisfied (for exam
ple, for some Riemannian structures on S 4). 

From now on we will define the bundle \11 of algebraic 
spinors on JI as a concrete realization of the ML bundle 
ss [~] given by some concrete global field / of primitive 
idempotents of c,: C (JI ,g). 

It is known that the necessary and sufficient condition 
for the existence of a global field/(x) is the existence of the 
reduction of the bundle ss to the subbundle S i'6 • The struc
tural group ~ is given by the following conditions: 

(2.18) 

This group was investigated by Crumeyrolle3 and for this 
reason we will call it the Crumeyrolle group. 

The existence of a global field/ of primitive idempotents 
is no~ equivalent, in a general case, to the existence of a bun
dle Ss. For example, the Riemannian spin manifold S 4 does 
not admit a global field/ for any metric structure on it. To see 
this, let 

6. = 6. + ffi 6. - (2.19) 

be the decomposition of 6. into the direct sum of two two
complex-dimensional irreducible representations of Spin+. 
This decomposition implies the decomposition of the mod
ule bundle ss [6.] into subbundles 

\I1==Ss [6.] = \11+ ffi \11-, (2.20) 

where \11 ± : = Ss [6. ± ]. The decomposition (2.19) is inter
changed by the Clifford multiplication with vectors, i.e., we 
have to deal with the following homomorphisms: 

R s,t ® 6. + -+6. - , 
R 

R s,t ® 6. - -+6. + . 
R 

This implies the vector bundle homomorphisms 
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:J 

or 

TJI ® qI+ -+qI-, 
R 

(2.22) 

(2.22') 

(2.23 ) 

In other words any element of /:1 + determines a real iso
morhpism of R ',t with /:1 - given by the Clifford multiplica
tion. Thus any global field of primitive idempotents 
JEr(CG'c(JI ,g») (or isotropic bivectors of ATcJI) deter
mines a real isomorphism 

(2.24) 

i.e., an almost complex structure on JI. 
But it is known that S 4 does not admit any almost com

plex structure, so we cannot construct any global fieldJ on 
S4. 

Fortunately for the most interesting physical case, 
namely for a Lorentzian space-time manifold JI, the follow
ing two conditions are equivalent4

: (i) the existence of a 
lifting S. of So, and (ii) the existence of a global field of 
primitive idempotentsf. Nevertheless, the possibility of giv
ing to Ss [/:1] = :qI the structure ofa module bundle over the 
algebras CG'c(M,g) allows us to introduce a first-order differ
ential operator IiJ: r(qI)-r(qI) for any signature ofa met
ric structure of JI. We define this operator IiJ, called the 
Dirac operator, by the following composition: 

_V' _* _il_ 
r('I1) _ r(T"'M® '11) _ r(TJI ® '11) - r('I1), 

(2.25) 

where V' is the covariant derivative (relative to the connec
tion on qI induced by a metric g), '" means the identification 
of T '" JI with T JI given by a metric g, and Ii denotes the 
Clifford multiplication (2.23). 

Locally in the basis {~ a,Ea,fja} aEA' 

4 

IiJ = I r(e; )e; V~i' (2.26) 
;=1 

where r(i) = ± 1 according to g(epej ) = r(e; )Dij' Let us 
recall that 

4 

Vej = I tu-jir(i)e;, (2.27) 
;=1 

with 

and 

(2.28) 

Now we can write locally 
4 

IiJ tp = I [r(i)e; . e; tp 
;=1 

(2.29) 
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The square IiJ 2 locally has the form 

IiJ2 = 4
S 

- I r(j)V~iV~i - I r(j)r(k)g(Vekej,ek)V~}, 
j j,k 

(2.30) 
where s is the scalar curvature 

s = I r(i)r(j)Rijj;' 
ij 

Using the formula (2.30) Lichnerowicz has shown5 that if 
the scalar curvature is non-negative but not identically zero 
on a compact spin Riemannian manifold, then there are no 
harmonic spinors, i.e., 

Ker IiJ = O. 
This fact together with the Atiyah-Singer index theorem 

A 

gives that the Hirzebruch genus A of such a manifold must be 
zero. In other words one cannot have a metric with non
negative scalar curvature (except identically zero) on a 

A 

compact, spin Riemannian manifold whose A genus is not 
zero. 

This does not mean that there is an analog of Hodge's 
theorem, i.e., that we can express the dimension of the space 
of harmonic spinors in terms of topological invariants of the 
manifold. On the contrary, Hitchin6 has shown that the di
mension of the null space of the Dirac operator depends on 
the metric used to define this operator. Besides, Eliasson 7 

and Aubin8 have shown that every compact manifold of di
mension ;;;.3 possesses a Riemannian metric whose total cur
vature is negative. Further, using Trudinger's resu1t9 it can 
be seen that every compact manifold of dimension;;;. 3 admits 
a Riemannian metric with constant negative scalar curva
ture. Moreover, it is known 10 that there are no topological 
obstructions to scalar curvatures that may change sign as 
long as they are negative somewhere. 

It appears that such a relation between a positive scalar 
curvature and the absence of harmonic spinors is valid only 
in the Riemannian case. We cannot obtain a similar result for 
a semi-Riemannian space. Quite the opposite, there are 
known II examples of a compact semi-Riemannian manifold 
with positive scalar curvature for which the space of har
monic spinors is nonzero. We can meet such a situation for 
SU(2) ~S3 equipped with its natural metric of signature 
( -, -, + ) or for T3 = S IXSIXSI equipped with a met
ric of signature ( + , + , - ). Besides, until now no relation 
between the existence of a nontrivial harmonic spinor space 
Ker IiJ and some topological invariants of a Lorentzian 
manifold JI was known. Later we will show that such a 
relationship does exist. 

III. PENROSE FOLIATION 

Let JI be a Lorentzian space-time manifold 12 and 
y = Ss [~] its Milnor-Lichnerowicz bundle of Dirac spin
ors. Let us consider the case when the holonomy group of 
Levi-Civita connection is equal to 

(3.1) 

with the covering map p: Spin + _2' o' Then we can realize 
Y by the bundle 'I' of minimal left ideals of CG'c(JI ,g) deter
mined by a parallel field J of primitive idempotents. By 
(2.18), and by a vector bundle isomorphism between Y and 
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'1', we also have a nonvanishing field of parallel spinors 
~(x)er(.Y). 

A spinor field ~(x) is parallel iff 

VS~=O, (3.2) 

i.e., by (2.28) if 

- 1 -
dt/J = - '2 t:.. rU)r(j)LUiA . ej t/J. 

,< } 
(3.3 ) 

Now from (2.30) we obtain immediately that if a manifold 
(vU' ,g) admits a parallel spinor field then its scalar curvature 
has to vanish for any possible signature of g. Moreover, for a 
Riemannian manifold (vU',g) it also has to be Ricci fiat. 13 

For a Lorentzian manifold this condition is replaced II by the 
following: (i) the isotropy of the Ricci tensor, and (ii) the 
existence of a parallel nonvanishing light vector field. The 
example of the Schwarzschild metric shows that the condi
tion of the isotropy of the Ricci tensor is not sufficient. 

Let us consider an orthonormal frame €x at a point 
xevH'. Let S"Iff' be the holonomy bundle through € x and let 
€(x) be some global section of S"Iff' 

€(x) = (e l (x),e2(x),e3(x),e4(x»), 
(3.4) 

ei =e~ =e~ = -e~ = 1. 

Now we can see that the structure group of S"Iff can be gener
ated by 

(3.5) 

Now we can ask the following question: given a holonomy 
bundle S"Iff through €x' can we find a parallel field of primi
tive idempotents. 

It is known 14 that any primitive idempotent of R L has 
a form 

J=!(1 + LUI)( 1 + LU2)' 

where LU~ = 1, i = 1,2, and LUlLU2 = LU2LU!. It is also known 
that for any minimal left ideal there are many primitive 
idempotents that define it. We will be interested only in such 
primitive idempotents that can be written as 

(3.6) 

in the basis €(x). Here the Ii are multi-indices, i = 1,2. 
It is obvious that if our field J( x) has a form (3.6) in the 

frame €(x) then it has exactly the same form with respect to 
any orthonormal basis at the point XevH' that belongs to 5"1ff . 

A general elementJofthe form (3.6) can be written in 
the following ways: 

1. ell =ei , el , = ej4 , 

II. ell =ei4 , el , = eij4' i =1= I=I= k =1= 4. (3.7) 

III. ell =eik4 , el , = eij4' 

However, only 

(3.8) 

and 

(3.9) 

havetheirisotropy group generated byA I andA 2 0f(3.5). In 
an appropriate basis we have 
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(3.10) 

i.e., ~ contains the elements of the form 

s = (~ ~), zec' (3.11 ) 

Now we can easily see that ~ = p (~) transforms the ele
ments €(x) as follows: 

"Iff 

e l ---+ e l + 2 Re z(e3 + e4)' 

"Iff 

e2 ---+e2 + 2 Imz(e3 + e4), 

"Iff 

e3 ---+!( - Re zel - 1m ze2 
( 3.12) 

"Iff 

e4 ---+ ~(Re zel - 1m ze2 + (1 + zz)(e3 + e4) - (e3 - e4), 

and 

"Iff 
(3.13 ) 

e3 - e4 ---+ - Re zel - 1m ze2 - zz(e3 + e4) + (e3 - e4)' 

This fact explains the possibility of the construction of two 
inequivalent parallel primitive idempotents (3.8) and (3.9) 
for a given holonomy bundle 5"1ff' The interpretation of this 
fact in the Penrose picture is given in Ref. 15. 

The transformation laws (3.12) imply that the codi
mension-l distribution P spanned by 

P = {X(x),e l (x),e2(x)}, 

with 

X(x) = (1I.J2)(e3 + e4), (3.14) 

is parallel. Further, from the fact that our connection is tor
sionless, i.e., for every vector field A,Ber( T vU'), we have 

[A,B]=VAB-VBA, (3.15) 

one obtains that the distribution Pis involutive. This means 
that we have a transversally oriented codimension-l folia
tion Y of our space-time manifold (vU' ,g). 

However, it is easy to see that a metric g induces on each 
leaf of Yadegenerate metric of signature (Ot, + 2, - 0), i.e., 
determines a Galilean structure on any leaf of Y. 

Moreover, any leaf is autoparallel by (3.15). Using 
again the torsionless property of the connection we see that 
this is equivalent to the fact that any leaf of Y is a totally 
geodesic submanifold of (vU' ,g).16 

Let us notice that the situation is considerably different 
from that of a Riemannian manifold. First, for a Riemannian 
metric to any parallel distribution there always exists a com
plementary distribution that is also parallel. 17 For a semi
Riemannian manifold this need not be the case. For exam
ple, a linear bundle complementary to P can be spanned by 

the field Y(x) = (1/.J2)(e3(x) - e4(x»), which is not paral
lel. Thus it is not possible even to try to give a result analo-
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gous to the de Rham decomposition theorem. 
Second, in the Riemannian case the integrability of the 

complementary distribution implies that the notion of total
ly geodesic foliation is interchangeable with the notion of a 
bundlelike metric. 18 In our case a vector bundle complemen
tary to P has to be integrable (because anyone-dimensional 
distribution spanned by a nonvanishing vector field is invo
lutive I9

). However, by the isotropy of the field the notion of 
a bundlelike metric foliation cannot even be introduced. [By 
definition (JI,g) has a bundlelike metric compatible with a 
foliation:7 if the local submersions defining:7 may be cho
sen to be metric submersions.] Besides we have also to exa
mine the Gauss and Weingarten formulas as well as the 
Gauss and Codazzi equations. 

These remarks suggest that we could try to introduce 
some Riemannian metric on JI and investigate our codi
mension-l foliation:7 by means of it. 

IV. BUNDLELIKE METRIC 

We have already seen that if the bundle 5'iff can be taken 
as the holonomy bundle of a space-time manifold (M,g) 
then we have a codimension-l foliation of JI determined by 
the involutive Penrose distribution P. 

The following general problem is still open: given a folia
tion :7 on a manifold JI, is there a bundlelike Riemannian 
metric on JI compatible with :7? However, Johnson and 
Naveira20 have made significant progress with this question. 
Namely, they have shown that if a codimension-l foliation 
admits such a metric then the Pontryagin ring of the mani
fold has to vanish in the top dimension. In this section we 
will construct such a Riemannian metric g. In this way we 
obtain a relationship between the existence of parallel spin
ors on (JI,g) and topological invariants of JI. 

Now let us consider the possible Riemannian metrics on 
JI that can be constructed from our fixed Lorentzian struc
ture on JI. It is known that for any concrete Lorentzian 
metric g any nonvanishing timelike vector field, say V, de
fines a Riemannian metric g on JI given by the following 
formula: 

g(A,B) = g(A,B) - 2g(A, V)g(B, V)/g( V, V), 

(4.1 ) 

(In other words any section of So mod SO(3) determines a 
concrete Riemannian structure.) Let us take the following 
vector field Vex )Er( T JI): 

Vex) = (l/v2)(X(x) - Y(x») = e4 (x). (4.2) 

Now 

g(A,B) = g(A,B) + 2g(A, V)g(B, V) (4.3) 

and we see immediately that the field of orthonormal (with 
respect to g) frames E(X) is also orthonormal with respect to 
g. Thus the SOC 4,R) principal bundle 5R' which is equiva
lent to g, is given by 

5R = l(x)SO(4,R). (4.4) 

Here lex) denotes the same set of vectors as E(X) but with 
Euclidean metric properties. For this reason we shall also 
distinguish the components {e; (x)} of l(x) from the {e;} of 
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E(X) although they form the same elements of TxJl. We see 
that 

5v: = E(x)SO(3,R) = lex) . SO(3,R) = 50r5R (4.5) 

is a subbundle of the two bundles So and 5 R and corresponds 
to the isotropy bundle of our vector field V(x). 

Although we can show which linear frames of JI form 
the orthonormal bundle 5R we still have no information 
about the holonomy group related with g. 

Lemma: Let 5 Ij; be the holonomy bundle of the Rieman
~an structure (M,g) through lx. Then its structural group 
Crff can be generated by 

Al = !(eI4 - e31 ), (4.6) 
A2 = !(e24 + e23 ), A3 = e12· 
Proo/' The elements eij = e; . ej satisfy the commutation 

relations determined by the Clifford multiplication of the 
algebra R 4,o g;; Crff ( Tx M,g ). Hence we obtain 

[A 1,.42] = - A3, [A2,.43] = - A I' 
[A3,.4d = -A2. 

Let ~s denote the Lie group generated by the elements (4.6) 
by Crff. Let us construct the principal bundle 

(4.7) 

Any connection on the bundles So,S 'iff ,5 R' or 5 ~ determines 
a connection in the bundle of linear frames 50L(4,R)' i.e., a 
linear connection of M (see Ref. 17). On the other side it is 
known that a linear connection is a metric one only if it is 
induced from a connection in the principal bundle of ortho
normal frames with respect to this metric. Moreover every 
semi-Riemannian or Riemannian manifold admits a unique 
metric connection with vanishing torsion. 

In our case all bundles So,S 'iff ,5 R' and 5 ~ are equivalent 
to the trivial bundles, and the section E(X) of 50L(4,R) deter
mines these global trivializations. For this reason it is 
enough to define the horizontal subspaces of appropriate 
connections only at points given by E(X). Let us consider a 
bundle 5'iff . Let 

(x,e)=E(x), VxEJI, 

where e is the unit of Crff. Let the horizontal space at (x,e) be 
spanned by 

H(x,e) = {e;(x) +X;(x)}, (4.8) 

where X;ELie algebra of Crff given by (3.5). Now, for every 
point (x,a), aECrff, 

(4.8/) 

Because 5'iff is the holonomy bundle of our Lorentzian struc
tureg, the horizontal subspaces of its Levi-Civita connection 
are determined also by (4.8) and are given by (4.8/), but 
now with aE.!£ o. Of course it determines a connection on 
50L(4,R) whose horizontal subspaces at any point (x,a) are 
given again by formula (4.8/) with aEG L ( 4,R ). 

Now let us consider a horizontal distribution on 5 ~ de
fined by 

H(x,~) = {ei(x) +X;(x)}, VxEJI. (4.9) 

Here e is the unit of ~ , and X; has exactly the same form as 
Xi but with obviously different multiplication law. By the 
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formulas analogous to (4.8') we obtain horizontal distribu
tions on SR and SGL(4,R)' which satisfy all propertiesofhori
zontal distributions of g-metric and linear connections, re
spectively. 

Instead of considering the horizontal subspaces we can 
introduce the dual notion of the one-form of the connections. 
Now, from the global trivializations of the considered princi
pal bundles it is enough to determine the Lie-algebra-valued 
one-forms on JI. 

We see immediately that the form 

a(ej(x») = -Xj (x)eLie algebra of ~ (4.10) 

defines the one-form of the Levi-Civita connection of our 
Lorentzian structure g. 

Similarly 
A A A 

a(ej (x») = - X j (x)eLie algebra of ~ ( 4.11) 

defines some g-metric connection on SR' Now we have to 
check if this connection is torsionless. 

Let us consider the two-jet extension F JI of JI (see 
Ref. 18) and the first-order differential prolongation KJI 
(see Ref. 21) ofthebundleSGL(4,R) = :LJI oflinearframes. 
This last bundle can be identified with the one-jet extension 
of JI. We have the following diagram: 

j 

/2J1 ~ KJI 

-JJ U~ ( 4.12) 

The fiber of KJI -+ LJI is given by the set of all jets oflocal 
sections of LJI, i.e., by the set 

Hom(R 4,gl(4»)~gl(4) ® (R 4)* 

(4.13) 

[Here (R 4)* is the dual space to R 4.] 
The fiber of /2J1 -+/'JI is given by the set of all 

equivalence classes ofC 2 embeddingsof(R 4,0) into (JI,x). 
Two such embeddings tp and tp I are equivalent if the compo
sition tp -10tp ' has the same derivatives up to order 2 at 0 as 
the identity map. It means that the fiber of /2 JI -+ /' JI is 
given by R 4 ® S 2 (R 4) *, where S 2 denotes the symmetrized 
tensor power. 

We can tell that /2 JI is isomorphic to the subbundle of 
KJI given by the first-order jets oflocal holonomic sections 
ofLJI. 

Now any linear connection is given by a section w- of the 
bundle KJI _LJI. This connection has no torsion iff its 
one-formw- factors through i (see Ref. 21) [see (4.12)], i.e., 

w- = i0w-'. (4.14) 

Now let w- and;;;' denote a one-form oflinear connections on 
SGL(4,R) = LJI determined by the horizontal distributions 
(4.8) and (4.9) [or equivalently by one-forms (4.10) and 
( 4.11 ), respectively]. The difference between w- and ;;;. 
treated as maps from LJI to KJI can be determined by 
elementspxeHom(R 4,g1(4») such that 

A 

px(ej(x») =Xj(x) -Xj(x) =j!'(Xj(x) -Xj(x»). 
( 4.15) 

Here j is the local diffeomorphism 
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j 
R4:>UU _ UU'CR 4, 

which induces a transformation oflinear frames of R 4 [i.e., 
GL( 4,R)] in such a way that 

A 

j.Aj = Ai, i = 1,2. 
A 

In other words the horizontal distribution H(x,.) can be ob-
tained from H(x,e) by some map oflocallinear frames. Now 
because w- factors through i we see immediately that ;;;. has 
the same property. In this way we have obtained that the g
metric torsionless connection on SGL(4,R) can be induced 
from the connection on S <6 given by (4.9). By uniqueness of 
the torsionless, metric connection we obtain that S <6 is the 
holonomy bundle of g through Ex' • 

Now let us return to our problem of Penrose foliation. 
Let us recall that a linear bundle complementary to the Pen
rose distribution can be spanned by the vector field Y(x). 
We can see that Y(x) is parallel with respect to our Rieman
nian structureg. It implies that the orthogonal distribution is 
also parallel. But this is just the distribution P tangent to the 
foliation Y. From a general theory of Riemannian struc
tures 17 we obtain that Y is totally geodesic with respect to g. 
Besides we have thatg is a bundlelike metric compatible with 
Y. Thus we can use the Johnson and Naveira result and 
relate the existence of parallel spinors on (M,g) with the 
topological invariants described by the Pontryagin ring of 
M. 
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The curvature and Einstein tensor are computed for a metric having one or more kinks 
(solitons) present. It is pointed out that the components of the fluid velocity four-vector can be 
identified in a natural way with certain parameters present in the metric. Making this 
identification, a number of hydrodynamical quantities are computed. 

I. INTRODUCTION 

Finkelstein and Misner l were the first to draw attention 
to the existence of an integral counting number N that could 
be used to classify the metrics of general relativity up to a 
homotopy. The classification is obtained by considering the 
set of homotopy classes of cross sections of the metric tensor 
bundle. If space-time is assumed to be R 3 X R 1 then the rel
evant set of homotopy classes can be shown to be 
[R 3 xR I,S4,I ], where, in the notation of Steenrod (see Ref. 
2), S 4,1 denotes the set of 4 X 4 real symmetric matrices of 
signature ( - + + + ). At any instant of time, under the 
assumption of asymptotic flatness (or equivalently by clos
ing R 3 with a one-point compactification), computation of 
this set of homotopy classes yields the group of integers Z. 
The number NEZ is called the kink number or soliton num
ber of the metric. Metrics whose kink numbers differ cannot 
be continuously deformed into one another. 

In what follows, Greek indices run over 0, 1,2,3 and Lat
in indices run over 1,2,3. In particular, {Xi} denote spatial 
coordinates and XO refers to time. The symbol 
TJ = IITJ/l" II = diag( - 1,1,1,1) is used to denote the Min
kowski metric. Its kink number is N = 0. We shall use 
Ilt5/l" II = diag( 1,1,1,1) to denote the Kronecker delta. The 
four-covariant derivative of any tensor S/l" is denoted by 
S/lv;J.. and the usual derivative is denoted by S/lv.J.. . 

Consider the metric 

(la) 

The functions t/J/l are functions of the space-time coordi
nates and take values on the three-sphere: ~t/J /l t/J /l = 1. The 
t/J/l hence control the value of N. This metric was introduced 
by Williams and Zia,3 and was discussed by Shastri, Wil
liams, and Zvengrowski.4 Specific examples of metrics of 
this type have been studied by Finkelstein and McCollum,s 

Clement,6 and Wiliams.7 A number of related metrics (with 
nonzero time-space terms) have been studied by Harriott. 8 

The metric gl'v of Eq. (1) is its own inverse, so that 
g I'V = g/lv' Defining the fields t/JI' to be t/JI' = g I'V t/J" it fol
lows that 

(lb) 

The contravariant and covariant components of t/J are relat
ed through a sign change: 

t/JI'= -t/JI" (2) 

The {t/JI'} also define a mapping into the three-sphere: 

~t/JI't/JI' = 1, and our preference will be to work with the t/JI' 
rather than the t/JI' . 

In order to understand how the kink metric of Eq. (1) 

arises, it is helpful to consider the polar representation of 
Ilgl''' II· Any real nonsingular matrix M has a polar represen
tation in which M can be written uniquely as the product of 
an orthogonal matrix Q and a positive definite symmetric 
matrixS: 

M=QS. 

Assume M to be a general relativistic metric so that M is a 
4 X 4 real symmetric matrix of signature ( - + + + ). It 
follows (according to Steenrod2) that S is a 4x4 positive 
definite symmetric matrix that commutes with Q: QS = SQ, 
and that Q itself is a 4 X 4 symmetric orthogonal matrix of 
signature ( - + + + ). Furthermore, it can be shown that 
Q can be decomposed according to Q = p T TJP, where TJ is 
diag ( - 1,1,1,1) and P is an orthogonal matrix. 

Select any row or column of P. To be specific, suppose 
that the first row is selected and that its elements are denoted 
by t/J0,t/JI,t/J2,t/J3. By performing this operation, we are project
ing into the base space of the S 4,1 fiber bundle. Since P is 
orthogonal, its rows and columns are normalized to unity so 
that ~t/JI't/JI' = 1. Thus the {t/JI'} define a mapping into S3. 
(More correctly, because of the ± sign ambiguity, we have 
a mapping into S03 = RP 3. This space is homeomorphic to a 
three-sphere with antipodal points identified.) If the {t/JI' } 
define a nontrivial mapping, kinks will be present in the met
ric. In this way, any metric M = QS can be split into a "kink 
part" Q and a "nonkink part" S. Almost all of the common
ly studied metrics of general relativity have a trivial 
Q = diag( - 1,1,1,1) and a nontrivial S. In this paper, we 
have taken exactly the opposite viewpoint, namely that the 
nonkink part is trivial, S = diag ( 1,1,1,1 ), and that the kink 
part Q has interesting structure. With Q = p T TJP, our metric 
of Eq. (1) corresponds to 

[ 

t/J0 t/JI t/J2 t/J3 ] 
- t/JI t/J0 t/J3 - t/J2 

P= 
- t/Jz - t/J3 t/J0 t/JI 
- t/J3 t/J2 - t/JI t/J0 

It is usual to allow only those {t/JI' } that map the infinite 
boundary of R 3 into some particular fixed point of S3, say 
(1,0,0,0,). Such a restriction leads to asymptotic flatness, 

lim gl'v = TJl'v 
Ixl-oo 
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and prevents any kinks present from "escaping at infinity." 
However, kink conservation is best considered in terms of 
the kink currentNP . For the metric ofEq. (1), NP is identi
cal to the usual skyrmionic current of strong interaction the
ory9: 

NI' = (12rr) -1e'vApcafJyt;r av¢J3 aA¢>y apr/i. (3) 

Integrating the N° component over three-space yields the 
kink number N. Its conservation will be demonstrated in 
Sec. II where it will be shown that NP;I' = 0, in the frame 
being considered. 

In this paper, we study the metric ofEq. (1) in its gen
eral form. Since {jP-v is not a tensor, it is clear from Eq. (lb) 
that if>!' cannot be a four-vector. Indeed, since if>!' is obtained 
from the metric by a complicated projection procedure, it is 
understandable that if>!' should not be as simple an object as a 
vector. Consequently, Eq. (3) for NP is only valid in the 
frame in which we have chosen to work. Ifwe transform to a 
different frame, the expression for NP will change and, of 
course, we shall lose the simple form of the metric, as given 
by Eq. (1). 

II. CURVATURE PROPERTIES 

Our convention for the signature of the metric and the 
definitions of the Christoffel symbols and the Ricci and Ein
stein tensors is in agreement with Misner, Thome, and 
Wheeler. 10 We shall work with units in which c = 81TG = 1. 
Since, in the frame being considered, the metric of Eq. (1) 
has a constant determinant (equal to - 1), it follows that 
r;v = O. This has implications for the NP of Eq. (3). It is 
clear from the antisymmetric nature of Eq. (3) that NI',I' 
=0. Hence 

N~ = Nj. + r;vNI' = 0, 

so that NP is a conserved current. 
The Christoffel symbols are given by 

r;v = 2- 1g<1I(gl'lI,V + gV1/,1' - gI'V,lI)' 

Using the metric quantities if>!', the r;v can be written 

r;v = 2¢>(l'av) ¢>A - 2¢>A a(I'¢>V) 

+ (aA - 2¢>A¢>lI a
ll

) (¢>I'¢>v)' 

where ( ) indicates symmetrization. 
Since r;v = 0, the Ricci tensor simplifies to 

Rl'v = r;V,A - rZsr;v' 
and hence in terms of the parameters if>!' this becomes 

Rl'v = 2[ ¢>A,A¢>(I',V) - ¢>(I',A¢>A,V) - ¢>A¢>Yif>!'.AV,y 

_ 2",A",Y "'(I''''V) + ",A "'A 
'f' 'f' ,y'f' 'f'.A 'f'.I''f',v 

- if>!'¢>v{¢>~y¢>j. - (8AY - 2¢>A¢>Y)¢l:A¢l:y} 

+ ",A",(P. "'(I''''A 
'f' 'f' ,v)y -'f' 'f' ,V)A 

+ ¢>(1'(8AY _ 2¢>A¢>Y)¢>V),).y ]. 

The curvature scalar is 

R = g I'VRl'v = 2{if>!',vif>!',v + if>!'.1' ¢>v,v 

_ if>!'¢> v ¢>A,I' ¢>A,v + 2if>!'¢> v'l'v}' 
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The Einstein tensor is 

GA=RA.-18A.R v v 2 v , 

where R ~ splits conveniently into a symmetric part S~, an 
antisymmetric part A ~,and a part V~ that vanishes on con
traction: 

R~ =S~ +A~ + V~, 
SA. _ 2{ "'Y ",(v ",(A. "'Y ",y",,,,,,,A. ",v v - 'f' .y'f' ,A) - 'f' ,y'f' ,v) - 'f' 'f' 'f' ,y'f' ,11 

+ ¢>A¢>V(¢>Y,,,,¢>lI,y + ¢>Y,YT/¢>lI) 

+ ¢>Y,A¢>Y,V + ¢>Y¢>(A.,V)Y}, 

A ~ = 2{¢>Y,y[v¢>A ) + gYT/¢>[v¢>A.J,YT/}' 

VA = 2"'Y{ ",A",V "'11 _ ",v"'l1 ",A. }. 
11 'f' 'f' 'f' ,lI'f',y 'f' 'f' ,lI'f' .Y 

The symbol [ ] denotes antisymmetrization. 

III. FLUID VELOCITY IDENTIFICATION AND 
DETERMINATION OF OTHER KINEMATICAL 
QUANTITIES 

In a fluid model, one assumes the existence of a unique 
velocity field ul' representing the average velocity of matter. 

In terms of general coordinates xl', ul' = (dxl' Idr) Iy" 
where (/,r) are local comoving coordinates. The/ labelthe 
fluid particles in an arbitrarily chosen space section of space
time, and r labels proper time measured from this space sec
tion along the fluid flow lines / = const. The following nor
malization condition is a direct consequence of the definition 
of ul': 

(4) 

Since Eq. (2) implies if>!' ¢>I' = gl'vif>!'¢>v = - 1, Eq. (4) 
strongly suggests that the velocity be identified with the kink 
parameter: 

(5) 

This identification will be assumed from now on. Since if>!' is 
not a vector, Eq. (5) is not covariant. We are simply choos
ing to work in a frame in which the relationship between ul' 
and if>!' is postulated to take a particularly simple form. 

Following Ellis, II we note that the general relativistic 
stress-energy tensor Tl'v can be written 

Tl'v =pul'uv +2q(l'uv) +phl'v + 1Tl'v' 

The projection tensor hl'v is defined by 

hl'v = gl'v + ul' UV' 

The function p is the energy density, p the kinetic pressure, 
ql' the energy flux (due to diffusion, heat conduction, etc.), 
and 1T I'V the anisotropic pressure (viscosity) term. Note that 

ql' ul' = 1T ~ = 1Tl'vU
v = O. 

These functions occur in or are related to functions that oc
cur in the following decompositionll of the covariant deriva
tive of the velocity, 

ul';V = {i}I'V + f7I'V +! Ohl'v - ul'uv' 

The vorticity tensor {i}p.v is defined by (i}I'V = u[I';A. h ~J' 
where [ ] denotes antisymmetrization. The shear tensor 
f7l'v is defined by f7l'v = u(I';Ah~) - Ohl'v/3. The function 0 
denotes the isotropic (volume) expansion 0 = u~ and ul' is 
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the acceleration vector defined by il' = U~YuY with il'ul' 
= O. The vorticity and shear tensors satisfy {iJI'Yu" = ul'yuY 
=0. 

A scalar vorticity and a scalar shear can be defined ac
cording to {iJ = (ifY (iJ I'J2) 1/2 and U = (u I'Y U I'J2) 1/2. The 
above tensors can be interrelated by phenomenological 
equations which are usuallyll postulated to take the form 

'TTI'Y = - AUI''' , 

ql' = -Kh;(~" + Til,,), 

where T denotes temperature and A,K are positive constants. 
Using the identification ofEq. (5) and the metric ofEq. 

(I), the various hydrodynamical quantities simplify as fol
lows: 

hI''' = ~I''' - ul'u", ul';" = - {al'¢" - ¢yay(¢!'¢,,)}, 

ul';" = - {al'¢" + ¢ray(¢!'¢,,)}, ill' = ¢"a,,¢I" 

(J = al' ¢!" (iJ1''' = a[,,¢1' 1 + ¢7J¢["a7J ¢1' l' 

UI''' = - {a(,,¢I') + ¢7J¢("a7J ¢I') + a7J¢7J(~I''' - ¢I'¢" )/3}, 

(iJ2 = ~a"¢l'a[,,¢1' l' if = !a"¢l'a(,,¢I')' 

IV. SUMMARY AND CONCLUSIONS 

In this paper we have studied a metric whose form is 
sufficiently simple to allow the straightforward computation 
ofthe usual tensors of general relativity and yet whose form 
has sufficient structure to allow for the existence of kinks. 
The relation ¢!'¢I' = - I justified our equating the kink pa
rameter ¢!' with the fluid velocity. This may allow inhomo
geneous and anisotropic space-time solutions. The ultimate 
justification, of course, must lie with demonstrating the con
sistency of the Einstein equations GI''' = TI'''' using the TI''' 
appropriate for a realistic fluid. This is the next stage of the 
work. Since "tumbling" light cones5 are a feature of space-
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times with kink metrics, there will be regions (perhaps the 
size of elementary particles or perhaps within black holes) 
where causality is violated. Their interpretation is also an 
outstanding problem. 
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The axioms of a causal structure are reformulated. A natural generalization is suggested for the 
case when the subset lattice of space-time events is replaced by a lattice coming from the 
quantum theory. 

I. INTRODUCTION 

One of the most important consequences of the quan
tum theory is that our basic concepts of the probability the
ory have drastically changed. The classic Boole-Iattice
based probability theory has been succeeded by a new one 
based on a more general lattice structure of physical events.! 
In mathematical physics one usually starts to work with the 
"natural" Boolean lattice of physical events. Therefore it 
was a very important step in the "quantization" of basic 
ideas when the subset structure in the definition of topology 
had been replaced by the quantum lattice.2 

In this paper following this "quantization" program, 
axioms are suggested describing the causal structure of phys
ical events. In this new causal structure the role of the lattice 
of space-time subsets is played by the dual of the quantum 
lattice of events. 

II. EVENTS IN QUANTUM THEORY AND EVENTS IN 
SPACE-TIME 

The usual definition of an event in (quantum) physics is 
the following: An event means a possible result of a possible 
observation performed on a physical object. 

At first sight this notion seems to be very far from the 
notion of a space-time point. However each space-time 
point-being an event as well---can be formulated in the lan
guage of physical observations. This fact suggests that there 
must be some relation between these two notions. 

There are physical events that do not correspond to a 
single space-time point, but they do correspond to a collec
tion of space-time points, i.e., to a subset of the space-time. 
For example the event "the cloud cameraD has detected the 
particle y" corresponds to the subset A: 

/ 

/ 
/ 

.. . . . .. '.' 

.: .. D" 

Thus the physical events can be identified with the subsets 
(the single points included) of space-time. 

A subset in space-time means a complex of events con
tained is the subset. Therefore the union of subsets A and B 
corresponds to the conjunction of events identified with A 

and B. Inversely, the common part of A and B means the 
disjunction of the corresponding physical events. This 
means that the lattice of physical events and the lattice of 
space-time subsets are dual to each other. In classical physics 
this correspondence can be correct since the lattice of phys
ical events is Boolean. But it cannot be correct in quantum 
theory, because quantum logic is not Boolean, consequently, 
the dual lattice is not Boolean either. A possible resolution of 
this inadequacy is if the Boolean subset lattice is exchanged 
for the dual of the quantum lattice of events, and if the whole 
space-time structure is built on this ground up. As an initial 
effort one can reformulate the axioms of causality according 
to the conception above. 

III. THE ROLE OF THE SUBSET LATTICE IN THE 
CAUSAL STRUCTURE 

Let us recall the Kronheimer-Penrose axioms of a caus
al structure. Let X be the underlying set. Two relations < c 

and < are given with the following properties3
: 

(i) X<cX, 

(ii) if X<cy and y<cz, then x<cz, 

(iii) from X<cy and y<cx follows that x=y, 

(iv) not x<x, (1) 

(v) if x<y, then x < c y, 

(vi) if x < c Y and y<z, then x <z, 

(vii) if x<y and y<cz, then x<z, 

where x, y,zeX. 
The causal future set and the chronological future set 

are defined as 

J+(A) = :{xeXlthere exists aEA such that a<cx}, 

I + (A) = :{xeX I there exists aEA such that a<x}. 

The causal and chronological future sets have the following 
properties: 

(i) J + (A) ::JA, 

(ii) if J + ({x}) ::J{y} and J + ({y}) ::J{x}, then x = y, 

(iii) ifACJ+(B) andBCJ+(C), thenACJ+(C), 

(iv) J+(AUB) =J+(A)UJ+(B), 

(v) J+ (A nB) CJ +(A) nJ + (B), (2) 

(vi) ifACJ+(B) andBCI+(C), thenACI+(C), 

(vii) ifACI+(B) andBCJ+(C), thenACI+(C), 

(viii) not {x}CI+{x}, 

where A, B, and C are subsets of X. 
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It is obvious that a pair of maps on the subset lattice 

J+: .9 (X)-+.9 (X), J+: .9 (X)-+.9(X), 

satisfying (2) define a causal structure in the sense of ( 1 ) via 
the following definition of causal and chronological rela
tions: 

x <c Y iff yEJ + ({x}), x<v iff yEl+ ({x}). 

One can introduce many different topologies on X. The 
most reasonable of them is the Alexandrov topology, i. e., the 
coarsest topology on X in which each J + (A) is open. 

IV. QUANTUM CAUSAL STRUCTURES 

Let us now replace the subset lattice .9 (X) by the dual 
to the quantum lattice. Denote Q the quantum lattice of 
events and let (S, 1\ , V ) = Q * be the dual of Q. 

Definition: A causal structure is a pair of maps 

J+:S-+S, J+: S-+S, 

with the following properties: 

(i) J+(A) >A andJ+(A) <J+(A), 

(ii) if A <J+ (B) and B <J+(C), then A <J +(C), 

(iii) for any x,YEd(S) from x <J + (y) 

and Y < J + (x) follows that x = y, 

(iv) J + (A V B) = J + (A) V J + (B), 

(v) J + (A I\B) <J + (A) I\J + (B), 

(vi) J+(AVB) =J+(A)VJ+(B), 

(vii) J+(A I\B) <J+(A) I\J+(B), 

(3) 

(viii) if A <J + (B) and B <J + (C), then A <J + (C), 

(ix) if A <J + (B) and B <J + (C), then A <J + (C), 

(x) notx<J+(x), for xEd(S), 

whereA, B, CES and d (S) denotes the set of atoms in S. If S 
is a Boolean lattice it can be represented by a suitable subset 
lattice and the causality defined above leads to the usual 
Kronheimer-Penrose causality. 

V. ALEXANDROV T-STRUCTURE 

In case S is not Boolean it cannot be equivalent to any 
subset lattice, therefore one cannot define a point set topol
ogy on an "underlying set of causal stf\lcture." Fortunately 
there is a nice generalization of the topology for a non-Boo
lean lattice. 2 

Denote YeS) the set of filters of Sand O(S) the set of 
maximal filters. A T-structure on S is a map 

2710 J. Math. Phys., Vol. 27, No. 11, November 1986 

T: aCO(S)-+Y(S) 

such that (i) T(A) CA, and (ii) for any BET(A) there exists 
CET(A) such that C < Band 

CE n T(D). 
CCD 

An element BES is said to be open if 

BE n T(A). 
BCA 

One can define a T-structure on S (let us call it Alexan
drov T-structure) associated to the causal structure as the 
coarsest T-structure in which for any AES the chronological 
future J + (A) is open. 

VI. CONCLUSIONS 

In a quantum causal structure one can define the causal 
and chronological relations as 

A<cB iff B<J+(A), A~B iff B<J+(A). (4) 

It is reasonable to regard the set of atoms d (S) as the 
"space-time set." One can restrict the relations (3) for the 
atoms. These restricted relations on d (S) satisfy the Kron
heimer-Penrose axioms. However there can be many rela
tions on d (S) satisfying the axioms which are not generat
ed by any quantum causal structure on the whole S. It means 
that we have a possibly strong physical restriction for the 
possible causal relations. 

A possible relevancy of the quantum causal structures 
to the analysis of the "delayed-choice experiments,,4 will be 
discussed later. 
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The singular nonlinear Schrodinger equation iUt = - Uxx + f(luI 2)u + Xh( luI 2)h'( luI 2)u, 
wheref has the formf(s) = as", n> 1, aER, is investigated. A classification is given of those 
nonlinearitiesfand h that allow the existence of solitary waves and kink solutions. Further, in 
several cases the solutions are given in explicit form. 

I. INTRODUCTION 

In this short paper we consider singular nonlinear 
Schrooinger equations of the form 

iUt = -uxx +f(luI2)u+Xh(luI2
)xxh '(luI 2)u, (1) 

wheref has the formf(s) = asn, n> 1, a E lIt For the case 
X = 0 we have the usual nonlinear Schrodinger equation, 
while for the case Xi=O this equation appears frequently in 
recent physical literature concerning, for example, plasma 
physics, • superfluid films,2 or the Heisenberg ferromagnetic 
spin chain.3 More examples in both cases X = 0 and X i= 0 
can be given.4 

For X = 0 much work has been done on the investiga
tion of special solutions of ( 1 ) such as solitary waves or kink 
solutions (see, for example, Ablowitz/Segur or Berestycki/ 
Lions6

). In this paper we classify the nonlinearities 
f(s) = a . sn and h that allow special solutions of the de
scribed form and give explicit solitary waves, kink solutions, 
and spatial periodic traveling waves to some equations of the 
form (1). 

II. SOLITARY WAVES AND KINK SOLUTIONS 

Let us consider solutions of ( 1) of the form 

u(x,t) = rex + et)eitfJ(x+ dt>, 
¢(x + dt) = - (e/2)(x + dt). 

(2) 

It is possible to show4
•
7 that in the case of solitary waves (for 

arbitrary space dimension n) and in the case of traveling 
waves-where r changes sign-the phase has to take the 
form (2). 

Substituting (2) into (1) yields the nonlinear singular 
scalar field equation 

r" = r[A + fer) + x(h(r»)xxh '(r)], 

A = (e/2)(e/2 - d). (3) 

Here the derivative is taken with respect to the argument 
x + et, which we abbreviate in the following by x. Hence (3) 
can be rewritten as 

r"(1 - 2Xh '2(r)r) = r[A + fer) + 4Xh "(r)h '(r)r,2r] 

+ 2xh ,2(r)r,2. (4) 

Obviously, the existence and characterization of critical 
points ofEq. (4) is decisive in the study of solitary waves and 
kink solutions. Putting r" = r' = 0 in (4) yields 

rIA + fer») = o. (5) 

Hence the critical points of ( 4) are determined only by the 
nonlinearity f(s). 

Most applications deal with polynomial nonlinearities 
f(s) = a . sn, n> 1. For that reason and for simplicity we 
study only this case. The case of arbitrary f can be handled by 
analogous phase plane arguments in nearly the same way. 

Obviously, r = 0 is a critical point of (4). The others are 
given by 

(6) 

provided A I a < O. 
Now it is easily seen that a solitary wave type solution 

[that means a solution with limlxl~oo r(x) = 0] corresponds 
to a homoclinic orbit of the critical point 0, whereas a kink 
solution [that means a solution with limx~oo rex) = ai=b 
= limx~ _ 00 r(x)] corresponds to a heteroclinic orbit in the 
(r,r')-phase plane. Since a homoclinic orbit always includes 
a critical point, A I a < ° is necessary to get a solitary wave or 
kink solution of (1). We show in the following that this 
condition is sufficient in some sense. 

Theorem 1: Assume 

a>O, A<O, ro:=2:.,J -Ala. 

Then (1) has a kink solution if 

Xh '2(r) . ri=!, Vre[O,ro] (7a) 

holds. 
Theorem 2: Assume 

a<O, A>O, r.:=2:.,J-A(n+1)Ia. 

Then (1) has a solitary wave type solution if 

Xh ,2(r) . ri=~, Vre[O,r.l (7b) 

holds. 
Remarks: (a) The conditions (7a) and (7b) are neces

sary to insure that Eq. (4) does not become singular in the 
region of interest. 

(b) Since we can change the parameter A = (e/2) 
X (e/2 - d), we get infinitely many kink solutions for a > ° 
and infinitely many solitary waves for a < O. 

ProofofTheorem 1: It is easy to see that the (r,r') phase 
plane of (4) is symmetric with respect to the rand r' axes. 
This implies that a critical point of ( 4) is either a center or a 
hyperbolic saddle point. Further one can prove that between 
two saddle points there must be a center and between two 
centers there must be a saddle. Because of A <0, (0,0) is a 
center and hence ( - ro,O) , (ro,O) are hyperbolic saddle 
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points. Since there are no more critical points, the right part 
of the unstable manifold of ( - ro,O) is identical with the left 
part of the stable manifold of (r 0,0). Hence, a heteroclinic 
orbit exists. 

Remarks: (a) The proof shows that for the described 
kink solution 

lim rex) = - lim rex) 
x_ - 00 

holds. 
(b) Theorem 2 can be proved by phase space arguments 

similar to those of the proof of Theorem 1. 

III. SPECIAL SOLUTIONS 

We consider in the following the equation 

iU t = - Uxx + aluI 2u + b lul 4u + XJxx lul 2u, (8) 

and look for solutions of the form (2). 
The analogous equation to (3) now reads 

r" = r(..1 + ar + br4 + 2x(rr" + r,2»). (9) 

Multiplying by 2r' and integrating yields 

r,2=..1r+ (a/2)r4+ (b/3)r6+2xrr'2+D, (10) 

which can be rewritten as 

where 

s=s(a,b,c,d,X) =_1_ [_1_(~+~) +..1]. 
2X 2X 6X 2 

Now we choose d such that 

s(a,b,c,d,X) = - D, 

and hence ( 11) yields 

2712 J. Math. Phys., Vol. 27, No. 11, November 1986 

FIG. I. The real part (egg crate) of the solution 
of the periodic traveling wave with a = - 6, 
X = -~, c = - 2, d = I, and c3 = O. 

/2 b 4 I (b a ) .2 
r = - 6x r - 2X 6X +"2 r + D. (12) 

(a) Solitary waves: In order to get solitary waves we need 
D = 0 in (12). Assuming b /6X>0 and 

- 2~ (~ + ~) > 0 and A = - 2~ (~ + ~) 
we find by simple integration the solitary wave type solution 

rex + ct) = + / - ~(~ + ~) -\I b 6X 2 

xsech(~ - 2~(6: + ~)(x+ct) +c,), 

(13 ) 

where c, is an arbitrary real constant. 
(b) Kink-type solutions: Assuming 

X<O, b>O, (a/2 +b/6X) <0, 

and 

..1=~a(~+~)+:b(~+~y 
we find by integration the solution 

r(x+ct) = ±~ -f(f+t) 

X tanh( ~(~ + ~) (x + ct) + c2), 
4X 2 6X 

with an arbitrary real constant c2• 

(c) Periodic traveling waves: Assume b = 0, a/4x > 0, 
and choose A in such a manner that 

(2/a)(..1 + a/4x) <0. 

Then integration yields 
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r(x + ct) = ~ - ~ (). + ~) 

XSin(.J*. (x + ct) + c3), 

where C3 is an arbitrary real constant. 
Figure 1 shows the real part (egg crate) of the solution 

of the periodic traveling wave with a = - 6, X = -~, 
c = - 2, d = 1, and C3 = O. 
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The Green's function of two models with nonrelativistic separable interaction giving rise to 
infinities in the perturbation expansion is studied. These infinities do not arise from the E + iO 
limit, but come from the slow falloff behavior of the vertices, modeled after the infinities in 
Feynman graphs of field theory. Both models are analytically solvable. It is found that the 
Green's function obtained from summing the renormalized perturbation series is identical to 
the direct solution of the Green's function, which requires only an intermediate regularization. 
In the first model the interaction is split in a singular part giving raise to infinities and a regular 
part. It is shown that the Green's function is the same as the Green's function derived from 
only the regular part. This effect is similar to the effect occurring in (r field theory in 3 + I 
dimensions, where the ¢J4 interaction vanishes after renormalization and the S matrix is trivial. 
The second model is constructed such that parts of the singular interaction survive in the 
Green's function. 

I. INTRODUCTION 

It is well known that perturbation theory has been suc
cessful in describing quantum electrodynamics (QED) and 
to a certain extent the short distance behavior of quantum 
chromodynamics (QCD). On the other hand nonperturba
tive effects are essential for describing the confinement re
gion in QCD. Recently new evidence has been found for the 
need of nonperturbative contributions in p-p scattering. 1 

One approach to overcome the limitations of perturba
tion theory and extend results to the large coupling regime 
relies on the Borel summation technique. 2 Another very suc
cessful technique is the lattice approach.3 Several other 
methods have been discussed in the literature.4-7 The auth
ors have proposed recently another approach,8.9 which is 
similar to the Hamiltonian formulation oflattice theory. 

In these nonperturbative methods one is faced with the 
question of renormalization. In Ref. 10, Wilson, applying 
standard cutoff regularization, has found no need for wave
function and coupling-constant renormalization, contrary 
to standard renormaIization of perturbation theory. Hence 
one can ask ifthere is a need for renormalization inherent in 
physics or if it is an artifact to overcome difficulties with a 
mathematically ill-defined theory. 

In order to investigate these questions, we study in this 
paper analytically solvable nonrelativistic models. We 
choose interactions that generate infinities in the perturba
tive expansion of the Green's function, with the intention to 
model the infinities of Feynman graphs in relativistic field 
theories. However, these infinities do not arise due to the 
E + iO limit, but come from the falloff behavior of the inter
action. We have chosen the interaction to be separable, 
which leads to an analytically solvable Green's function. 
Separable potentials were introduced in nuclear physics as 
early as 1954 by Yamaguchi II and were used by Mitra 12 in 
1962 to facilitate the solution of the SchrOdinger equation. 

In this paper we have compared two methods for calcu
lating the full Green's function: the standard perturbative 
approach and the direct analytical solution. In both methods 
we find the same Green's function. Although both methods 

require intermediate regularization, only the perturbative 
expansion requires renormalization, which turns out to be 
finite. 

II. MODELl 

We consider in three dimensions a nonrelativistic Ham
iltonianH = HO + Hint, withHObeing the free Hamiltonian 
and Hint being the interaction. Let G(z) = (z - H) -I and 
GO (z) = (z - H 0) -I denote the corresponding full and 
free Green's function, respectively. We consider a separable 
interaction 

3 

Hint = L IXi)Aij(Xjl, (2.1 ) 
i,j= 1 

because it allows for an analytical solution of the Green's 
function given by 

3 

Ganl(Z) = GO(Z) + L GO(z) IXi)gij (Z)(Xj IGO(z), 
i,j= 1 

(2.2) 

where 

g(z) = A (1 - gO(Z)A )-1, (2.3) 

gO(z)ij = (Xi IGO(z) Ix). (2.4) 

This expression for G is only meaningful when the matrix gO 
exists and where g has no poles. G can be expanded in a 
perturbation series as 

Gpert(z) = GO(z) + GO(z)HintGO(z) 

+ GO(z)HintGO(z)HintGO(z) + ... 

= GO(z) + L GO(z) IX;)Aij(Xj IGo(z) 
ij 

+ L GO(Z)IXi)Aij(xjIGo(z)lxk) 
ijkl 

(2.5) 

We want to have the property that perturbation theory gives 
infinite contributions in any order, which happens if some of 
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the matrix elements gg are infinite. We want to model the 
infinities occurring in Feynman graphs of field theories, 
which we do by assuming a slow falloff behavior in momen
tum space of the vertices. At present we take z = E + iE, 
E#O, while the physical limit E -+ + 0 will be discussed later. 
In the first model we take 

(2.6) 

with 

XI(QI,Q2) = l/~qlq2' (2.7) 

This gives an infinite matrix element g? 1 . 
By introducing a cutoff A in momentum space we regu

larize it and obtain 

g?1 (z,A) = 41r[ 2A21n( Zz -=-2~2) + z In(z - 2A2) 

- 2z In(z - A2) + z In(z) ] , (2.8) 

which behaves asymptotically as 

g?1 - 41r[2In(2)A2 - 2zln(A)]. (2.9) 
A-oo 

The other vertices X2' X3 we choose with a sufficiently fast 
falloff behavior such that 

<xiIGoIXj) finite if (i,j)#(1,l). 

For our purposes there is no need to specify them expli
citly. We denote by Xi (A) the cutoff vertex and by Hint(A), 
G(z,A) the corresponding interaction Hamiltonian and the 
full Green's function, respectively. One has, in analogy to 
Eqs. (2.2)-(2.4), 

3 

G(Z,A) = GO(z) + L GO(z) IXi (A» 
i,j= 1 

xgij(z,A)(Xj (A) IGo(z), 

where g obeys the matrix equation 

g(z,A) =A(I-go(z,A)A)-I, 

with 

gO(z,A)ij = <Xi(A)IGo(z)IXj(A». 

(2.10) 

(2.11 ) 

(2.12) 

Now let us consider for simplicity the particular case 

Aij =A<5ij (2.13) 

and let us calculate the behavior of g for large A. One finds a 
stable limit given by 

l~n: g(z,A) = ..1(000 1 - A~~3 (z) 

Ag~2 (z) 

Ifwe define 

° (g~2 (z) 
g(23) (z) = \g~2 (z) 

and 

o ) A~3(z) 

1 - Ag~2 (z) 

-A~3 (z) )]-1 
1 -Ag~3 (z) . 

(2.14) 

(2.15 ) 
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(2.16) 

one can express 

lim g(z,A) = 0(1) ®g(23) (z). 
A~oo 

(2.17) 

Hence G(z,A) has a stable limit, given by 

lim G(z,A) 

3 

= GO(z) + L GO(Z)IXi)g(23) (z)ij<xjIGo(z). 
i,j=2 

(2.18 ) 

One can verify that this Green's function is identical to the 
Green's function obtained from the Hamiltonian 

3 

H
ren 

=HO + L IXi)Aij<Xjl, (2.19) 
i,j=2 

which we call the renormalized Hamiltonian. It differs from 
the original H by the absence of the singular vertex part 
IXI)A <xII· 

Now we want to calculate the Green's function from the 
perturbation theory. Because of the infinities arising from 
g? 1 in each order of the perturbation expansion, we consider 
the regularized expansion 

3 

Gpert(z,A) = GO(z) + L GO(z) IXi (A»A <Xi (A) IGo(z) 
i=1 

3 

+ L GO(z) IXi (A»A <Xi (A) I 
i,j= I 

3 

= GO(z) + L GO(z)IXi(A»A [1 + Ago(z,A) 
i,j= I 

(2.20) 

Renormalization means here to sum up the infinite parts 
thus defining a new propagator and a new interaction that 
are both finite and independent of A in the limit A ... -+oo. We 
split gO in a singular and a regular part 

gO(z,A) = gOS(z,A) + gO'(z,A) , (2.21) 

(

g?1 (z,A) 0 0) 
gOS(z,A) = ~ ~ ~ . (2.22) 

We define as a new propagator (1 - AgOS (z,A») -I, obtained 
from summing up the singular part gDs 

(1 _AgOS(z,A»)-1 = 1 + AgOS(z,A) + (AgOS (z,A»)2 + .... 
(2.23) 

We define as a new interaction the regular partgO'(z,A). We 
claim that both the propagator and the interaction have a 
finite limit when A tends to infinity. From the definition of 
gDs(z,A) one obtains 

lim (1- AgOS(z,A»)-1 = (~ ~ ~1) = 0(1) ® 1(23)' 
A~oo 0 0 

(2.24) 
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which is also independent of A. The limit of gOr is simply 

g?2 (z) 

g~2 (z) 

g~2 (z) 

(2.25) 

The perturbation series in the square brackets ofEq. (2.20) 
can be rewritten in terms of the new propagator and new 
interaction: 

1 + Ago(z,A) + (Ago(z,A»)2 + ... 
= (l_AgOS (z,A»)-1 + (l-AgOS(z,A»)-1 

xAgor(z,A)(l-AgOS(z,A»)-1 

+ (1- AgOS(z,A»)-IAgOr(z,A)(l - AgDS(z,A»)-1 

XAgor(z,A)(l-AgOS(z,A»)-1 + .... (2.26) 

We call the rhs ofEq. (2.26) the renormalized perturbation 
series, which corresponds to summing the skeleton graphs in 
field theory. We claim that taking the limit A-+oo and sum
ming the renormalized series one obtains the same Green's 
function as given by Eq. (2.18). 

One calculates 

lim(1-AgOs(z,A»)-IAgOr(z,A)(l-AgOS(z,A»)-1 
A~oo 

= 0(1) ®Ait23) (z). (2.27) 

Thus the rhs of Eq. (2.26) can be expressed in the limit 
A-+oo as 

0(1) ® 1(23) + 0(1) ®Ag~23) (z) + (0(1) ®Ag~23) (Z»)2 + ... 

(2.28) 

One should note that the rhs is a meromorphic function 
in A of degree lover 2. Its Taylor series has a finite radius of 
convergence and allows an unique analytic continuation be
yond except at the two poles. 

Substituting this result in Eq. (2.20) and taking the lim
it A ..... 00 of the regular vertices Xi (A), i = 2,3, the result is 

3 

lim Grenpert(z,A) = GO(z) + L GO(z)lxi) 
A-oo i,j=2 

Xg(23) (z)ij(xjIGo(z), (2.29) 

in agreement with the Green's function obtained by the di
rect analytical solution given by Eq. (2.18). 

III. DISCUSSION OF MODEL I 

The model is a nonrelativistic model. The interaction 
has been chosen such that the perturbation expansion ofthe 
Green's function gives rise to infinities. The interaction was 
also chosen to be separable for the reason to give a closed 
analytical solution of the Green's function for each finite 
cutoff and in the cutoff limit. One should note, however, that 
the separability property also appears in some self-interact
ing field theories; e.g., for the nonlinear Schrodinger model 
or the rfJ4 model, the interaction matrix element between two
particle Fock space states is separable, after the total energy
momentum delta function is split off. We start from a Hamil
tonian H given by Eqs. (2.1), (2.6), and (2.7). It can be 
written in the form 
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H H o + Hint + Hint = reg sing' 

3 

H~~ = L IXi)A (Xii, H~!g = IXl)A (XII, 
i=2 

(3.1) 

(3.2) 

where the last part of the interaction is called singular, be
cause the matrix element g? 1 becomes infinite. One of the 
main results is 

lim G(z,A) = Gren(z), (3.3 ) 
A-oo 

where Gren(z) = (z - Hren)-I andHren = HO + H~~~. 
Inspection of the derivation shows that this is always 

true when limA _ 00 g~ (z,A) is finite for vi: 11, but 
limA _ oo g?1 (z,A) is infinite. The property ofg?l being infi
nite comes from the large momentum behavior of X I (ql,q2)' 
The particular choice of XI given by Eq. (2.7) leads to a 
quadratic divergence of g?I' A different choice, e.g., 
XI (ql,q2) = 1I(qlq2) would lead to a logarithmic diver
gence. Hence there is a class of examples for X I' which leads 
to the same G ren and H ren. The class consists of those func
tions XI (ql,q2), which are smooth functions of the variables 
ql,q2 and fall off for large qlq2 like (qlq2) -lor slower. The 
class may be even larger. We can formulate this in terms of 
an invariance property under a transformation group. Let us 
consider the following class of functions: 

K = {xlixi (qt>q2) = X;UPP (QI,Q2) 

+ (qlq2) -a, aE[O,l]}, (3.4) 

where x;uPP is a continuous function with compact support. 
Let T denote the one-to-one transformations of [0,1] onto 
[0,1], which forms a group. Corresponding to the group T 
we define a group of transformations Y on the class K. Cor
responding to each tET we define a TEY by 

'TXI(QI,Q2) =XI(Q;,Q~), q; =ql' q; =q~(a)la, 

(3.5 ) 

where a is the falloff exponent of X I' 
One easily checks that X~UPP(Q; ,Q~) considered as a 

function of QI,Q2 is continuous and has a compact support, 
and (q; ,q~) - a = (qlq2) -fl, /3 = t(a)E[O,l], which shows 
that Y maps Kon K. Here Y is a group that follows from T 
being a group. Hence we can consider Y as a group ofsym
metry transformations that leaves G ren and the renormal
ized Hamiltonian Hren invariant and hence describes the 
same physics. The group Y should be seen in contrast to the 
usual renormalization group, which describes transforma
tions between regularized cutoff dependent Hamiltonians, 
giving the same physics. 

Another important feature of this model is its parallel 
with rfJ4 theory. It is generally believed 13-19 that the renor
malized rfJ4 theory has in 3 + 1 dimensions a unity S matrix, 
while in one or two space dimensions the S matrix differs 
from unity. This feature is inherent in our model, too. Let us 
consider the Hamiltonian 

(3.6) 

where XI (QI,Q2) behaves asymptotically for large qlq2 like 
(q Iq2) -I, but is regular at the origin. It gives in three dimen-
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sions a logarithmically divergent matrix element g~ I' Then 
we have 

lim G(z,A) = GO(z). (3.7) 
A-oo 

Hence the full Green's function tends towards the free 
Green's function, which leads to a unity S matrix. If, how
ever, we consider the Hamiltonian (3.6) only in one or two 
dimensions, then g~ 1 is no longer divergent, hence 

lim G(z,A) #Go(z), (3.8) 
A-oo 

and the S matrix is different from unity. Thus this model 
might serve to give a better understanding of the mechanism 
of triviality of ~j + 1 theory. 

Finally let us discuss the relation between the analytical 
solution and the perturbative solution. By construction of 
the model there are infinities in the perturbation series of the 
Green's function. The reason is that the interaction Hamil
tonian is an ill-defined operator in Hilbert space. Therefore 
the perturbation expansion, being a polynomial in Hint, re
quires renormalization in order to give finite results. Sum
ming the renormalized perturbation series we find the same 
Green's function as obtained by the direct analytical solu
tion. It is interesting to note that for the latter no renormal
ization is needed, but only an intermediate regularization. 
Thus we find that (z - H) -I behaves more regularly than H 
or polynomials in H. One expects that also exp (iH), which is 
closely related to the S matrix and which can be expressed as 
a contour integral of the resolvant, behaves more regularly 
than H itself. One reason behind this is that for Im(z) #0, 
(z - H) -I and exp (iH) are bounded operators even if His 
unbounded. Hence as a conclusion from our model investi
gation we suggest for field theories, which cannot be solved 
analytically, to search for approximate solutions in the form 
of the resolvent (z - Hn ) - 1 or in the form of the exponent 
exp(iHn) (see also Refs. 8 and 9). 

IV. MODEL II 

From our investigation of model I we know that the 
Hamiltonian 

2 

H=HO+ L Lti)A <Xii, 
i=1 

with X 1 being a singular vertex but X 2 being a regular vertex, 
i.e.,g~, is infinite, butgg is finite for ij# 11, has the renormal
ized Hamiltonian 

H ren = HO + IX2)A <x21; 

i.e., the singular vertex drops out of the renormalized Hamil
tonian and the Green's function limA _ oo G(z,A). From that 
one might suspect that if both X 1 and X 2 are singular vertices 
then the renormalized Hamiltonian should beH ° only. Mod
el II shall serve as a warning that is not in general the case. 
We choose now 

2 

Hint = L IXi)A <Xii· (4.1 ) 
i=1 

We choose the singular vertices identical to the singular ver
tex of model I given by Eq. (2.7), apart from some overall 
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factors. We take Xi of the form given by Eq. (2.6). We write 

IXi) = IX:) + Ix;), i = 1,2, (4.2) 

and put 

X:(Q"Q2) = C;l~q,q2' i = 1,2. (4.3) 

From model I we know that <X:IGolxj) are infinite matrix 
elements. The vertices X; are chosen such that the matrix 

elements <x;IGolxi), <X:IGolx~), and <x;IGolxi) are finite 
for all i,j. As in the first model we introduce a cutoff A in the 
vertices. Then the cutoff Green's function G(z,A) as well as 
the matrices gO(z,A) and g(z,A) are given by Eqs. (2.10)
(2.12) (gO andg are now 2X2 matrices). As in Eq. (2.21) 
we split gO in a singular and a regular part, the singular part 
now being defined by 

ggS(z,A) = <x: (A) IGo(z) Ixi(A». (4.4) 

Denoting the rhs ofEq. (2.8) by u(z,A), Eq. (4.4) can be 
expressed as 

ggS(z,A) = crcp(z,A). (4.5) 

Let us calculate limA _ 00 g(z,A). Model I yields for this limit 
zeros in the first row and the first column [Eq. (2.14)]. It 
occurred for these matrix elements because the denominator 
det(l-AgO(z,A») was of first order in u(z,A) but the nu
merator was only of zeroth order in u(z,A). Hence one 
would expect for model II the denominator 
det(l -AgO(z,A») to be of second order in u(z,A), the nu
merator to be of first order in u(z,A) and hence to obtain 
zero for the limA _ oo g(z,A). However, this is not the case, 
because in det( 1 - AgO (z,A) ) the leading order cancels. One 
obtains 

and 
2 

lim G(z,A) = GO(z) + L GO(z) IXi)gij (z) <xjIGO(z). 
A-oo i,j=l 

(4.7) 

In the case c, #c2 the singular vertices x: are still present in 
the limit of the Green's function. Now let us consider in the 
following the special casec, = c2 • Then Eqs. (4.6) and (4.7) 
simplify to give 

lim g(z,A) =.1(-1 1 )D-' 
A-oo 1 - 1 ' 

D = - 2 + A (g~; (z) + g~; (z) - g~; (z) - g~; (z»). 
(4.8) 

Defining 

Ix') = Ix;) - Ix;), (4.9) 

we can express 

lim G(z,A) = GO(z) + GO(z) Ix') 
A-oo 

X A. <x'IGO(z). (4.10) 
2 - A <x'i G o(z) Ix') 
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One can verify that this Green's function is identical to the 
Green's function obtained from the Hamiltonian 

H ren = H O + Ix') (A /2) (x'l, (4.11 ) 

which we call a renormalized Hamiltonian. It differs from 
the original H in three ways: (i) absence of singular vertices, 
(ii) shift of the coupling constant 

,.1. __ ,.1.' =,.1./2, 

and (iii) addition of cross terms of the regular vertices 

-lxnA '(X; 1-lx;)A '(X~ I· 
Now let us calculate the Green's function by summing up the 
renormalized perturbation series. The regularized perturba
tion expansion is given by Eq. (2.20) (except that we have 
only 2 X 2 matrices now). We take the definition of the new 
propagator and new interaction from model I, but gas (z,A) 
being now given by Eq .. ( 4.4 ). We calculate the limits 

lim(1-AgOS(Z,A»)-I=.i.( 1 -11), (4.12) 
A-co 2 - 1 

which is independent from A too, and 

lim Agor(z,A) = A g~: g~~ . co, (z) 0, (Z») 

A-co 21 (z) g22 (z) 
(4.13) 

We define the renormalized perturbation series by the rhs of 
Eq. (2.26). Taking the limit A--oo the nth term is 

lim (1 - AgOS(z,A»)-IAgo'(z,A) 
A-co 

with 

X(l -AgOS(z,A»)-I ... (1-AgOS(z,A»)-1 

xAgO'(z,A)(l _ gOS(z,A) )-1 

=.i.[~Y>'(Z)]n( 1 
2 2 -1 

- 1) 
1 ' 

(4.14 ) 

y>'(z) =g~~(z) +g~;(z) -g~;(z) -g~~(z). (4.15) 

Summing it up yields 

1 (1 - 1) 
2 -Ay>'(z) - 1 1 . 

After multiplying this expression with A, the expression 
agrees with limA_co g(z,A) given by Eq. (4.8). Hence sub
stituting it in Eq. (2.20), one obtains also in this model 

lim Grenpert(z,A) = lim G(z,A). ( 4.16) 
A-oo A-co 

V.SMATRIX 

We have obtained for model I, and model II in the case 
CI = C2, Green's functions limA_co G(z,A) and Hamilto
nians H ren, where all singular vertices are absent [Eqs. 
(2.18), (2.19), (4.10), and (4.11)]. So far we have consid
ered only a complex energy z = E + iE, E#O. In order to 
obtain the physical transition amplitude, one has to perform 
the limit E -+ + o. Also in the coefficient matrix g only regu
lar vertices appear [Eqs. (2.16) and (4.8) ] . Hence the limit 
g(E + iE) can be performed in a standard way, provided 
that the vertices also have a regular behavior in the vicinity 
of E such that limE _ + 0 gO(E + iE) exists, which holds, e.g., 
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for the Yamaguchi form factor. Hence one has a well-de
fined physical transition amplitude T(E + iO) related to the 
Green's function in the standard way by 

(5.1 ) 

Then the physical S matrix is related to T(E + iO) also in the 
standard way. 

VI. CONCLUSION 

In this paper we have studied nonrelativistic models 
with separable interactions, such that the interaction gener
ates infinities in the perturbation series of the Green's func
tion. We have compared the direct analytical solution with 
the perturbative solution. Both methods led to the same 
Green's function. However, in the perturbative approach re
normalization was needed, while in the direct analytical cal
culation only an intermediate regularization was necessary. 
We have chosen the interaction to contain vertices that pro
duce infinities in the perturbation expansion in order to 
model infinities that appear in field theory. In the first model 
we have one singular vertex giving rise to one infinite matrix 
element g~ I. This vertex drops out of the cutoff limit of the 
Green's function and the renormalized Hamiltonian. There 
is a class of Hamiltonians differing in the singular vertex but 
leading to the same renormalized Hamiltonian, which can be 
expressed in terms of a symmetry under a group of transfor
mations. In the second model we have two singular vertices. 
This model shows that in general the renormalized Hamilto
nian is not simply obtained by subtracting the singular ver
tex part from the original Hamiltonian, as was the case in the 
first model. 

Although we have studied nonrelativistic models, we 
have a pattern of infinities similar to a field theory. Particu
larly model I resembles ¢J4 theory, which, after renormaliza
tion, is a free theory in 3 + 1 dimensions, but is an interact
ing theory in one or two space dimensions. Choosing a 
suitable vertex yields the same feature in our model and 
hence may serve for a better understanding of ¢J4 theory. 

From the study of both models we find that the resol
vent (z - H) -I behaves more regularly than H itself. One 
expects that also exp(iH) behaves more regularly than H 
because first the time evolution exp (iHt) is closely related to 
the S matrix, which was found to be well defined, and second 
exp(iHt) can be expressed as a contour integral of the resol
vent (z - H) -I. Hence we suggest to look for approximate 
solutions of not analytically solvable field theories in the 
form of (Z-Hn)-I or exp(iHnt), where Hn is some ap
proximate Hamiltonian. 

One might speculate if the results of this model study, 
namely no need for renormalization if the Green's function 
can be calculated directly, have parallels in field theories. In 
general for those an analytical solution is not known, but 
nonperturbative approximation methods are available.4

-
9 

Numerical investigations based on the method of Refs. 8 and 
9 are underway. 
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The low-energy behavior of the transmission coefficient in one dimension and of the phase 
shifts in two and three dimensions is studied for the Schrodinger equation with central 
potentials that have finite absolute moments of order between 1 and 2. Resulting modifications 
of Levinson's theorem are also derived. 

I. INTRODUCTION 

The standard assumption on which most of the known 
properties of scattering amplitudes for the Schrodinger 
equation in one, two, or three dimensions with a central po
tential have been proved 1-3 is that VEL i (R) or 
V( Ixl)EL i (R+), respectively, where 

L~(R) = {nx) Ii dxlV(x) 1(1 + IxI
U

) < oo} 

and analogously for R+.4 In this paper we will investigate 
what properties of the scattering amplitude will be changed 
if VftL i. We will particularly study the cases when VEL : 
and remark only parenthetically on those instances when 
VftL :. 

The technique used will generally be based on specific 
assumptions such as VEL~, 1.;;;a.;;;2. The modifications that 
arise in one dimension when a < 2 have to do primarily with 
the way in which the transmission coefficient can approach 
zero as the wave number k-G (see Sec. II). In two and three 
dimensions, with central potentials, we examine the behav
ior of the phase shifts as k-G, and the effect on the differen
tial scattering length or cross section (see Sec. III for two 
dimensions and Sec. IV for three dimensions). In each case 
we also determine the changes in Levinsen's theorem that 
arise from modifications in the small-k behavior of the trans
mission amplitude or the Jost function. Their analyticity and 
large-k behavior are, of course, unchanged by our weakened 
assumptions, since those require only that VEL I. 

For ease of reading all detailed proofs are given in three 
appendices. 

II. ONE DIMENSION 

We begin by considering solutions of the equation 

f" = Vex)/, x,VER. (2.1) 

If VEL i one easily proves these well-known facts: (a) con
tinuous solutions II and 12 exist that satisfy the boundary 
conditions 

lim II(x) = lim 12(x) = 1, 
x_ + 00 x-+ - 00 

(2.2) 
lim Ii (x) = lim n (x) = 0; 

x_+ 00 x--+- 00 

(b) in generalll grows linearly as x~ - 00, and so does/2 as 
x~ 00; (c) for an exceptional set of potentials, the functions 
II and/2 are linearly dependent and hence, uniformly bound
ed; (d) for no potential in L i is there a solution of (2.1) that 

tends to zero as x~ 00 or as x~ - 00. 
If VrU.: the situation is radically different, as can be 

seen explicitly when V - ex - 2 as x ..... 00. Solutions of (1) 
may grow more rapidly than linearly, and for some V there 
are solutions that tend to zero; in fact, there may be bound 
states; solutions that satisfy (2.2) generally do not exist. The 
question is, what happens if VEL : but VrU. i? 

The answer is given by the following lemma. 
Lemma 2.1: If VeL~, 1';;;a<2, then (2.1) has unique 

continuous solutions that satisfy the boundary conditions 
(2.2). We have 

where 

asx~ + 00, 
asx~- 00, 

In the exceptional case when r = 0, we havell (x) = a!;(x) 
= a + o(x l

-
u

) asx~ - 00, a#O. There also exists asolu
tion g(x) that is linearly independent of II (x) and which is 
such that asx~oo, g(x) = x + O(x2

-
u ). (For a proof see 

Appendix A.) 
Corollary: If VEL: there is no solution of (2.1) that 

tends to zero asx~ + 00 or asx~ - 00. Hence (2.1) has no 
L 2-solutions. 

Thus the situation for VEL~, l';;;a < 2, is very similar to 
that when VeL i, except for the size of the error term. An 
explicit example is given by Vex) = ()(x - 1 )!(x- 3 

- 3x-5/2
) [where ()(x) is the Heaviside function], for 

which 

II(x) = {exp(-x-
1/2

), x>l, 
(x + 1 )/2e, x < 1, 

{
t, x < 1, 

hex) = II I [e - f7dy exp(2y- 2)/2e] exp( - X-I 2), x> 1. 

Asx~00,f2= -x/2e-3xI/2/2e+0(1). 
The solutionsll and!; of (2.1) that satisfy the boundary 

conditions (2.2) are the unique solutions of the Volterra 
equations (see Appendix A) 

(2.3a) 

and 
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J;(x) = 1 + f: 00 dy(x - y) V(Y)J;(y). (2.3b) 

If VeL!., *L! (R_)nL ~ (R+), where,u,1];> 1, then Lemma 
2.1 holds with 0' replaced by,u for the limits as x---+ - ~ and 
by 1] for the limits as x---+ + ~. 

We now consider solutions/1(k,x) and/2(k,x) of the 
Schrodinger equation 

f" +k2j= VI (2.4) 

defined by the integral equations 

11 (k,x) = eikx - 100 

dy k -1 sin[k(x - y») V(Y)/l (k,y), 

(2.5a) 

J;(k,x) =e- ikx + f:oo dyk- 1 

xsin[k(x - y») V(Y)J;(k,y). (2.5b) 

When k =I:- 0, 1m k;>O, these Volterra equations can be solved 
by iteration if VeL 1, and they lead to the well-known analy
ticity and continuity properties 1 ofthe Jost solutions 11 and 
J;. We are now interested in their behavior near k = o. If 
VeL ~ it is well known that as k---+O, 11 (k,x)---+/l (x), 

J;(k,x)---+/2(X)' where/l(x) andJ;(x) are the solutions of 
(2.3a) and (2.3b), respectively, and the remainders are lin
ear in k. More generally we have 

Lemma 2.2: If VeL~, 1<0'<2, then 

e- ikx/ 1(k,x) =/l(x) +gl(k,x), 

eikxJ;(k,x) =J;(x) +g2(k,x), 

where 

{

CV(k), x;>O, 

Igl(k,x)I< C[v(k)- 21 k lx ] (1-x), x<O, 
1- 21k Ix 

{

CV(k), x<O, 

Ig2(k,x)l< C[v(k)+ 21klx ]O+X), x>O. 
1 +21k Ix 

Here v(k) is bounded, independent of x, and o( Ik 1"-1) as 
Ik 1---+0 if 0'< 2; if 0' = 2, then v = O(k). (For a proof, see 
Appendix A.) 

This tells us how 11 (k,x) and J; (k,x) approach 11 (x) 
andJ;(x), respectively, as Ik 1---+0. Now, the transmission 
and reflection amplitudes are given by! 

T(k) _ 2ik 
- 2ik-I1(k)' 

R (k) _ I 2 (k) 
I - 2ik - II (k) , 

where 

II (k) = f: 00 dx V(x)e-ikx/!(k,x) 

J
oo 

ikx = _ 00 dx V(x)e 'J;(k,x) , 

2721 J. Math. Phys .• Vol. 27. No. 11. November 1986 

I 2 (k) = f: 00 dx V(x)eikx/t (k,x), 

I 3(k) = f: 00 dx V(x)e-ikxJ;(k,x). 

The behavior of these integrals is as follows. 
Lemma 2.3: If VeL~, 1<0'<2, then for j= 1,2,3 as 

k---+O 

Ij(k) =r+o(lkl,,-I), 

where r is the constant defined in Lemma 2.1. If 0' = 2 the 
remainder is O(k). (For a proof see Appendix A.) 

Note that this lemma does not imply that there exists a 
,u > 0' - 1 such that ~ - r goes exactly like kP' , i.e., that 

limk-P[~(k)-r] 
k--+O 

exists and differs from zero. 
For 0' = 2 one can show that ~ (k) = r + icjk + o(k) 

as k---+O, where Cj is real. It then follows that T, RI , and R, 
are real and continuous at k = 0 even if r = o. When 0' < 2 
they may be complex and hence discontinuous as k---+O ± . 
[Since5 T( - k) = T(k), Twill not be continuous unless it 
is real in the limit as k---+O; similarly for RI and R,.] 

As a result of Lemma 2.3 we have the following 
theorem. 

Theorem 1: If VeL: and r=l:-O (where r is defined in 
Lemma 2.1 ), then as k---+O, 

T(k) = - 2ik Ir + o(k) 

and RI (0) = R, (0) = - 1. In the exceptional case when 
r=O, 

ifVeL~, l<u<2,then l/T(k) =o(lkl"-2), 

while for 0' = 2, 

l/T(k) = 00) 

and 

T(k) = 0(1). 

Remarks: 0) If VeL!., [defined below Eq. (2.3b)] 
where,u,1];> 1, then Lemma 2.2 holds with 0' = 1] for gland 
0' =,u for g2. Lemma 2.3 and Theorem 1 hold with 
0' = min(,u,1]). 

(2) If Vex) = VI (x) + A.I 8(x - xo), then all the re
sults hold, provided that VI satisfies the hypotheses of the 
lemmas and the theorem. 

The breakdown of these results when VEtL : may be ex
plicitly seen for the potential 

Vex) = a6l(x)( 1 + x) -2 + hO( - x)( 1 - x) -2, 

for which the Schrodinger equation is solvable in terms of 
Hankel functions of orders p = (a + !)1/2 and 
0' = (b + !) 112. One then finds that as k---+O, T(k) 
= const kP +" . If a < -! and b < -!, thenp and 0' become 

p = ilpl and 0' = ;10'1, and 

k P +" = exp[i( Ipi + lui )log k ], 

which has no limit as k---+O. If a or b are large enough, T 
vanishes faster than k, which is impossible if VeL : . 

Theorem 1 directly leads to the Levinson theorem. If 
VeL 1, T is known to be the boundary value of an analytic 
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function meromorphic in C+, with simple poles at k = iK if 
K-

2 is an eigenvalue (bound state), and such that 
limlk I~oo T(k) = 1. If T has n simple poles in C+ and tends 
to zero exactly like ftX as k~ then by the "argument princi
ple" its phase 0, continuously defined by 

T= ITlei6
, 

satisfies the relation 

0(0) - o( 00 ) = 1Tn - ~1Ta. 

Since 

( 
T R r ) T 2i6 det =detS= - =e 

R/ T T 
and each pole of Tin C + signifies a bound state, the Levinson 
theorem for VeL: has to be modified in the exceptional case. 
According to Theorem 1 we have the following. 

Theorem 2 (Levinson theorem): If VeL : (lR), generical-
ly 

0(0) - o( 00 ) = 1T(n - ~), 

where n is the number of bound states. In the exceptional 
case of r = 0 (see Lemma 2.1) if T goes exactly like Tcf1 near 
k = 0 (which is consistent with Theorem 1 if VeL~, 
1 C;;;er < 2, for P < 2 - erC;;; 1, but not implied by it), then 

0(0) - o( 00) = 1T(n - ~P). 

III. TWO DIMENSIONS 

We now consider the Schrodinger equation in two di
mensions with a central potential. The equation is separable 
and the radial equations are 

f"+[(!-A2)/rlf+k2f=Vj, A=O,I,2,.... (3.1) 

A "regular solution," defined by the boundary condition 

lim r- (1/2) -Al/JA (k,r) = 1 
r--+O 

satisfies the Volterra equation 

l/JA (k,r) = l/JAO (k,r) - f dr' gA (k,r,r') V(r')l/JA (k,r'), 

(3.2) 

where 

l/JAo(k,r) =rI/2JA(kr)(k/2)-AA!, (3.3) 

gA (k,r,r') = !1T(rr') 1/2 [JA (kr) YA (kr') 

- JA (kr') YA (kr)], (3.4) 

and JA and YA are the usual Bessel and Neumann functions. 
The Jost solution, defined by 

is the solution of 

fA (k,r) = fAO (k,r) + 100 

dr' gA (k,r,r') V(r')fA (k,r'), 

(3.5) 

where, in terms of the usual Hankel function 

fAO (k,r) = ei(l/2)1T(A + 1/2) (1Tkr/2) 1/2H i 1) (kr). (3.6) 

We define the Jost function by 
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Y A (k) = - (1T 1/2/U!) (k/2)A-1I2 ei(1I2)-n1(1/2) -A) 

(3.7) 

where W(l/J,f) *l/Jf' -l/J'f From (3.2) and (3.5) we then 
find that 

Y A (k) = 1 _ i1T (k /2)A roo dr rI/2V(r) 
U! Jo 

xH il) (kr)l/J A (k,r) 

( )

112 roo = 1 + ei(l/2)-n1(1I2) -A); Jo dr rl/2 

x V(r)JA (kr)fA (k,r). 

Here Y A is defined so that lim Y A (k) = 1 and k-oo 
l/JA = A !1T- 1/2(k /2) (112) - A ei(l/2)1T(A + 112) 

X (yA1A - ei-n1<1I2) -A)YA h), 

which implies that the S matrix is given by 

(3.8) 

- 2i6 
SA = YA/YA = e A. (3.9) 

Use of the first form of ( 3.8) then leads to the representation 

SA (k) = 1 + i1T roo dr rI/2 V(r)JA (kr)l/JA (k,r) (k/2)A. 
Jo A !YA (k) 

(3.10) 

The scattering amplitude in two dimensions is given by6 

( 
1 )112 00 

f( 0) = -. L EA (cos AO)(SA - 1) 
2mk A =0 

and the scattering length 

{21T 
L = Jo dO If(OW = 

where EA = 2, A = 1,2, ... , Eo = 1. 
(a) The case of A=O. 
Lemma 3.1: If VeL ~ (R+), er> 1, the equation 

(3.11 ) 

(3.12) 

f" + (1/4r)f= Vf (3.13) 

has a unique solution that satisfies the boundary condition 

lim l/J0(r)r- 1/2 = 1. 
r--+O 

This solution is continuous and generally grows as rl/210g r 
when r-+ 00 ; in the exceptional case in which 

r* loo dr rI/2 V(r)l/J0(r) = 0 (3.14) 

it grows as r1/2. There is a linearly independent solution 
goer), which is such that 

lim r- 1/2go(r)/log r = 1. 
r--+O 

(For a proof see Appendix B. It will be noted from the proof 
that the weaker hypothesis 

(3.15 ) 

suffices.) 
Corollary: If VeL ~ (R+), er> 1, (3.13) has no solution 

inL 2(R+). 
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For k #0, the solutions tPo andfo and the Jost function 
Yo are defined by (3.2), (3.5), and (3.7) setting A = O. 

Lemma 3.2: If VEL ~ (R+ ), 1 < 0" < 3, then 

Yo(k) =A 10gk+B+E(k), (3.16) 

where 

(3.16') 

for all aE( 1,0"), andA = 0 if and only ifr = 0 [as defined in 
(3.14)], i.e., we have the exceptional case. (For a proof see 
Appendix B.) 

The constants A and B are given by 

2 i"" A = - - dr r 1l2V(r)g(r), 
1T 0 

(3.17) 

B = 1 + i So"" dr r I/2V(r)h(r), (3.18 ) 

where g and h are solutions of (3.13) defined by the equa
tions 

g(r) =rI/2+ f."" dr'(rr')1/210g(~) V(r')g(r'), (3.19) 

h(r) = [1 + iWo(O) ]g(r) + iH(r), (3.20) 

H(r) =rI/210gr+ i"" dr'(rr')1/210g(~) V(r')H(r'). 

(3.21 ) 

The function W" (x) is defined by the Bessel and Neumann 
functions? 

W" (x) = Y" (x) - (2I1T)logxJ" (x). (3.22) 

Lemma 3.2 allows us to conclude by(3.9) how So be
haves near k = O. If A #0, then 

S = Alogk+B+E(k) =1+ B-B +o( 1 ) 
o Alogk+B+E(k) Alogk (logk)2 

and since Re h = g implies 1m B = - (1T12)A, we have 

So(k) = 1 + ~ + 0 ( 1 2)' 
log k (log k) 

On the other hand if A = 0, then B is real and cannot vanish. 
This is because A = 0 implies that 

B = 1 - So"" dr r I/2V(r)H(r) 

and hence as r-o 
H(r) = Br l /2 log r + o(rl/2 10g r), 

g(r) = 0(r1/2 10g r). 

Thus if B = 0, H(r) = cg(r) because both are solutions of 
(3.13). But as r-oo, g(r) goes as rl/2 and H(r) goes as 
rl/210g r, so B cannot vanish. Therefore in the exceptional 
case 

and we have the following theorem for the phase shift de
fined in (3.9). 

Theorem 3: If VEL ~ (R+), 1 < 0" < 3, in the generic case 
when r#o [see (3.14)], as k-o, 

oo(k) = (1T12)/log k + o (1 !log k) (mod 1T), 
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but when r = 0, 
oo(k) = O(k a - I) (mod 1T), 

for all a < 0". 

Thus in all cases 00 tends to zero (mod 1T) at the origin. 
However, the approach to zero is faster in the exceptional 
case. In fact, if 0" > 2 one may expect (though this is not 
implied by Theorem 3) that the derivative of 00 at k = 0 
vanishes in the exceptional case, and tends to - 00 generi
cally. 

By (3.11) the partial-wave amplitude for A = 0 in two 
dimensions is equal to 

0 0 = (eZiljo _ l)/(2i1Tk)1/2. 

Thus, by Theorem 3, in the generic case 

lim ao(k)k 1/2 log k = (i1T12) 1/2, 
k-+O 

while in the exceptional case 

0 0 = O(k a - 3IZ), a <0". 

It also follows from Lemma 3.2 that the form of Levinson's 
theorem does not depend on whether the case is generic or 
exceptional. 8 

Theorem 4 (Levinson theorem): In all cases for 
VEL ~ (R+), 0"> 1, 

00 (0) - 0o(n) = 1Tno, 

where no is the number of bound states for A = O. 
This follows directly from (3.16), the "argument prin

ciple," and the fact that for C a semicircle of radius E in the 
upper half-plane, 

r dlogYo(k) =ii
1f 

dtP-
1
- _ O. Jc 0 log E e-+O 

(b) The cases of A> 1. 
Lemma 3.3: If VEL : (R+) the equation 

f" + [(1 -A 2)/r]f= Vf (3.23) 

has a unique solution that satisfies the boundary condition 

lim tP" (r)r- 1/2 -" = 1. 
r-O 

This solution is continuous and bounded by Crll2 +" . In the 
exceptional case when 

r,,*1 + -1-i"" drr(1/2)-"V(r)tP,,(r) =0, (3.24) 
Uo 

tP" goes as r(1IZ) -" when r .... 00 rather than as r(IIZ) +". (For 
a proof, see Appendix B.) 

Corollary: If A = 1, there are noL 2-s01utions of (3.23). 
If A > 1, r" = 0 implies that tP" EL 2 (a bound state of zero 
energy). 

The behavior of S[ (k) near k = 0 is obtainable from 
(3.10) and Lemma 3.3. We have the following theorem. 

Theorem 5: If r" =Y,,(O)#O and VEL~(R+), 
1<0"< 1 + U, A>I, then as k-+O, 

0" (k) = o(k u
-

I» (mod 1T), 

and for 0" = 1 + U, 

0" (k) = O(k 2
"). 

(For a proof see Appendix B.) 
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We also have the following lemma. 
Lemma 3.4: If VeL ~(R+), 1";;0"< 3, then 

3',dk) = 3','<0) + o{k U
-

I
), A.>1. 

(For a proof, see Appendix B.) 
This lemma implies that in the exceptional case the 

phase shift need not approach a multiple of 1T as k -+ O. In 
fact, we have, by the same argument as that given at the end 
of Sec. II. 

Theorem 6 (Levinson theorem): If VeL ~ (R+) and 
3';,. (0) #0, A.> 1, 

c5;,. (0) - c5;,. (00) = 1Tn;,., 

where n;,. is the number of bound states. If 3';,. (0) = 0 and 
3';,.(k) =Cka +o(~),a>O"-I,ask-+O(whichiscom
patible with Lemma 3.4 but not implied by it), then 

c5;,. (0) - c5;,. (00) = 1T(n;,. + !a). 

Theorem 5 implies that if VeL~, 1";;0" < 3, then all par
tial-wave scattering amplitudes for A.> 1 generically are 
o (kU 

- 3/2 ) as k-o. Thus, by Theorem 3 they vanish relative 
to that for A. = 0 if 0"> 1, and they are bounded if O">~. If 
3'0(0) = 0, thenao = O(~- 3/2 log k), so that we have the 
following theorem. 

Theorem 7: If VeL ~ (R+ ), 0" > 1, then in the generic 
case, i.e., if 3';,. (0) #0 for all integers A., the differential scat
tering length in two dimensions becomes independent of the 
scattering angle as k-o and 

lim L(k)k(log k)2 = r. 
k-+O 

If 3'0(0) = 0, then 

L(k) = 0 [k 2a - 3 (log k)2], 

for all a < 0" < 3. 

The universal value of the limit of L(k) k(log k)2 is 
noteworthy.2 Also note that if 0" >~, then in the exceptional 
case for A. = 0, L is bounded as k-o. 

IV. THREE DIMENSIONS 

We next consider the SchrOdinger equation in three di
mensions with a central potential. It is separable, and the 
radial equation is the same as (3.1), but with A. = 1 +~, 
1 = 0,1,2, .... Subscripts in this section will refer to 1 rather 
thanA.. 

(aJ The case 1=0. Iffo(k,r) is the Jost solution defined 
by the boundary condition 

and ¢o(k,r) is the regular solution defined by 

¢o(k,O) = 0, ¢o (k,O) = 1, 

then the Jost function Yo is given by 

3'0= W(fo,¢o)=,;=fo¢o -fo¢o· (4.1 ) 

It is well known (but since there does not appear to be a 
detailed published proof, a proof is given in Appendix C) 
that if VEL i (R+) and if Yo(O) = 0, then near k = 0, 

Yo(k) = - iak + o(k), a#O. (4.2) 
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If V(iL ~, this need no longer hold and we have the following 
lemma. 

Lemma 4.1: If VeL ~ (R+), 1";;0"< 2, then as k-+O, 

3'o(k) = 3'0(0) + o(k U
-

I
), 

while for 0" = 2, 

3'o(k) = 3'0(0) + O(k). 

(For a proof see Appendix C.) 
The S matrix is given by 

So = e2ilJo = 3'0( - k)/Yo(k) (4.3) 

and hence we have by Lemma 4.1 the following theorem. 
Theorem 8: If VeL~(lR+), 1";;0"<2, then generically, 

i.e., if Yo(O) #0, in three dimensions 

c5o(k) = o(k u - I ) (mod 1T) 

as k-o, and if 0" = 2 

c5o(k) = O(k) (mod 1T). 

If3'o(O) =Oand3'o(k) =a~ +o(~),a#O,a>O"-1 
(which is consistent with but not implied by Lemma 4.1), 
then 

c50(0) = !1Ta (mod 1T). 

The implications for the partial-wave amplitude are 
easy to see. Since the partial-wave amplitude for 1 = 0 is giv
en by 

a = _1_ (e2ilJo _ 1) 
o 2ik ' 

we have generically [i.e., when 3'0(0) #0] for VeL~, 
1";;0"<2 

ao(k) = o(k u
-

2), (4.4) 

while for 0" = 2 

(4.4') 

Therefore there is assurance of a finite cross section at k = 0 
only for 0" = 2. 

Lemma 4.1 and Eq. (4.3) also immediately lead to Le
vinson's theorem by the same argument as at the end of Sec. 
II. 

Theorem 9 (Levinson theorem): If VEL ~ (R + ), 1";;0", 
then in the generic case, i.e., if 3'0(0) = 0, 

c50(0) - c50{ 00 ) #1Tno, 

where no is the number of bound states of 1 = O. If 
3'0(0) = 0 and Yo(k) = a~ + o(~), a#O, for 
a> 0" - I (which is consistent with but not implied by 
Lemma 4.1), then 

c50 (0) - c50 ( 00) = 1T(no + !a). 

(bJ The case 1>1. All the formulas and representations 
(3.2) to (3.10) now hold, with A. = 1 +~, 1 = 1,2, .... [Of 
course, A.! is to be replaced by r (A. + 1).] We then obtain 
the following lemma. 

Lemma 4.2: The same as Lemma 3.3, with A. = 1 + !. 
Corollary: If 

r l =';= 1 + f" dr r-1V(r)¢1 (r) = 0, 

then for I> 1, ¢ I eL 2 and there is a bound state of zero energy. 
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We also have the analog of Lemma 3.4, with the same 
proof. (The logarithmic terms in the estimates used are now 
absent, of course. ) 

Lemma 4.3: If VeL ~(R+), lor;;;o-< 3, then 

Y/(k) =Y/(O) +o(k u
-

I ). 

Also, from (3.10) and Lemma 4.2 we derive the following 
theorem. 

Theorem 10: If Y/(O)#O, 1>1, and VeL~(R+), 
1 or;;;o- < 21 + 2, then as k--'>fJ, 

8/ (k) = o(k u- I) (mod 1T) 

and for 0- = 21 + 2 

8/(k) = O(k 21 + I) (mod 1T). 

IfY/(O) =OandY/(k) =ak a +o(k a ),a#O,a>o--1 
(which is consistent with Lemma 4.2 but not implied by it), 
then 

8/ (0) = !1Ta (mod 1T). 

The Levinson theorem has the same form as in the two
dimensional case for A> 1. 

Theorem 11 (Levinson theorem): The same as Theorem 
6 with A = 1 + !. 

Since in the exceptional case (which by the corollary to 
Lemma 4.2 for I> 1 is a zero energy bound state) the phase 
shift need not approach an integal multiple of 1T, the cross 
section may grow to infinity as k - 2. By Theorems 8 and lOin 
the generic case if 0- < 2, all the partial waves may vanish 
equally as k - 0 and hence the differential cross section may 
be both unbounded and angle-dependent. 

Theorem 12: If VeL ~ (R+), 1 or;;;o- < 2, then in the generic 
case, i.e., if Yo(O) #0 and there is no zero-energy bound 
state, the differential cross section may tend to infinity as 
0(k 2u

- 4) and it may be angle dependent. If there is a zero
energy bound state of angular momentum I> 1 [or 
Yo(O) = 0], then the cross section may grow as k -2, with 
the angle dependence of the square of the Legendre polyno
mial of order I. 

We note that if 0->2, the zero-energy cross section is 
isotropic and finite, except if Yo(O) = O. 
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APPENDIX A: PROOFS FROM SEC. II 

We shall use C for an arbitrary constant that need not 
have the same value everywhere. 

Prool 01 Lemma 2.1: If VeL :, the Volterra equations 
(2.3a) and (2.3b) can be solved by iteration. That gives 
uniqueness, continuity, and for x > 0, 

1/1(x) I or;;;C exp [2 Loo dyylV(y) I] or;;;c. 

For x < 0, therefore, 

Ii"" dy(x-y)V(Y)/I(y) I or;;;C(l + Ixl), 

and hence by (2.3a) 
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1/1(x)l= 11- [- L""I 

or;;;C(1 + Ixl) + 21xl [ dyIVII/II, 

Ih(x)1 or;;;C+2[dY(1 + lyl)1V1 I/I(Y)I , 
1 + Ixl x 1 + Iyl 

and by iteration I h (x) I/( 1 + Ixl) or;;;C. So 

Ih(x) lor;;; {C(1 + Ixl), x or;;; 0, 
C, x>O. 

We now use this result in(2.3a) for x < 0: 

hex) = I-x 5:"" dy VII +x 5:"" dy VII + 1"" dyyVII, 

Ii"" dYYVIII or;;;C, 

If dYYVIII or;;;Clxl(1 + Ixll-U) f dy(l + lyl)UIVI 

or;;;C(1 + IxI 2
-

u
), 

Ix 5:"" dy VIII or;;;C(1 + IxI
2

-
U
) 5:"" dy(l + lyl)UIVI· 

For x > 0 by (2.3a) and the boundedness Of/I' 

1/1(x) -llor;;;c L"" dylV(y)lyUxl-U=O(XI - U) 

as x_ + 00. Similarly for h,. If r = 0, II and 12 must be 
multiples of one another since their Wronskian vanishes. 

Letg(x) beasolutionof(2.1) such that W(g,/l) =g{; 
- g'ft = 1. Then define h = gill so that h ' = l//~. There

fore limx~"" h '(x) = 1 and hence 

h(x) = iXdY(/I-2-1)+X 

=x+ i
X 

dYO(yl-U) =x+O(x2
-

u
). 0 

The remark below (2.3b) follows from the above proof. 
Before proving Lemma 2.2 we define 

h(k,x)=f;:. L'" dya(k(y-x»)(x-y)V(Y)/I(y), (AI) 

where 

a(x) = 1 - [(sin x)lx]eix
• 

Lemma A.l: If VEL~, lor;;;o-or;;;2, then 

{

CV(k), for x>O, 

Ih(k,x)lor;;; C[v(k)+ 2klxl ] (1+ lxi), forx<O, 
1 + 2k Ixl 

where v(k) is bounded, independent of x, v(k) = o(kU- 1 ) 
as k-O if 0- < 2, and v(k) = O(k) if 0- = 2. 

Proof: We use 

la(x)lor;;;C[lxl/(l + Ixl)]· 

Now, for x>O by Lemma 2.1, 

Roger G. Newton 2725 



                                                                                                                                    

Ih I..;;cia> dy k(x - y)2 1V(Y)I..;;cia> dy~ IVI 
x l+k(y-x) 0 l+ky 

..;;Ck u- I dyy"lVl -Y- *v(k). i'" ( k )2-U 
o 1 +ky 

One easily proves that the integral tends to zero as k-o if 
u < 2, by splitting it into 

where a = k -1/2. 

Forx<O, 

I i ,x' I i 'x, k( Ixl + iYl)2 2k Ixl2 .. ·..;;c dylV I - <.C , 
o 0 1 + k( Ixl + Iyl> 1 + 2k Ixl 

I ('" .. ·1 ..;;Ck u- I ("" dylVlyU (~)2-(7 <.v(k), 
J1xl J1XI 1 + ky 

If ... ' ..;;cfdYIVI 2k Ixl2 (1 + Iyl) 
x x 1 + 2k Ixl 

C 
2k Ixl2 

<. . 
1 + 2k Ixl 

o 

Next we consider the Volterra equation 

g(k,x) = h(k,x) - 1"" dy k -I sin k(x - y) 

Xeik(y-x) V(y)g(k,y), (A2) 

where h is the function defined by (A 1). 
LemmaA.2: If VeL~, 1 <.u<.2, then (A2) has a unique 

solution g and this solution satisfies the same inequalities as 
stated in Lemma A.l for h. 

Proof: Equation (A2) is solvable by iteration, using 

Isinxl<.C [\xl/(1 + Ixl)]· 

Fromx>Othis gives directly Ig(k,x) I <.Cv(k). For x <Ouse 
this result in 

Ii"" dy k -I sin k(x - y)eik(Y-X)V(y)g(k,y) I 
<.Cv(k) i"" dylVl(lxl+y) 

<.Cv(k)( 1 + Ixl). 

Therefore by (A2) and Lemma A 1 for x < 0, 

Igl<.~(k,x) 

+ If dYk-lsink(y-x)eik(Y-X)V(y)g(k,y)l, 

where 

~(k,x) = C [V(k) + 2k Ixl ] (1 + Ixl). 
1 + 2k Ixl 

Since ~(k,x)/(1 + Ixl) increases with x, 

I 
g(k,x) I 
~(k,x) 

<.1 + C[dy (1 + IYI)IVII g(k,y) I <.C 
x ~(k,y) 

by iteration. Thus Ig(k,x) I <.n(k,x). 0 
We now consider the integral equation (2.5a), which 
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can be solved by iteration if VeL I for k "'0, 1m k>O. Multi
plication by e - ikx and subtraction of (2.1) shows that the 
function 

(A3) 

satisfies (A2). Thus we obtain Lemma 2.2 from Lemma A2 
for fl> and similar for J;. 0 

Proof of Lemma 2.3: We have, with r defined in Lemma 
2.1 andgby (A3), 

II (k) = r + f: "" dx V(x)g(k,x). 

Now use Lemma (A2) for g, and 

2klxl <'2( 2klxl )2-Uku-Ilxlu_l. 
1 + 2k Ixl 1 + 2k Ixl 

Furthermore, by the same argument used in the proof of 
Lemma AI, 

f"" dxlxlulV I ( 2k Ixl )2 - U = 0(1) 
- OQ 1 + 2k Ixl 

as k-o for u < 2; for u = 2, of course, it is O( 1 ). 
For 12 we write 

12 - r = f: OQ dx V(x)[eikxfl (k,x) - fl (x)] 

= f: "" dx V(x)g(k,x)e
2ikx 

+ 2i f: "" dx V(x)f(x)sin kx eikx
, 

use Lemma A2, Lemma 2.1, and 

Isin kxl <.C k Ixl <.C(k Ixl>u- I ( k Ixl )2 -U . 
1 + k Ixl 1 + k Ixl 

Similar arguments are used for 13 , 0 

APPENDIX B: PROOFS FROM SEC. III 

Proof of Lemma 3.1: The solution CPo of (3.13) satisfies 
the Volterra equation 

¢Jo(r) =rI/2+ J: dr'(rr')1/2 10g (;') V(r')¢Jo(r')· 

Using the inequality 

Ilog(rlr') 1<.(1 + Ilog r l)(1 + Ilogr'I), 

we iterate 

l¢Jo(r) I 
r1/2( 1 + Ilog rl) 

<.1+ r'dr'r'(1+llogr'I)21V(r')1 l¢Jo(r') I Jo r,1/2(1 + I log r'1> 

<.exp [J: dr' r'(1 + IIOgr'I)21V(r')I] <.C. 

Hence 

l¢Jo(r) I <.CrI/2(1 + Ilog rl)· 

It follows from the Volterra equation that 
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t/Jo(r) = rl/210g r Loo dr' r,1/2V(r')t/Jo(1') 

- rl/210g r ioo 
dr'r,1/2Vt/Jo 

+ r l/2 [ 1 - f dr' r, 1/2 10g r'V(r')t/Jo(r') ] . 

But 

li
oo 

d1' r,1I2vt/J01 

,C (00 dr' r'WI (1 + Ilogr'I)2 =0(1I1Iogrl) 
J 1 + Ilogrl 

and hence 

t/Jo(r) = rrl/210g r + r l/2 

X (1- Loo dr' r'1/2 10gr'Vt/Jo) +0(rI/2 ), 

where r is defined by (3.14). Note that we needed only 

Loo drrWI(1 + Ilogrl)2< 00. (B1) 

It also follows that as r-o, t/Jo(r) = r l/2 + o(r/2(1og r)2), if 
VeL I. 

Let go be such that W(t/Jo,go) = t/J~o - t/Jogo = 1, and 
define h (r) = go! t/Jo. Then 

h' = 1It/J~ = r- I + o(1og r)2, r-o. 

Therefore h = log r + 0 (r(1og r) 2) and go = rl/2 log r 
+ o (r/2(1og r)2) as r-o. 0 

Proof of Lemma 3.2: Since both Jo(x) and Yo(x) de
crease like X- 1/2 as X-+ 00, whileJo-+ 1 as x-+O and Yo goes 
as log x, 

(B2) 

(B3) 

where Wo is defined by (3.22). Replacing Yo in (3.4) by 
(3.22) therefore leads to 

Igo(k,r,r') I,CZ(k,r)Z(k,r'), 

where 

Z(k,r) = r
1/2

(1 + I log rl) (1 + I log krl) . 
1 + Ilog krl + (kr)1/2 

Thus from (3.5) 

I fo(k,r) I ,Ck 1/2Z(k,r) + CZ(k,r) 

X i oo 
d1' Z(k,1')W(r') I lfo(k,r') I 

and by iteration 

I fo(k,r) I ,Ck I12Z(k,r) 

Xexp [c Loo dr' Z2(k,r')W(1')I]. 

Since 

Z(k,r) ,r1/2(1 + I log rl), 

it follows that if VeL~, u> 1, then 
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I fo(k,r),CZ(k,r)k 1/2. 

Near r = 0 the functionfo(k,r) goes as 

fo(k,r) = arl/2 + brl/210g r + 0(rI/2) 

and we find from (3.5) 

b = (11'k /2) 1/2 e3i1r/4 

- LOO dr rI/2Jo(kr) V(r)fo(k,r) 

(B4) 

and by (3.8), b= (11'k/2)1/2e3i1T14Yo. One then readily 
finds from (B3) and (B4) that 

We next need more detailed estimates of Jo and Wo: 

IJo(x) -11,C[x/(l +X)]2 (B5) 

and 

IWo(x) - Wo(O)I,C[x/(1 +x)F, (B6) 

which follow from their boundedness and approach to zero 
asx2

• Therefore, from (3.6) and (3.22) 

foo(k,r) = k 1/2 log k e3i1T14(2r/11') 1/2 

+ k 1/2 ei1T14 ( 11'r/2) 112 

X [1 + (2i/11')log r + iWo(O)] + Ro , (B7) 

IRol,C (kr)5/
2

2 
(1 + I log krl) 

(1 + kr) 

,C(kr)a- (112), I <a < 3. (B8) 

Furthermore, from (3.4), (3.22), (B5), and (B6), 

Igo(k,r,r') - (rr,) 1/2 10g(r'/r)1 

,C(r1') 1/2(1 + Ilog rl) 

x(1 + Ilogk1'l)[k1'/(l +k1')F 

,C(rr') 1/2(1 + I log rl )(kr,)a - I, 

1 <a < 3, for r'>r. (B9) 

We now insert (B7) in the integral equation (3.5) and ob
tain 

fo(k,r) = k 1/2 log k(2/11') 1/2 e3i1T14g(r) 

+ k 1/2( 11'/2) 1/2 ei1T14h(r) + R (k,r), (BlO) 

whereg(r) and her) satisfy (3.19)-(3.21) and 

R(k,r) = Ro(k,r) + Loo dr' [go(k,r,r') 

- (r1') 1/2 10g (~)] V(1')fo(k,1') 

+ Loo dr'(rr')1/210g(~) V(r')R(k,r'). 

The Volterra equations (3.19) and (3.21) have unique solu
tions and determine g and h. 

By (B4) and (B9) we have 
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I icc dr' [go(k,r,r') - (rr')1/210g(~)] V(r')fo(k,r') I 
<.Ck a - 1I2r1/2( 1 + Ilog rl) 

X icc dr' r,alV(r') I (1 + Ilog r'i) 

<.Ck a - 112(1 + ,.a - I )r1/2 

if we choose a < 0'. As a result the integral equation for R 
yields by iteration 

IR I <.Ck a - 112(1 + ,.a - I )rI/2, 

for all aE( 1,0'). Insertion of (BlO) in the second form of 
(3.8) then gives (3.15) with (3.17) and (3.18), and (3.16). 

It follows from (3.19) that as r- 00, g = r l/2 + 0(rI/2 ), 
and as r-+O, g = - (1T'/2)ArI/21og r + 0(rI/2). Therefore 
A = 0 is the exceptional case (3.14). 0 

Note that Sfo(kei1r
) = :roCk) for real k because 

Reh =g. 
Proof of Lemma 3.3: The "regular solution" ¢" (r) satis

fies the Volterra equation 

¢" (r) = rO/2 )+" - f dr' g" (r,r') V(r')¢" (r') (Bll) 

with 

g" (r,r') = (1/U)(rr') 1/2[ (r'/r)" - (r/r')"]. (B12) 

Using 

Ig" (r,r') I <.Cr(l/2) + "r'(l/2) -" 

for r' <.r, we iterate and obtain 

1¢,,(r)I<.Cr(1I2)+"exp [c f dr' r'lV(r') I] <.Cr(l/2)+" 

(B13) 

if VeL :. Thus ¢" is continuous and bounded by Cr( 112) +". 
The integral equation (B11) now shows that as r-+oo, 

¢" (r) = r(1I2)+"I'" + 0(r(1I2)+"). 

Define a solutiong" (r) of (3.23) by the equation 

g" (r) = r (12 ) -" - iCC dr' g" (r,r') V(r')g" (r'), 

which can be solved by iteration. One easily finds that 

W(¢",g,,) = ¢"g~ - ¢~g" = - UI'". 

Hence, if I'" = 0 then ¢" is a multiple of g" . Furthermore by 
its boundary condition ¢" cannot vanish identically. There
fore if I'" = 0, as r-+oo, 

¢" (r) = erl12 -" + 0(rIl2 -,,), 

wheree#O. 0 
Proof of Theorem 5: For ..1.;;;.1 the function W" defined by 

(3.22) behaves as follows 7 as x-+O: 

W" (x) = - (1/1T') (!x) -"(A - I)! + 0(x2 -"). 

One readily finds that 

(B14) 

(B1S) 
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IW,,(x)I<'C(_x-)-" 1+ Ilogxl , 
l+x 1+ Ilogxl +X1/2 

(B16) 

IJ (x) - ~I ~C(_X_)2+" (1 +X)"-1I2 (B14') 
" A! "" l+x ' 

IW,,(X) + : (~X)-"(A-1)!1 

<.C(_X_)2-" 1 + Ilogxl 
1 +x 1 + Ilogxl +XI/2 ' 

(B16') 

As a result, for r' <.r, 

Ig" (k,r,r')<.Ck -1 -- -- , (B17) ( 
kr )112+" ( kr' )112-" 

1 + kr 1 + kr' 

and eliminating Y" by (3.22) from (3.4), 

Ig" (k,r,r') - g" (r,r') I <.C (~)2 (.!..-)" (rr') 112, 
1 + kr r' 

(BIT) 

whereg" (r,r') is given by (B12). 
The "regular solution" of (3.1) satisfies the Volterra 

equation (3.2). Using the above inequalities we find that the 
equation is solvable by iteration and 

I¢" (k,r) I<.Ck -112-" [kr/(1 + kr) ]112+", (B18) 

if VeL :. We use this bound in the first form of (3.8) and 
then let k-+O, so that ¢" (k,r)--¢" (r). Comparison with 
(3.24) shows that Sf" (0) = I'". Thus the exceptional case 
is the one for which Sf" (0) = O. 

Next we use the inequalities (B14) and (B18) in the 
representation (3.lO) ifI'" #0: 

IS" (k) _ 11 <.Ck -I rcc 
drlV(r) I (~)I + 2". 

Jo 1 + kr 

Since 

(~)I + 2A <. (kr)U (~)I + 2" -u, 

1 + kr 1 + kr 

if 1 <.0'<.1 + U, it follows that 

IS" - 11 <.Ck u- t, 
if VeL~. Since one easily proves, by splitting the integral 

where a = k -1 12, that 

rCC 
dr~ IVI (~)€ =0(1), Jo 1 + kr 

for € > 0, we find for 0' < 1 + U 

S" (k) = 1 + o(k u
-

I
), 

for 1 <.0' < 1 + U, and for 0' = 1 + U 

S" (k) = 1 + 0(k 2"). 

The theorem follows by the definition (3.9). 0 
Proof of Lemma 3.4: By the ineqUalities (BIT) and 

(B13) we have 
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II dr' VCr') [g.t (k,r,r') - g.t (r,r')]¢.t (r') I 
<c r dr' W(r')Ir'r ll2+.t (~)2 

Jo 1 + kr 

<Cr1l2 +.t (~)2, 
1 +kr 

if VEL 1. Now subtract (Bll) from (3.2) and use the above 
inequality, (BI4'), and (BI7): 

I¢.t (k,r) - ¢.t (r) I 

<cr1l2+.t(~)2 +C r dr'r1l2 +.t r '(l/2)-.t 
1 + kr Jo 

xW(r')II¢.t(k,r') -¢.t(r')1 

<Cr1l2 +.t (~)2 (BI9) 
1 + kr 

by iteration if VEL : . 
Next we subtract (3.24) from the first form of (3.8): 

.'T.t (k) - r.t = ;;! Loo dr r I/2 V(r) [( ~ k r Hii)(kr) 

+ ~ (Ii. - l)!r-.t] ¢.t (k,r) 

- - dr r(l/2) -.tV(r) 1 i oo 

2A 0 

X [¢.t (k,r) - ¢.t (r)]. 

By (3.22), the fact that Hi l
) = J.t + iY/, (3.14) and 

(3.16'), 

I( ~ k YHil) (kr) + ~ (Ii. -1)!r-.t I 
<Ck.t [(~)2-.t + (~)\1 + IIOgkrl)], 

l+kr l+kr 

for l<u<3andu<2A + 1. Therefore by (BI8) and (BI9) 

1.'T.t(k) -r.tl 

<Ck u- I roo dr ~ W I (~)3 -u (1 + Ilog krl). 
Jo l+kr 

By the usual argument, the integral tends to zero as k-o if 
VEL~. 0 

APPENDIX C: PROOFS FROM SEC. IV 

Let us differentiate (4.1) with respect to k, indicating 
the derivative by an overdot, and allow k-o. Since ¢o is an 
analytic function of k 2 we have ~o(O,r) = ° and hence 

Yo(O) = W(io(O,r),¢o(O,r»). 

Suppose now that .'To(O) = 0. Then Io(O,r) = c¢o(O,r), 
c;i:O, and hence 

Yo(O) = (11e) W(io(O,r),Io(O,r»). 

This formula holds, provided that VEL 1. Otherwise there is 
no assurance thatio(O,r) exists, as can be seen from the inte
gral equation 

io(O,r) = ir - r'" dr'(r - r') V(r')io(O,r'). 

2729 J. Math. Phys., Vol. 27, No. 11, November 1986 

If VEL ~, iterating this equation shows that 

lio(O,r) - irl<C ioo 

dr' r'2W(r') I,:: 0, 

li~ (O,r) - il<C ioo 

dr' r'W(r') I,:: 0. 

Since furthermore 

I/o(O,r) - II<C i oo 

dr'W(r') Ir',:: 0, 

110 (O,r) I <C i oo 

dr' W(r') I,:: 0, 

we may evaluate the Wronskian of io(O,r) and 10(0,r) at 
r~oo, replacingio by ir andlo by 1: 

Yo(O) = - ile;i:O. 

This demonstration of the well-known fact that if 
.'To(O) = 0, then near k = 0, .'To(k) = - iak + o(k), 
where a;i: 0, clearly shows its dependence on the assumption 
that VEL i . 

Prool 01 Lemma 4.1: Suppose VEL : , 

lo(r) = 1 + i oo 

dr' (r' - r) V(r')Io(r'). 

This can be iterated and converges. One easily gets I I( r) I < C 
for all r. 

Next consider 

lo(kr) - lo(r) 

= eik, _ 1 + i oo 

dr'(r' - r) 

X [sin k(r' - r) _ 1] V(r')J' (k r') 
k(r' _ r) 'Jo , 

+ i oo 

dr'(r' -r)V(r')[/o(k,r') -/o(r')]. 

Here we use the inequalities 

leik'_II<C~, 
1 + kr 

I sin k(r' - r) - 11 <C ~ , r'-;;.r, 
k(r' - r) 1 + kr' 

and iterate to conclude that 

I/o(k,r) - lo(r) I 

<C [~+ roo dr' ~ W(r') I] . 
l+kr J, l+kr' 

Therefore 

i
OO k~ 

I/o(O,r) -1o(O)I<C dr--I V(r) I 
o 1 +kr 

<Ck u - I roo drWI~(~)2-U, 
Jo l+kr 

if VEL ~, 1 <u < 2. By the usual argument, splitting 

loo = La + Loo, a = k -1/2, 

one sees that the integral is 0(1) as k---O. For u = 2, one 
directly obtains O(k). 0 
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A noncommutative version of the Cramer theorem is used to show that if two quantum 
systems are prepared independently, and if their center of mass is found to be in a coherent 
state, then each of the component systems is also in a coherent state, centered around the 
position in phase space predicted by the classical theory. Thermal coherent states are also 
shown to possess properties similar to classical ones. 

I. INTRODUCTION 

The coherent states l/J to be studied in this paper have 
expectation values of the form 

(l/J;e- i(uP+ VQ» 

= exp{ - 9(AU2 + A -lv2)/4}e - i(u(P) + v(Q», (1.1) 

where P and Q are the momentum and position operator for 
a quantum particle in one dimension; the generalization to 
Rn is straightforward. The physical interpretation of the pa
rameters (P), (Q), 9, and A, characterizing the state l/J, is 
obtained from (1.1) by differentiation; namely, 

(P) = (l/J;P), 

(Q) = (l/J;Q), 

9A 12 = (l/J;(P _ (P) )2), 

9A -1/2 = (l/J;(Q _ (Q) )2), 

so that 

«P_ (P»2)«Q_ (Q»2) =92/4. 

We must therefore have 

A> 0 and 9;;;.1i. 

( 1.2) 

( 1.3) 

(1.4) 

The case 9 = Ii corresponds to the class of coherent states 
introduced by Schrooinger l

: they have minimal dispersion, 
compatible with the Heisenberg uncertainty relation, 
around the point «P), (Q » of the classical phase space 
T"'R~R2. They are pure states and are characterized by the 
existence ofa vector $EK-.,Y2(R,dx) such that, 

and 
A 

ael> = 0, 

where 

a=Q+iA -Ip 
with 

A A 

P=P- (P), Q= Q- (Q). 

( 1.5) 

( 1.6) 

( 1.7) 

( 1.8) 

a) Permanent address: Department of Mathematics, The University ofFlor
ida, Gainesville, Florida 32601. 

b) Permanent address: Institut fUr Theoretische Physik, Universitiit Gottin
gen, Gottingen, West Germany. 

A 

Note that (1.6)-( 1.8) is equivalent to saying that eI> is 
the wave function for the ground state of the harmonic oscil
lator with Hamiltonian 

A A A 

H= (1/2m)p2+ (1I2)kQ2, (1.9) 

where m and k satisfy the relations 

A = mw with w2 = kim. 

When we further have 

(P)=O=(Q), 

( 1.10) 

(Lll) 

let us denote by el>o the vector $ characterized by (1.5)
(1.8). Since the Schrodinger representation of the canonical 
commutation relations is irreducible, every vector el>EK is 
cyclic. In particular we thus have that the (algebraic) vector 
space 

Span{e - i(uP+ VQ)eI>olu,VER} (1.12) 

is dense in Jf'. and for general values of (P) and (Q) the 
A 

corresponding vector eI> is linked to el>o by 

$ = e - i(Q)P- (P)Q) I1iel>o. (1.13) 

In this sense, the vectors $, obtained by letting 
( (P ). (Q » run over the classical phase space T "'R~R2. 
form an overcomplete basis in Jf', a mathematical property 
that has been given much attention2 in connection with the 
theory of reproducing kernel Hilbert spaces. 

When 9> Ii. the change of variables 

9=1i coth (PIiw12), A =mw, (1.14) 

allows one, as explained in Sec. III, to interpret the corre
sponding coherent state as the canonical equilibrium state, 
at inverse temperaturep. for a quantum harmonic oscillator 
( 1. 9) with frequency defined as in (1.1 0). These states are 
therefore not pure. 

All coherent states (9;;;.1i) have in common the proper
ty that they allow one/ upon controlling the limit Ii .... O. to 
derive from Mackey's formulation of quantum mechanics 
the formalism of classical mechanics, complete with its Jor
dan and Lie products, i.e .• with the algebraic structures cor
responding to (a) the pointwise multiplication of functions 
on the classical phase space T '" M. and (b) the Poisson 
bracket associated with the canonical symplectic form on 
T"'M. 

In this paper we focus our attention on other classical 
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properties of quantum coherent states, exploring what can 
be said about the individual states of two quantum systems 
when these are prepared independently and when their cen
ter of mass is found to be in a coherent state. In Sec. II we 
limit our attention to the usual case of pure coherent states 
(9 = Ii); the general case (9;;;.1i) is presented in Sec. II. 

The mathematical motivation for this paper is a quan
tum version of the classical Cramer theorem.5 The latter 
asserts that if the sum of two independent random variables 
is normally distributed, then each of the two random vari
ables entering in this sum must also be normally distributed. 
Lemma 4.1 allows a simple derivation of a quantum version 
of this theorem adapted to the case 9 = Ii; in Sec. III, how
ever, we need the general quantum version established by 
one of us in Refs. 6 and 7. The mathematical proofs, perti
nent to the results stated in Secs. II and III are collected in 
Sec. IV. 

II. PURE COHERENT STATES 

If two classical particles, ~1 and ~2 say, are prepared 
independently and if their center of mass is found to be at the 
point {PCM' qCM} of phase space one concludes immediately 
that the state of each of the component systems is described 
by a point {PK' qK} (K = 1,2) and that 

PI + P2 = PCM' ILlql + IL2q2 = qCM' 

with 

(2.1 ) 

ILK = mK/mCM and mCM = m l + m2, (2.2) 

where m
K 

is the mass of the Kth particle. 
If, however, the two particles are quantum systems, and 

one knows the wave function \{I CM describing the state of 
their center of mass, one cannot in general conclude any
thing about the shape of the wave function \{I K (K = 1, 2) of 
the two component systems, beyond consistency relations 
between expectation values, e.g., 

(PI) + (P2) = (PCM )' ILl (Ql) + IL2(Q2) = (QCM)' 
(2.3) 

«PI - (PI) )2) + «P2 - (P2) )2) 

= «PCM - (PCM »2), 

ILi «QI - (QI) )2) + IL~ «Q2 - (Q2) )2) 
(2.4) 

= «QCM - (QCM) )2), 

whereILK (K= 1,2) are as in (2.2). To establish (2.3) one 
uses the linearity of the state, while to establish (2.4) one 
also uses the fact that when the two systems ~ I and ~2 are 
prepared independently, there are (by definition) no corre
lations between the observables A I relative to ~I and the 
observable A2 relative to ~2. 

The purpose of this section is to show that if in addition 
\{I CM describes a coherent state, centered around the point 
{ (P CM ), (QCM)} in the classical center-of-mass phase 
space, then each of the component system must be in a pure 
coherent state, centered precisely around the points {(P

K
), 

(QK)} (K = 1,2) satisfying (2.3), and with dispersion pa
rameter AK given by the now unique solution of (2.4), name
ly, 

(2.5 ) 
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where A is the dispersion parameter of \{I CM' determined 
uniquely from 

«PCM - (PCM ) )2) = AIi/2, 
(2.6) 

« QCM - (QCM) )2) = A -11i/2. 

As a consequence, the wave functions \{II and \{I2 will inherit 
both the Gaussian character of \{I CM and minimal disper
sion, i.e., equality sign in the Heisenberg uncertainty rela
tion, 

«PK - (PK»2)«QK - (QK»2) =1J2/4, (2.7) 

for K = 1,2. We have, in fact, 

«PK - (PK»2) =AK(1i/2), 

( (QK - (QK» 2) = A K- I ( 1i/2 ) , 

withA
K 

as in (2.5). 

(2.8) 

As discussed in Sec. I, this is the closest one can possibly 
come to the classical result: when the scale of the phenomena 
one observes is such that Ii can be neglected, our quantum 
states are well approximated by the corresponding, disper
sion-free classical states. 

We now turn to the mathematical formulation of these 
results. For the general mathematical concepts underlying 
the following brief presentation, see, e.g., §8.3 and §9.1 in 
Ref. 4. In order to streamline our nomenclature, we system
atically use the following abbreviations. By an "algebra" .Q/ 
we mean a W*-algebra, with unit denoted by I, i.e., a C*
algebra (with unit) that is the dual of a Banach space .Q/ • ; 
by a "state" t/J on .Q/, we mean a completely additive state, 
i.e., a positive linear functional 

(2.9) 

that is normalized to 1 and belongs to .Q/. (these states are 
called "normal" in the literature on von Neumann algebras; 
we will, however, avoid this adjective here, as it may create 
confusion with the concept of "normal" distribution, famil
iar in the literature on classical statistics to which we also 
refer). The following particular case will be of central inter
est in the sequel: if.Q/ is (isomorphic, as a W*-algebra, to) 
the algebra f)J (JY) of all bounded linear operators on a sep
arable Hilbert space JY, then completely additive states t/J on 
.Q/ characterized by the fact that they are of the following 
form, familiar to physicists: 

t/J: AE.Q/r-+tr( pA )EC, (2.10) 

where p is a density matrix, i.e., p is a positive trace-class 
operator on JY, of trace 1, uniquely determined by t/J. In the 
present section, we are primarily concerned with (complete
ly additive!) states t/J on .Q/ "'" f)J (JY) which are pure, i.e., 
states for which p is a one-dimensional projector, and we 
denote by <I> any unit vector in the range ofp. For this section 
and the next, it is nevertheless useful to recall that for every 
state (whether pure or not) t/J on d, there exists a represen
tation, unique up to unitary equivalence, 

(2.11 ) 

called the GNS representation canonically associated to t/J 
and characterized by the existence of a vector <l>EJY 4>' such 
that 

(2.12) 
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(2.13 ) 

While the existence of the GNS representation does not re
quire that rP be completely additive, the latter property en
sures that 1T ~ is ultraweakly continuous so that 1T ~ (.f<'f) is a 
W*-algebra. If in addition the state rP on .f<'f -=::::.f!iJ (.i¥') is 
faithful, i.e., if 

(rP;A * A ) = 0 implies A = 0, 

then 1T~ (.f<'f) is a factor, i.e., 

1T ~ ( .f<'f ) rt1T ~ (.f<'f)' = C/, 

isomorphic to its commutant 

(2.14 ) 

(2.15 ) 

1T~ (.f<'f)' = {Bef!iJ (.i¥'~) I [B,1T~ (A)] = 0, VAe.f<'f}. 
(2.16) 

Moreover, every (completely additive!) state f/; on 
.f<'f !!::! f!iJ (.i¥') is then a vector state for this representation, 
i.e., there exists a vector \IIe.i¥'~ such that 

(\II,1T~(A)\II) = (f/;;A), V Ae.f<'f. (2.17) 

Finally, by the Weyl CCR algebra for a particle with one 
degree of freedom, we mean the abstract W*-algebra, de
fined by its realization on L 2(R,dx), namely, 

.f<'f = {ei(UP+VQ)lu,veR}", (2.18 ) 

where P and Q are the self-adjoint operators defined by their 
restriction to the Schwartz space Y (R), i.e., 

(P\II)(x) = - Hi (ax \II)(x), 

(Q\II) (x) = x\ll(x). 

For two particles of mass m i and m2 with Weyl CCR alge
bras .f<'f I and .f<'f 2' the Weyl CCR algebra .f<'f CM for the cen
ter-of-mass motion is the subalgebra of .f<'f I ® .f<'f 2 generated, 
in the L 2-realization, by 

{ i(uPCM + vQCM) I R} e u,ve , 

where, in analogy to (2.1) and (2.2), 

PCM=PI ®I +I®P2, 

QCM f..lIQI ®I +f.l~®Q2· 

(2.19) 

(2.20) 

The results of this section can now be expressed mathemat
ically as follows. 

Theorem 2.1: Let.f<'f K (K = 1,2) be the Weyl CCR alge
bras for two particles with one degree of freedom; let .f<'f CM 
be the Weyl CCR algebra for the center-of-mass motion; let 
rPK be a state on.f<'fK (K = 1,2); let 

rPO==rPi ® rP2 on .f<'f o=.f<'f I ®.f<'f 2; (2.21) 

and let rPCM be the restriction of rPo to .f<'f CM C.f<'f 0' i.e., 

rPCM =rPo ~ .f<'f CM =rPi *rP2' (2.22) 

If rPCM is a pure coherent state, then rPi and rP2 are also pure 
coherent states. 

The relations between the characteristic parameters of 
rPi and rP2 and those of rPCM are now specified. 

Corollary 2.2 With the notation of the theorem, the pure 
coherent state rPCM is completely described by 

(
A.. • -i(UPCM+vQCM» 
'l'CM,e 
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= exp{ - ~(ACMU2 + A cJv2)/4}e - i(u(PCM ) + v(QCM» 

(2.23) 

J. Math. Phys .• Vol. 27. No. 11. November 1986 

valid for all u, veR; the characteristic parameters (PCM )' 
(QCM ), and ACM of rPCM are determined by the relations 

(PCM ) = (rPCM;PCM )' (QCM) = (rPCM;QCM), (2.24) 

(rPCM;(PCM ) - (PCM ) )2) = ACM~/2, 

(rPCM;(QCM - (QCM) )2) = A cJ~/2. 

The rPK (K = 1,2) are then of the form 

(2.25) 

= exp{ - ~(AKU2 + A K- Iv2)/4}e - i(U(PK) + V(QK», 

(2.26) 

where 

AK = f.lKACM, f.lK = mK/mCM ' mCM = m I + m2, 

and 

(PI) + (P2 ) = (PCM )' 

f.lI(QI) +f.l2(Q2) = (QcM)' 

(2.27) 

(2.28) 

(2.29) 

The following information on the state of relative mo
tion is also available . 

Corollary 2.3: With the notation and assumptions of the 
theorem and with rPrel the restriction of rPo to .f<'f reI C .f<'f 0' we 
have that rPo is also a pure coherent state, and 

rPo = rPCM ® rPrel . (2.30) 

Note that (2.30) means physically thatthere are no cor
relations between the observables for the center of mass and 
those for the relative motion. 

The above three results follow directly from the non
commutative extension of the classical Cramer theorem ob
tained in Ref. 6, the essence of which, for the case of interest 
here, is captured in Lemma 4.1 below. 

III. THERMAL COHERENT STATES 

Let ~ be a classical ideal gas in canonical equilbrium at 
inverse temperature (3; its partition function Z and density 
function/are thus, by definition 

Z = J ... J dpl ... dPN dq, ... dqN 

xexp[ -(3H(PI>,,,,PN,ql, ... ,qN)]' (3.1) 

/(PI"",PN,ql,· .. ,qN) 

=Z-I exp [ -(3H(Pl"",PN,ql, ... ,qN)]' (3.2) 

with 
N 

H(PI"",PN,ql,· .. ,qN) = L HK(PK,qK) (3.3) 
K=I 

and, for K = I,2, ... ,N, 

(3.4) 

Suppose now that the center of mass of this ideal gas is ob
served to be distributed according to the canonical equilibri
um density of a harmonic oscillator, i.e, 

(3.5) 

with 
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HcM(PcM,qcM) = (1I2mcM)p~M +!kCMq~M' (3.6) 

ZCM = I I dPCM dqCM exp{ -PHcM(PcM,qcM)}' 

(3.7) 

It then follows, by repeated application of the classical 
Cramer theorem, that the situation described by (3.5)
(3.7) occurs if and only if the individual particles of the ideal 
gas are displaced harmonic oscillators, in equilibrium at the 
inverse temperature p. Specifically, one finds, for 
K= 1,2, ... ,N, 

HK = (1I2mK )(PK - (PK»2 +! kK (qK - (q,J )2, 
(3.8) 

with 
N 

2: mK =mCM , 
K=I 

N 

2: f.lKWK- 2 = WcJ, 
K=I 

N 

2: f.lK (qK) = 0 and 
K=I 

where 

f.lK = mKlmCM 

w; = kJmK and W~M = kCM ImCM . 

Note that 

W = W CM ' 'tIK = 1,2, ... ,N, 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14 ) 

is always a solution of (3.10) withf.lK defined by (3.12) and 
(3.9). Mathematically, this particular solution is character
ized by the condition that the independent, JR2-valued ran
dom variables 

(PK/i.K)' K = 1,2, ... ,N, 

defined by 

PK = f.lK- 112pK , 

qK =f.l!j2qK with qK =qK - (qK) 

be identically distributed, with density 

f(p,q) = (21T)-1 Pw:!~ 

(3.15 ) 

( 3.16) 

(3.17) 

Xexp[ -P((1/2mCM)p2+~kcMqZ)]. 
(3.18 ) 

Alternatively, this condition can be expressed by saying that 
for any pair KI =/=Kz of indices 1, 2, ... ,N, the two JRz-valued 
random variables 

CPCM;qCM) and (Prel,qrel) 

are statistically independent, where 

PCM = PK, + PK2' 

qCM =illqK, +il2qK" 

_ _ (1 1) Prel = mrel --PK, - --PK, , 
mKJ m K2 

qrel = qK, - qK, 

with 
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(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23) 

(3.24 ) 

mCM = mK , + mK2 , 

mrel = mK,mK,lmCM ' 

(3.25 ) 

(3.26) 

Physically, the condition (3.14) means thus that for every 
pair l:K, =/=l:K2 of oscillators in the gas one has 

H K, (PK, ,qK, ) + HK2 (PK, ,qK, ) 

= HCM (PCM,qcM) + Hrel cPrel,qrel)' (3.27) 

where HCM and H rel are harmonic oscillator Hamiltonians. 
Specifically 

(3.28) 

Hrel = (l/2mrel )Pre/ + ! krel qrel 2
, (3.29) 

where the masses mCM and mrel are defined in (3.25) and 
(3.26) and the oscillator strengths kCM and krel are given by 

kCMlmCM = W~M = W;el = krel/mrel' (3.30) 

The purpose of this section is to analyze the correspond
ing quantum situation. Let 

V: XElRt-+V(X)EJR 

be such that 

1 d Z 
H= _"z __ + Vex) 

2m dxz 

(3.31 ) 

(3.32) 

defines a self-adjoint operator in J¥" = y2(JR,dx) with 
exp ( - PH) oftrace class for all P> o. 

The density matrix 

p =Z-I exp( -PH) (3.33) 

with 

Z=Trexp( -PH) (3.34 ) 

is then interpreted as the canonical equilibrium state, at in
verse temperature p, of a quantum particle in the potential 
V. In particular, for a harmonic oscillator 

1 d Z 1 2 
H= -f!l--+-kx, (3.35) 

2m dX2 2 

the state 

t/J: BEf!iJ (J¥")f-+ Tr pBEC (3.36) 

is faithful and is uniquely determined by its restriction on the 
Weyl algebra; specifically, with P and Q defined as in (2.19 
and 2.20) one has4 

(t/J;exp[ - i(uP + vQ)]) 

= exp{ - S(Au2 +,.1, -V)/4}, 

where 

S =" coth(Pflw/2) 

A = mw with w2 = kim. 

(3.37) 

(3.38) 

(3.39) 

It is worthwhile for the sequel to note that (i) t/J is Gaussian; 
(ii) one recovers the classical result 

lim (P 2
) = lim SA 12 = mlP, 

fi-..fJ fi-..fJ (3.40) 

lim (Q2) = lim SA -1/2 = l/kP; 
fi-..fJ fi-..fJ 

and (iii) one recovers the low-temperature limit of Sec. II, 
namely, 
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lim (p 2)(Q2) = 1i2/4. (3.41) 
11-"" 

We therefore extend the definition of coherent states on the 
Weyl CCR algebra for one degree of freedom to include 
states that satisfy 

(tP;exp[ - i(uP + vQ)]) 

= exp{ - 8(AU2 +A -lv2)/4}e- i (u(P) +u(Q» (3.42) 

with 8/1i> 1; such states are pure coherent states (in the 
sense of Sec. II) if and only if 8/1i = 1, i.e., f3 = 00 in Eq. 
(3.38). The following result is stated for two-particle sys
tems although it extends trivially, as does its classical coun
terpart, to an n-particle system. 

Theorem 3.1: Let .J2fK (with K = 1,2,CM) be as in 
Theorem 2.1. For K = 1,2 let tPK be a state on .J2f K' and let 

tPO=tPl ® tP2 on .J2f 0=.J2f I ® .J2f 2' (3.43) 

Then the restriction tPCM of tPo to .J2f CM is a coherent state of 
the form 

(tPCM;exp[ - i(uPCM + VQCM)] 

= exp{ - 8 CM (ACM u2 

+ A cr-lv2 )/4}e - i(u(PCM ) + U(QCM», 

with 8 cM /Ii> 1 and ACM >0, (3.44) 

if and only if tPK (K = 1,2) are coherent states of the form 

(tPK;exp[ -i(uPK +VQK)]) 

= exp{ - 8 K (AKU2 + A K-IV2)/4} 

xexp[ - i(u(PK) + V(QK) n, 
with 8JIi> 1 and AK>O 

with the compatibility relations 

(PI) + (P2) = (PCM ), 

III (QI) + 1l2(Q2) = (QCM), 

8 1AI + 802 = 8 CMAcM , 

lli81A I-I + 1l~80 2-
1 = 8 CM A cJ, 

where 

(3.45 ) 

(3.46) 

(3.47) 

ILK = mK/mCM and mCM = ml + m2. (3.48) 

The physical meaning of the compatibility condition (3.47) 
is given by the following result. 

Scholium 3.2: With (3.43)-(3.46) taken into account, 
(3.47) is equivalent to 

«PI - (PI) )2) + «P2 - (P2) )2) 

= «PCM - (PCM »2), 

Ili «QI - (QI»2 + Il~ (Q2 - (Q2) )2) 

= «QCM - (QCM) )2), 

wherelll andll2 are given by (3.48) 

(3.49) 

Note that these results are in conformity with the classi
cal results; see in particle (3.9) and (3.10). 

The results of Sec. II ("low-temperature limit") are re
covered from (3.45) and (3.46) and the following conse
quence of (3.47). 

Scholium 3.3: With the notation of Theorem 3.1, the 
following two conditions are equivalent: 
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8 CM = Ii, 
for K = 1,2, 8 K = Ii and AK = IlKA. 

(3.50) 

(3.51) 

The following change of variables allows us to interpret 
our results in terms of canonical equilibrium states of har
monic oscillators, in particular in the nontrivial Corollary 
3.5. 

Scholium 3.4: With the notation of Theorem 3.1, there 
exist (for K = 1,2, CM) f3 Ke(O, 00] and wKe(O, 00 ) such that 

8 K = Ii coth(f3KwJ2), AK = mKwK. (3.52) 

Corollary 3.5: With the notations of Theorem 3.1 and 
Scholium 3.4 assume that 

f31=f32 f3e(O,oo), 

and 

either f3CM = f3 or WI = W2=W, 

Then 

WI = W2 = WCM and f31 =f32 = f3CM' 

and 

tPo = tPCM ® tPrel' 

where tPrel is the coherent state 

(tPrel;exp[ - i(uPrel + VQrel)]) 

with 

= exp{ - 8 rel (Arel u2 +A':;; IV2 )/4} 

xexp[ - i(u(Prel ) + V(Qrel»], 

8 rel = Ii coth(f3relwrel/2), 

Wrel = WCM , f3 rei = f3 CM, 

IV. PROOFS 

(3.53 ) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

The proofs of Theorem 2.1 and of its Corollaries 2.2 and 
2.3 follow directly from the introductory remarks presented 
in Sec. I-see in particular (1.5) and (1. 6) and (1. 9) and 
(1.1O)-and the next simple lemma, an analog of Lemma 2.2 
in Ref. 6. The reader interested in domain questions may 
consult Lemma 2.1 in Ref. 6. 

Lemma 4.1: With the notation and assumptions of 
Theorem 2.1, let (for K = 1,2) 1TK be the GNS representa
tion of .J2f K associated to tP K' let <I> K be the corresponding 
cyclic vector, and let 

PK=1TK(PK) - (PK), 

QK=1TK(QK) - (QK)' 

QK==QK + iA K-IPK' 

Then, for AK as in (2.27), one has 

0K<I>K = 0 (K = 1,2). 

Proof: Let1TK (K = 1,2,0) be the GNS representation of 
.J2fK associated with tPK' and let <l>K be the corresponding 
cyclic vector. Note that 

<1>0 = <1>1 ® <1>2' (4.1) 

Define 
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A 

PCM=1To(PCM) - (PCM )' 1l18 1wI +lllJ2W2 = 8 CM wCM' 

QCM =1T 0 (QCM ) - (QCM)' (4.2) 1l18 1Wi
l + 1l28 2W2 I = 8 CM wCJ, 

(4.14) 

aCM==QCM + iA C~PCM' 
and, for K = 1,2, 

with 

8 K =licoth (/3KWKI2) (K= 1,2,CM). 

In case we assume 

(4.15 ) 

PK=1TK(PK) - (PK), 

QK ==1T K ( QK) - (QK)' (4.3) /31=/32= /3CM /3E(O,oo), ( 4.16) 

aK==QK + iA K-IPK' 

where 

(PK)==(tPK;PK), (QK)=(tPK;QK)' 

AK IlKAcM' IlK==mJ(m l + m2)· (4.4) 

We then have 

aCM =lllal®I+1l2I®a2, (4.5) 

(<PKA<pK) = 0 (K = 1,2) (4.6) 

and, from the fact that tPCM is a pure coherent state, 

aCM<Po=O. (4.7) 

Upon inserting (4.5) and (4.7), taking the norm of the re
sulting expression, and taking (4.6) into account, we obtain 

Ili Ilal<PIW +Il~ Ila2<P2 W = 0 (4.8) 

and thus, since ilK > 0, 

aK<PK = 0 (K = 1,2). (4.9) 

This proves Lemma 4.1. 
The proof of (3.45) in Theorem (3.1) is a straightfor

ward application of the general quantum version of 
Cramer's Theorem established by one of US.

6
,7 The consis

tency relations (3.46)-(3.48) follow then by inspection, we 
replace PCM and QCM in (3.44) by their definition (2.20) 
and match then (3.44) and (3.45), taking into account 
(3.43). 

Scholium 3.2 follows immediately from (3.44), (3.45), 
and (1.2). 

Proof ofScholium 3.3: We multiply the two equations in 
(3.47) by one another to obtain 

(1l 18 1 + 1l28 2)2 

+ IlIll28182(AIA2) -I (1l01 -Il IA2)2 = 8~M' (4.10) 

From the facts that 8 CM = Ii, III +1l2 = 1, and 8 K>1i 
(K = 1,2), we conclude from (4.10) that 

8 K =1i (K=I,2) (4.11) 

and 

1l11AI =1l2-IA2' (4.12) 

Upon inserting (4.12) in the first (or the second) of the 
consistency relations (3.47), upon taking into account that 
III + 112 = 1 and that 8 1 = 8 2 = 8 CM ' we obtain 

(4.13 ) 

This completes the proof. 
Scholium 3.4 is only an adaptation of the change ofvari

abIes ( 1.14) to the situation now under consideration. Note 
that fJ K = 00 corresponds to the pure case e K = 1. 

Proof of Corollary 3.5: With the change of variables 
(3.52) the consistency relation (3.47) reads 
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it is useful to write the consistency equations (4.14) in the 
vector form 

IlIX(WI ) +1l2X(W2) =X(WCM)' 

with 

X(w )==(E (W») 
Sew) 

and 

E: WE(O,oo)t--MI coth(/3w/2)E(0, 00 ), 

s: WE(O,oo )t--MI- I coth(/3w/2)E(0, 00 ). 

( 4.17) 

(4.18 ) 

( 4.19) 

Upon noticing that S is bijective, we can use S as a variable, 
and define 

A 

E (S) =EOw (S) (4.20) 

and 
A 

X(s)=C;~») . (4.21 ) 

We then verify that 

d 2 ~ ds 2 .::.(S) >0, (4.22) 

i.e., that §: is strictly convex. As a consequence, the equation 

IlIX(SI) + IlzX(S2) = X(SCM)' 

where 

ilK >0 and III +1l2 = 1, 

admits a unique solution, namely, 

SI=S2=SCM' 

i.e., 

(4.23 ) 

(4.24) 

( 4.25) 

(4.26) 

We have thus proven the first part of (3.54) and (3.55). 
If we now assume 

/31=/32 /3E(O,oo] and wI =W2=WE(0,00), (4.27) 

we have 

8 1 = 8 2=8=1i coth(/3w/2) , 

so that (4.26) reduces to 

8w = 8 CM wCM ' 8w- 1 = 8 CM wCJ, 

(4.28) 

(4.29) 

from which we obtain, upon using (4.15) and (4.28), 

8 CM = 8, WCM = W, /3CM =/3. (4.30) 

We have thus proved (3.55). The remainder of the corollary 
follows then by straightforward inspection. Q.E.D. 
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Phase-integral formulas for Bessel functions and their relation to already 
existing asymptotic formulas 

Per Olof Froman, Finn Karlsson, and Staffan Yngve 
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The phase-integral method devised by Froman and Froman [N. Froman and P. O. Froman, 
JWKB Approximation, Contributions to the Theory (North-Holland, Amsterdam, 1965); Ann. 
Phys. (NY) 83, 103 (1974); Nuovo Cimento B 20,121 (1974); N. Froman, Ark. Fys. 32,541 
( 1966); Ann. Phys. (NY) 61, 451 (1970)], involving a general phase-integral approximation 
of arbitrary order, which is generated from an unspecified base function, is used for deriving 
first- and higher-order phase-integral formulas for Bessel functions. For different choices of the 
base function one thus obtains in a systematic way different kinds of asymptotic formulas. By 
series expansion of these formulas one obtains already existing asymptotic formulas presented 
is standard handbooks. The phase-integral formulas are seen to have certain advantages that 
those latter formulas do not possess. 

I. BACKGROUND 

Consider the differential equation 
d 2./, 

d; + R(z)¢ = 0, (1.1 ) 

where R (z) is an analytic function of z. For the approximate 
(but in general very accurate) solution of this differential 
equation one can use the phase-integral method developed 
by Froman and Froman. 1-5 For the advantages of this meth
od and its relation to the so-called WKB method we refer to 
papers by Dammert and P. O. Froman6 and by Froman and 
Froman.7 Briefly speaking one can say that the method con
sists first in the solution of the local problem, where one 
determines two linearly independent phase-integral func
tions, generated from an unspecified base function, that are 
approximate solutions of the differential equation, and sec
ond in the solution of the global problem, where one deter
mines the appropriate linear combinations of these phase
integral functions, which approximately represent the exact 
solution in various regions of the complex z plane. 

A. Phase-integral approximation of arbitrary order 
generated from an unspecified base function 

The phase-integral approximation to be described now 
was introduced in Ref. 4 and on pp. 126-131 in Ref. 5, and it 
was summarized in a somewhat more lucid way in Ref. 7. 

In the original differential equation (1.1) there appears 
no small parameter. One of the essential ideas behind the 
phase-integral approximation to be discussed now is the re
alization of how a "small" bookkeeping parameter can con
veniently be introduced in a flexible way. To this purpose we 
introduce an unspecified function Q(z), called the base func
tion, and write the function R (z) in the differential equation 
( 1.1 ) as the sum of the two functions Q 2 (z) and 
[R (z) - Q 2(Z)], of which Q 2(Z) is considered to be domi
nant in some sense. To account in an explicit way for this 
dominance we introduce a "small" parameter A, which will 
at the end be put equal to unity. Thus, instead of the original 
differential equation (1.1), we now consider the auxiliary 
differential equation 

~~ +(Q~~) + [R(Z)_Q2(Z)])¢=O, (1.2) 

whereA is a "small" bookkeeping parameter, and Q(z) is the 
so far unspecified base function. The functions R(z) and 
Q 2(Z) are assumed to be independent of A and to have such 
properties that the phase-integral solution of (1.2) remains 
valid when one puts A equal to unity. The choice of the base 
function Q(z) obviously determines how the "small" pa
rameter A appears in the auxiliary differential equation. By 
putting A = 1 in a solution of ( 1.2), one obviously obtains 
the corresponding solution of ( 1.1 ). 

The differential equation (1.2) has the two linearly in
dependent, approximate solutions 

¢=q-l/2(z)exp[ ±iw(z)], (1.3) 

where 

w(z) = r q(z)dz. (1.4 ) 

When the order of the approximation is 2N + I, the expres
sion for q(z) is 

N 

q(z) = I y(2n+l)Q(z)A 2n-l, 
n~O 

with (cf. Ref. 8) 

y(l) = I, 

y(3) =! Eo, 

y(5) = - k(~ + E2 ), 

y(7) = ~(2Co + 6EOE2 + 5Et + E4 ), 

y(9) = _ -ds(5E~ + 30~E2 + 50EoEt + 1OEOE4 

+ 28E1E3 + 19~ + E6 ), 

where 

( 1.5) 

( 1.6a) 

(1.6b) 

( 1.6c) 

( 1.6d) 

( 1.6e) 

E - R (z) - Q 2(Z) + Q -3/2(Z) ~ Q -1/2(Z) (1.7) 
0- Q2(Z) dz2 

and 

1 dE
IL

_ 1 
E =-----, f.L>1. 

IL Q(z) dz 
( 1.8) 
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For the usefulness and flexibility of the approximation now 
described it is very important that the base function Q(z) is 
unspecified and can be chosen in a way appropriate for the 
particular problem under consideration. For the particular 
choice Q(z) = R 1/2(Z) one obtains the special phase-inte
gral approximation of arbitrary order introduced by N. Fro
man.2

,3 In the applications in Sec. II we shall see how one can 
obtain approximations with different regions of validity by 
choosing the base function in different, appropriate ways. 

As regards the notations we remark that the function 
R(z) in (1.1), (1.2), and (1.7) was denoted by Q2(Z) in 
Refs. 1-6 and 8, the base function Q(z) in (1.2), (1.5), 

( 1. 7), and (1. 8) was denoted by Qrnod (z) in Refs. 4-6, and 
the quantities Y (2n + I) in (1.5) and ( 1.6a)-( 1.6e) were de
noted by Y2n in Refs. 2-8. Of these changes of notation th] 

first two are made in order to simplify the writing, while the 
third is made since in the present paper the notation Y2n is 
used for the Bessel function of the second kind and of the 
order 2n. 

To prepare for the applications to be made in Secs. II 
and III of the present paper we insert (1.5) into (1.4), get
ting 

N 
w(z) = L w(2n+I)(Z)A 2n - l, 

n~O 

where 

( 1.9) 

w(2n+l)(z) = r y(2n+I)Q(z)dz. (1.10) 

Inserting ( 1. 5) and ( 1. 9) into ( 1.3) and recalling ( 1. 6a), we 
get 

¢ = __ z_ L y(2n+ 1),,1 2n exp ± -.:.. L w(2n + 1),,1 2n 
[ 

Q( )] - 112( N ) - 1/2 ( . N ) 

A n~O A n=O 

= __ z_ exp - lW Z 1 + L Y (2n + 1),,1 2n exp ± -.:.. L w(2n + 1),,1 2n , 
[ 

Q( )] - 112 [ +' (I) ( )] (N ) - 112 ( • N ) 
A A n=1 An=1 

( 1.11) 

where (in the last member) N is assumed to be;> 1; the corresponding formula for N = 0 is obtained by leaving out the sums 
over n in (1.11). Using the power series expansion of the exponential function, one obtains for the product of the last two 
factors on the right-hand side of ( 1.11) the formula 

( 1 + i y(2n + 1),,1 2n) -112 exp( ± ~ i W(2n + 1),,1 2n) 
n~1 An~1 

= 1 ± iw(3)A _!( y(3) + [w(3)F)A 2 ± i(W(5) _! W(3)y(3) _ HW(3)P)A 3 

_ ~(y(5) _ H y(3)]2 + 2W(3)W(5) _ HW(3)]2y(3) _ -fi[W(3)]4)A 4 

± i(W(7) _! W(3)y(5) _! W(5)y(3) + iW(3) [ y(3)]2 _ HW(3)]2W(5) + -M W(3)Py(3) + -dr,[W(3)]5)A 5 

_!( y(7) _ ~y(3)y(5) + H y(3)P + 2W(3)W(7) + [W(5)]2 _ HW(3)]2y(5) 

_ W(3)W(5)y(3) + HW(3)F[ y(3)]2 _ HW(3)PW(5) + i4[W(3)]4y(3) + 1io[w(3)]6)A 6 + .... (1.12) 

In this formula, where we have assumed that N;>3, i.e., 
2N + 1;>7, the simple structure of the left-hand member 
should be compared to the complicated structure of the 
right-hand member (which appears in asymptotic expan
sions of conventional form). Furthermore, the Wronskian of 
the two linearly independent approximate solutions corre
sponding to the upper sign and the lower sign in (1.11) is 
constant, whereas the Wronskian of the corresponding ap
proximate solutions, obtained by using ( 1.12) with the series 
in the right-hand member truncated, is in general not con
stant. If one rewrites the expression in the left-hand member 
of ( 1.12) as the exponential function of a power series in A, 
that power series (which gives rise to the higher-order terms 
in the WKB expansion) would also have a complicated 
structure, and the Wronskian of the corresponding two lin
early independent approximate solutions (with the series 
truncated) would in general not be constant. The simple 
structure of the phase-integral solutions (1.11) thus stands 
out in contrast to the complicated structure of the usual 
asymptotic solutions and of the WKB solutions. This fact 
illuminates one of the advantages of the phase-integral ap
proximation. One of the other advantages is the presence of 
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the unspecified base function in the phase-integral approxi
mation and the freedom to choose this function convenient
ly; in the WKB approximation (of higher order) one has no 
such flexibility. 

For higher orders of approximation, i.e., when 
2N + 1 > 1, the function q (z) has singularities at the zeros of 
Q2(Z), and therefore we cannot choose the constant lower 
limit of integration in the definition (1.4) ofw(z) to be a 
zero of Q 2 (z). When Q 2 (z) has a simple zero, or more gener
ally a zero of odd order, it is instead convenient to express 
w(z) by means of a certain contour integral on a two-sheet 
Riemann surface on which q(z) is single valued. The two 
sheets of this Riemann surface are cut and joined appropri
ately along a line emerging from the zero of Q 2 (z). Calling 
this zero t, we thus define 

W(z) = J.. ( q(z)dz, 
2 J,,(Z) 

(1.13) 

where r, (z) is a contour of integration starting at the point 
corresponding to z but lying on the Riemann sheet adjacent 
to the complex z plane under consideration, encircling the 
point t in the negative or in the positive sense, and ending at 
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-1--------~~-------------------z 

(a) 

Complex z plane 

G ~(z) 
• z 

• 
(b) 

Complex z plane 

(e) 

v 
(d) 

FIG. 1. This figure refers to the case treated in Sec. II B, where the order v 
and the argument z are of the same order of magnitude and sufficiently 
large. (a) When v is positive, the behavior of the function (2.14), i.e., 
Q2(Z) = I - vir, is shown for real, positive values ofz. (b) and (c) Con
tour of integration r v (z) when z> v [(b)], and when 0 <z<v [(c)]. The 
part of the latter contour that lies on the Riemann sheet adjacent to the 
complex z plane under consideration is indicated by a broken line. The 
heavy line along the part of the real axis, wherez > v, indicates the cut neces
sary to make the base function Q(z) single valued. When the contour r v (z) 

in (b) is turned through the angle 1T in the positive sense around the point v, 
itgoesoverintothecontourr v(z) in (c). (d) The phase chosen for Q 1/2(Z) 

on the real axis to the left of v and on the upper lip of the cut along the anti
Stokes line emerging from z = v towards the right is indicated. 

the point z. Examples of such contours r t (z), with the point 
t ( = v) encircled in the negative sense, are shown in Fig. 
1 (b) and Fig. 1 (c). For the first-order approximation the 
contour r t (z) can be deformed to coincide with a line join
ing t andz, and hence w(z) is given by the integral (1.4) with 
t as the lower limit of integration. When R (z) and Q 2 (z) are 
real on the real z axis, the functions Y (2n + 1) are real there, 
and hence, on the real z axis, the function w(z), given by 
( 1.13 ) with t real, is (for any order of approximation) real in 
the interval where Q 2 (z) is positive (classically allowed re
gion in the generalized sense) but purely imaginary in the 
interval where Q 2 (z) is negative (classically forbidden re
gion in the generalized sense). Inserting (1.5) into (1.13), 
we obtain (1. 9) with 

2740 

w(2n+1)(z) =J... r y(2n+I)Q(z)dz. 
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(1.14) 

B. Connection formulas 

We shall now consider the particular global problem or 
connection problem associated with a well-isolated transi
tion point t [i.e., a point t where Q 2 (t) = 0] on the real axis, 
when R (z) and Q 2 (z) are real on this axis. Such a point t is 
called a generalized classical turning point. We assume w (z) 

to be given by (1.13), which is equivalent to (1.9) with 
(1.14). 

The connection formula for tracing (on the real z axis) 
an approximate solution across the generalized classical 
turning point t from the classically allowed region to the 
classically forbidden region is [cf. Eq. (20) in Ref. 3] 

Iq-1/2(Z) Icos[ Iw(z) 1+ r -1T/4) 

---+sin rlq-1/2(z) lexp[ Iw(z) I], (1.15) 

where r is a real constant subjected only to the restriction 
that sin r must not be too close to zero. 

The connection formula for tracing (on the real z axis) 
an approximate solution across the turning point t in the 
opposite direction, i.e., from the classically forbidden region 
to the classically allowed region is, in a somewhat simplified 
form [cf. Eqs. (21) and (22) in Ref. 3], 

Iq-1/2(z)lexp[ -lw(z)I] 

---+2Iq-1/2(Z)lcos[lw(z)I-1T/4]. (1.16) 

We emphasize the one-directional character of the con
nection formulas (1.15) and (1.16), which means that the 
tracing of a solution must always be made in the direction of 
the arrows in (1.15) and (1.16). 

The above connection formulas for the phase-integral 
approximation of arbitrary order, generated from an unspe
cified base function Q(z), are of the same form as the corre
sponding, well-known connection formulas for the first-or
der WKB approximation. Before the former connection 
formulas had actually been derived, it was, however, far 
from trivial that this important, simple fact should be true. 
In this connection we also remark that connection formulas 
for the WKB approximation of higher order have seldom 
been treated rigorously (cf., however, Ref. 9), although the 
corresponding first-order connection formulas have some
times uncritically been generalized with the hope that such a 
generalization is immediately possible. It is an important but 
far from trivial fact that this assumption can be shown to be 
true. 

II. PHASE-INTEGRAL FORMULAS FOR BESSEL 
FUNCTIONS 

In his preface to the Russian translation of Ref. 1, where 
a rigorous method for handling the connection problems as
sociated with the first-order WKB approximation was de
veloped, the editor of that translation, Professor A. A. Soko
lov, remarked that the authors did not include among the 
applications the highly interesting question of obtaining ap
proximations for special functions of mathematical physics 
with the aid of the WKB approximation, although the re
sults obtained in Ref. 1 apparently allow this to be done. 
Later the phase-integral approximation of arbitrary order 
generated from an unspecified base function was introduced 
in Refs. 4 and 5. This approximation, which has been briefly 

FrOman, Karlsson, and Yngve 2740 



                                                                                                                                    

described in Sec. I A of the present paper, is related to the 
WKB approximation of corresponding order, but it has 
nicer properties and is in higher order of simpler form; it is 
also very flexible, since the base function, from which it is 
generated, is a priori unspecified. Furthermore, the connec
tion problems can be handled by means of the method devel
oped in Ref. 1; thus one obtains the connection formulas 
presented in Sec. I B of the present paper. The applications 
suggested by Sokolov are still more promising when one 
uses, instead of the WKB approximation, the arbitrary-or
der approximation just mentioned, but very few such appli
cations have so far been made. In the present section we shall 
demonstrate the power of the approach in question for the 
application to Bessel functions. 

The general solution of the differential equation 

dlt/J +(1+ 1- V )t/J=0 (2.1) 
dil il 

is an arbitrary linear combination of the spherical Bessel 
functions (also called the Riccati-Bessel functions) 

t/JI = (! 1TZ) 1/1 Jv (z) (2.2a) 

and 

(2.2b) 

Jv (z) and Yv (z) being the usual Bessel functions of the first 
and second kind, respectively. 

Using the phase-integral approximation of arbitrary or
der generated from an unspecified base function, which has 
been described in Sec. I A, and the connection formulas, 
which have been presented in Sec. I B, we shall now obtain 
accurate phase-integral formulas for the Bessel functions. 
For the sake of simplicity we shall assume v and z to be 
positive. The phase-integral formulas to be derived in Sec. 
II A, which are valid when v is fixed and z is sufficiently 
large, are related to the usual asymptotic formulas for the 
Bessel functions; see Sec. III A. The phase-integral formulas 
to be derived in Sec. II B, which are valid when v and z are of 
the same order of magnitude and sufficiently large, and z 
does not lie too close to v, are related to Debye's asymptotic 
formulas for the Bessel functions; see Sec. III B. In Sec. II C 
phase-integral formulas are derived for the case of fixed ar
gument z and sufficiently large order v. These formulas are 
related to existing but not so well-known asymptotic formu
las; see Sec. III C. 

A. The case of fixed order and sufficiently large 
argument 

In the present subsection we shall assume v to be fixed 
(positive), whilez ( > v) is sufficiently large. To account for 
this assumption, we replace in the differential equation (2.1 ) 
z by z/A, where A is a "small," positive "bookkeeping" pa
rameter, which is introduced only to indicate in a formal way 
orders of magnitude, and which will at the end be put equal 
to unity. Thus we obtain from (2.1 ) the differential equation 

d It/J + (_1_ + 1 - v )t/J = 0, (2.3) 
dz2 ..1,1 Zl 

which reduces to (2.1) when A is put equal to unity. Choos
ing 
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(2.4) 

and 

(2.5) 

in (1.2), we obtain the differential equation (2.3). Inserting 
(2.4) and (2.5) into (1.7), we get Eo = (1- v)/il. Using 
this expression for Eo, choosing in agreement with (2.4) the 
base function to be 

Q(z) = 1, (2.6) 

and recalling the definition (1.8), we obtain 

_ ( - 1) Il( # + 1 )!q - v) (2.7) 
Ell - , #,>0. 

Zll + 1 

Inserting (2.7) into (1.6a)-( 1.6e), we get 

y(ln+\) =alnZ-ln, n,>O, 

where 

ao = 1, 

al = !(1- v), 
a4 = - M(l- V)l + 6(1- v»), 
a6 = M(l- V)3 + 28(1- V)l + 60(1- v»), 
as = - T!s(5(1- V)4 + 380(1- V)3 

+ 3228(1- V)l + 5040(1- v») . 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.ge) 

Inserting (2.6) and (2.8) into (1.10) with the constant low
er limit of integration chosen conveniently (different for 
n =Oandn>O), we obtain [cf. (2.9a)] 

wW(z) = aoZ = z, (2. lOa) 

w(2n + \) (z) = [aln/(l - 2n )]Zl - 2n, n,> 1. (2. lOb ) 

Recalling (2.2a) and the fact (cf. Ref. 10, p. 199) that 
(1Tz/2) 1/2 Jv (z) tends to cos(z - v1T/2 - 1T/4) as Z-+ + 00 

(for fixed v), we obtain with due regard to (1.11) and (2.6), 
when A is finally put equal to unity, the phase-integral for
mula of the (2N + 1 )th-order approximation 

( 
2 )112 ( N ) - 112 Jv(z) = - L y(ln+ \) 

1TZ n=O 

xcos( i W(2n + I)(Z) - (v +~).!!...) 
n=O 2 2 

( 
2 )1/2 (N ) - 112 

= -:;; 1 + n~1 y(2n+ I) 

xcos(z - (v +~).!!... + i w(2n+ \)(Z»), 
2 2 n= I 

z:>v, (2.11 ) 

where y(2n + I) and w(2n + I) are given by (2.8) and (2.lOa) 
and (2.lOb), respectively. Recalling (2.2b) and (cf. Ref. 10, 
p. 199) the behavior of (1Tz/2) 1/2 Yv (z) as z--+ + 00 (for 
fixed v), we similarly obtain a phase-integral formula for 
Yv (z) for fixed v and sufficiently large z: 

( 
2 )112 ( N ) - 112 

Yv(z) = -:;; n~o y(2n+ I) 

XSin( i W(2n+ \)(Z) - (v +~).!!...) 
n=O 2 2 
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( 
2 )112 (N ) - 112 

= -;;; l+n~ly(2n+\) 

XSin(z - (V +~) ~ + f W(2n+ I)(Z»), 
2 2 n= I 

z>v. (2.12) 

One obtains this formula from (2.11) by replacing there 
J" (z) by Y" (z) and cos by sin. In writing down the last 
members of (2.11) and (2.12) we have assumed that N> 1. 
One obtains the corresponding formulas for N = 0 by delet
ing the sums over n in the last members of (2.11 ) and (2.12). 

B. The case when the argument and the order are both 
sufficiently large 

In the present subsection we shall assume v and z to be 
sufficiently large (positive) and of comparable order of mag
nitude. To account for this assumption, we replace in the 
differential equation (2.1) vbyvlA. andzby zlA., where A. isa 
"small," positive parameter that will at the end be put equal 
to unity. Thus we obtain from (2.1) the differential equation 

d
2
¢ + (1 - vir + 1 )./, _ 0 (2.13) dr ...1. 2 4r If' - , 

which reduces to (2.1) when A. is put equal to unity. Choos
ing 

(2.14 ) 

and 
R(z) - Q2(Z) = 1I(4r) (2.15 ) 

in (1.2), we obtain the differential equation (2.13). When 
the functions in (1.2) are given by (2.14) and (2.15) with 
v:;60, the phase-integral approximation remains valid in the 
neighborhood of the origin z = 0 but breaks down in the 
neighborhood of the generalized turning point z = v. Insert
ing (2.14) and (2.15) into (1.7), we get 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

(2.16e) 

where the phase of the square root of 1 - vir is to be cho
sen in agreement with that of Q(z); see Fig. 1 (d). Inserting 
(2.16a)-(2.16e) into (1.6a)-( 1.6d), we get 
y(J) = 1, (2.17a) 
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y(3) = ± (2.17b) 

y(S) = _ 

(2.17c) 

(2.17d) 

where it is convenient to use the upper signs when z is real, 
positive, and larger than v and to use the lower signs when z 
is real, positive, and smaller than v. 

Consulting Fig. 1 (d) as regards the phase of the base 
function Q(z), we obtain from (2.14) 

{( I_VIz2)112 z>v 
Q~)= " 

i(vlr - 1)1/2, O<z<v, 
(2.18 ) 

the square roots in the right-hand member of (2.18) being 
positive. For w(z) it is, in the present subsection, convenient 
to use (1.9) with (1.14) for t=v. Inserting (2.17a)
(2.17d) and (2.18) into (1.14), we obtain 

WU)(z) = (r - v) 1/2 - v arccos ( viz) (> 0), z> v, 

iwU)(z) = v In[; + (~ _ 1)112] 

- (v-r)1/2 (>0), O<z<v, 

W(3)(Z) } _ 1 ( 1 v ) 
iW(3)(Z) = + ( ± 1 =F vlr)3/2 8z + 1~ , 

w(S)(z) } 1 (25 203v 
iw(S)(z) = ( ± 1 =F vlr)9/2 384~ + 320zS 

(2.19a) 

(2.19b) 

21v
4 

v
6

) + 80z7 - 360z9 ' (2.19c) 

w(7)(Z)} _ 1 (1073 21269v 
iw(7)(z) = + (± 1 =Fvlr)IS/2 5120zS + 3584z7 

14827v4 985v6 41~ 
+ l008z9 + 168z11 + 168z13 + v

lO 
) 

1260zls ' 
(2.19d) 

where the upper and lower expressions in the left-hand 
members and the upper and lower signs in the right-hand 
members in (2.19b)-(2.19d) apply for z>v and O<z<v, 
respectively. 

Introducing the positive quantity c by the definition 

_ {(rlv-1)-1/2, forz>v, 
c (2.20) 

- (l-rlv)-1/2, forO<z<v, 

we obtain from (2.18) 

{( C2 + 1)-1/2 forz>v 
Q(z) = ' , 

i(c2 - 1) -1/2, for 0 <z < v, 
(2.21) 

and we can rewrite (2.17a)-(2.17d) and (2.19a)-(2.19d) 
into the following alternative forms. 

Forz>v, 

y(I) = 1, 
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y(S) = _ (c4/128v4) (25 + 556c2 + 2078c4 

+ 2652c6 + 1105cs), 

y(7) = (c6/1024v6) (1073 + 51122c2 

+ 423 691c4 + 1361 42Oc6 + 2064 503cs 

+ 1490 85Oc IO + 414 125cI2 ); 

w(l) = v(1!c-arccotc) (>0), 

W(3) = - (c/v) (~+ f4 c2), 

w(S) = (c3/v) (fi4 + m c2 + ill c4 + tffi c6), 

w(7) = - (cs/v) (!m + ~ c2 + ~I c4 

+ ~C6 + sl1iW Cs + ~ c lO
). 

ForO<z<v, 

y(1) = 1, 

y(3)= _ (c2/8v)(1- 6c2 + 5c4), 

y(S) = _ (c4/128v4) (25 _ 556c2 

(2.22c) 

(2.22d) 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 

(2.24a) 

(2.24b) 

+ 2078c4 - 2652c6 + 1105cs), (2.24c) 

y(7) = _ (c6/1024v6) (1073 - 51 122c2 

+ 423 69lc4 - 1361 42Oc6 + 2064 503cs 

- 1490 85OcIO + 414 125cI2 ); (2.24d) 

iw(1) = - v(J.. _ J.. ln c + 1) (> 0), (2.25a) 
c 2 c-l 

iW(3) = - (c/v) (A - f4 c2), (2.25b) 

iw(S) = - (c3/v}(fi4-mc2+illc4_tffic6), (2.25c) 

iw(7) = - (cs/v)(!m _ ~C2 + ~I c4 

(2.25d) 

It is easily seen that (2.24a)-(2.24d) and (2.25a)-(2.25d) 
are obtained from (2.22a)-(2.22d) and (2.23a)-(2.23d), 
respectively, by the replacement of c by - ic. We also note 
that, when c is kept fixed, y(2n + I) is proportional to v- 2n, 
and w(2n + I) is proportional to Vi - 2n. 

Recalling how Jv (z) behaves when z is close to zero, we 
realize that in the classically forbidden region between the 
origin and the turning point v the function (2.2a) is given by 
the approximate formula 

""I =! Clq-I/2(z)lexp[ -lw(z)I], O<z<v, (2.26) 

where w (z) is given by ( 1.13) with t = v, IL is to be put equal 
to unity, and C is a not yet determined quantity, which is 
independent of z. Since the function ""I defined by (2.2a) is 
positive immediately to the right of z = 0 when v is positive 
(which follows from its power series expansion), C is posi
tive. With the aid of the connection formula (1.16) we get 
the following approximate expression for ""Ion the real axis 
to the right of the turning point v: 

""I = C Iq-I/2(Z) Icos[ Iw(z) 1- 1T/4], z> v. (2.27) 

From the facts that the function ""I' defined by (2.2a), has 
the amplitude (1 - V /r) -1/4 for large positive values of z 
[see Eq. (7) on p. 229 in Ref. 10], that v is assumed to be 
sufficiently large, and that the constant C is positive, we ob-
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tain the aid of (2.27) with (1.5), (2.18), (2.20), and 
(2.22a)-(2.22d) for IL = 1 

C = 1. (2.28) 

The function ""2' defined by (2.2b), has also the ampli
tude (1 - v/r)-1/4forlargepositivevaluesofzbuthasthe 
asymptotic phase shifted by - 1T/2 from that of ""I; see Eq. 
(7) on p. 229 in Ref. 10. Hence we obtain from (2.27) and 
(2.28) the approximate formula 

""2 = Iq-I/Z(z)lcos[lw(z)l- 31T/4], z>v. (2.29) 

Using the connection formula (1.15), we obtain from (2.29) 
the approximate formula 

""z = -lq-I/Z(z)lexp[lw(z)I], O<z<v. (2.30) 

Recalling (1.5) and (1.9) with A = 1, and taking the 
phases of Q(z) and w(1)(z) into account, we obtain from 
(2.26), (2.27), (2.28), (2.29), and (2.30) approximate for
mulas for ""I and ""Z, which, with the aid of (2.2a) and 
(2.2b), yield 

( 
2 )1I2( N ) - 112 Jv (z) = - Q(z) L y(2n + I) 

1TZ n=O 

x cos( f W(2n + I) (Z) - !!...), Z> v, (2.31a) 
n=O 4 

Jv(Z)=J..(~)1I2(_iQ(Z) f Y(2n+I))-1I
2 

2 1TZ n=O 

X exp( - ntoiw(2n+I)(z»). O<z<v, (2.31b) 

yv(Z)=(~)1I2(Q(Z) f Y(2n+I»)-112 
1TZ n=O 

X sin( f w(2n + I) (z) - !!...), z> v, (2.32a) 
n=O 4 

Yv(z) = - (! )'/2( _ iQ(z) nto y(2n+ I)) -1/2 

xexpCto iW(2n + I)(Z»). O<Z<V, (2.32b) 

The quantities Q(z), y(2n+l), and w(2n+1) in (2.31a), 
(2.31b), (2.32a),and (2.32b) are given by (2.18), (2.17a)
(2.17d), and (2.19a)-(2.19d), respectively. Alternative ex
pressions, in terms of the positive quantity c defined by 
(2.20), for y(2n + I) and w(2n + I) are (2.22a)-(2.22d) and 
(2.23a)-(2.23d) when z> v and (2.24a)-(2.24d) and 
(2.25a)-(2.25d) when O<z<v; see also (2.21). 

We have thus, by means of the phase-integral approxi
mation generated from a conveniently chosen base function, 
derived approximate formulas for Bessel functions when 
their order v and their argument z are both sufficiently large 
and of the same order of magnitude. The formulas are, how
ever, not valid when z lies too close to v. 

Recalling that in the present subsection z and v are both 
assumed to be sufficiently large, we now introduce the 
further assumption that z>v. Assuming that N> 0, we then 
expand Q(z) l:~ = 0 y(2n + I) and l:~ = ow(2n + I) (z) in powers 
of v /z, keeping in the former function powers up to 2N and in 
the latter function powers up to 2N - 1. The formulas one 
obtains by inserting these truncated power series expansions 
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into (2.31a) and (2.32a) are identical to (2.11) and (2.12), 
respectively, with y(2n+ I) and w(2n+ I)(z) given by (2.S) 
and by (2.lOa) and (2.lOb). When z and v are both suffi
ciently large, and furthermore, z>v, (2.31a) and (2.32a) 
should be more accurate than (2.11) and (2.12), and this 
expectation is confirmed by numerical tests. 

C. The case of fixed argument and sufficiently large 
order 

In the present subsection we shall assume z (positive) to 
be fixed, while v ( >z) is sufficiently large. To account for 
this assumption, we replace in the differential equation (2.1 ) 
v by ViA, where A is a "small," positive parameter, which 
will at the end be put equal to unity. Thus we obtain from 
(2.1) the differential equation 

d
2

1/1 (V/Z2 1 ) -+ ---+ 1 +-1/1=0 
d~ A2 4~ , 

(2.33) 

which reduces to (2.1) when A is put equal to unity. Choos
ing 

Q2(Z) = _ V/Z2 (2.34) 

and 

R(z) - Q2(Z) = 1 + l/(4Z2) (2.35) 

in (1.2), we obtain the differential equation (2.33). When 
the functions in (1.2) are given by (2.34) and (2.35) with 
v#O, the phase-integral approximation remains valid in the 
neighborhood of the origin z = O. Inserting (2.34) and 
(2.35) into (1.7), we get Eo = - ~/V. Using this expres
sion for Eo, choosing in agreement with (2.34) the base func
tion to be 

Q(z) = iv/z, 

and recalling the definition (1. S), we obtain 

EI' = 2I'Z2/(iV) 1'+2, /-l;;'0. 

Inserting (2.37) into (1.6a)-( 1.6e), we get 
yO) = 1, 

y(3) = _~ 
2V' 

4 24 
yes) = _ z +z 

Sv4 

(2.36) 

(2.37) 

(2.3Sa) 

(2.3Sb) 

(2.3Sc) 
I 

y(7) = _ S~ + 22z4 +Z6 
16v6 ' 

(2.3Sd) 

64z2 + 912z4 + 320z6 + 5z8 
y(9) = _ (2.3Se) 

12Sv8 

Inserting (2.36) and (2.3Sa)-(2.3Se) into (1.10), where 
the integration constant is chosen conveniently (different 
for n = 0 and n > 0), we obtain 

iw(1) = In( l/zV) , (2.39a) 

• (3) Z2 
lW =-

4v' 

. (s) S~ +Z4 
lW = , 

32v3 

iW(7) = 24~ + 33z
4 + Z6 

96v 

(2.39b) 

(2.39c) 

(2.39d) 

iW(9) = 76Sz
2 

+ 5472z
4 

+ 12S0z
6 

+ 15zB . (2.3ge) 
3072v7 

According to (2.3Sb)-(2.3Se) and (2.39b)-(2.3ge) 
y (2n + I) and w(2n + I) tend to zero as z tends to zero when 
n > O. Recalling (1.11), (2.2a) and (2.2b), and the beha
viors of Jv (z) and Yv (z) for sufficiently small values of z, 
and using (2.36) and (2.39a), we therefore obtain (for 
N;;. 1) the phase-integral formulas 

Jv(z) = ZV (1 + f y(2n+ I») -112 
rr(v+l) n=1 

xexPC~1 - iW(2n+ I)(Z») , (2.40a) 

Yv(z) = - rr<:) (1+ f Y(2n+I))-1I2 
1TZ n=1 

(2.40b) 

where y(2n + I) and iw(2n + I) (z) are to be obtained from 
(2.3Sb)-(2.3Se) and (2.39b)-(2.3ge). In writing (2.40a) 
and (2.40b) we have assumed that N;;. 1. The corresponding 
formulas for N = 0 are obtained from (2.40a) and (2.40b) 
by leaving out the sums over n (;;. 1 ). The additive part of 
Yv (z), which, for integer values of v, has a branch point at 
z = 0, does not appear in (2.40b), since the corresponding 
contribution to Yv (z) is not significant in that approximate 
formula. 

III. ASYMPTOTIC FORMULAS OF CONVENTIONAL FORM FOR BESSEL FUNCTIONS 

In the present section we shall use (1.12) to rewrite the phase-integral formulas obtained in Sec.II into asymptotic 
formulas of conventional form. 

A. The case of fixed order and sufficiently large argument 

From (2.11) and (2.12) we easily obtain the formulas 

Jv (z) = (:z y/2[ (1 + n~1 y(2n + I)) -112 cosCtl W(2n+ t)(Z») cos(z _ (v ~ P1T) 

-(1 + n~t Y(2n+1))-1I2 sinctt w(2n+I)(z»)sin(z- (V~V1T)], (3.1 ) 

2744 J. Math. Phys., Vol. 27, No. 11, November 1986 FrOman, Karlsson, and Yngve 2744 



                                                                                                                                    

Yy(z) = (! )1I2[ (1 + n~1 y(2n+ I)) -112 sinC~1 W(2n+ Il(Z») cos(z _ (V ~ !)1T) 

+(1 + ntl Y(2n+1))-1I2 cosCtl w(2n+ll(z»)sin(z- (V~P1T)l 

Inserting (2.8) and (2.lOb) with (2.9a)-(2.9c) into (1.12) with A. = 1, we obtain for N>2 

(1 + ntl Y(2n+1))-1I2 exp( ±i ntl w(2n+ll) 

(3.2) 

-1 ~ r(v+l+!) __ 1_ r(v+2+p __ i_ r(v+3+!) +_1_ r(v+4+!) +.... (3.3) 
- ± 2z l!r(v - 1 +!) (2z)2 2tr(v - 2 +!) + (2z)3 3!r(v - 3 +!) (2z)4 4!r(v - 4 +!) -

Using the equations one obtains by taking the real and imaginary parts of (3.3), one can rewrite (3.1) and (3.2) to obtain the 
usual asymptotic expansions for J y (z) and Yy (z) for fixed order v and large argument z (see, e.g., p. 199 in Ref. 10): 

J () (2 )1I2[ ( V1T 1T)(1 r(v+2+~) 1 r(v+4+P 1 ) 
y z = 1TZ cos z-T-"4 - 2!r(v-2+!) (2z)2 + 4!r(v-4+!) (2z)4 - ... 

. ( V1T 1T)(r(V+l+ P 1 r(v+3+!) 1 )] 
-sm z-T-"4 l!r(v-l +!) 2z - 3tr(v-3+!) (2z)3 + ... , (3.4) 

y ( ) _ ( 2 )1I2[ . ( V1T 1T)(1 rev + 2 + V 1 + rev + 4 + PI) 
y z - 1TZ sm Z-T-"4 - 2!r(v-2+!) (2z)2 4!r(v-4+!> (2z)4 - ... 

+ ( V1T 1T)(r(v+l+ p 1 r(v+3+!) 1 )] 
cos z-T-"4 l!r(v-l +!) 2z - 3!r(v-3+p (2z)3 + .... (3.5) 

B. The case when the argument and the order are both sufficiently large (Debye's asymptotic formulas) 
Debye's asymptotic formulas for the Bessel functions were originally given in Ref. 11 and can be found, for instance, also 

on pp. 241-245 in Ref. 10, on p. XXXV in Ref. 12, and on pp. 130-134 and 382 in Ref. 13. It is also worth mentioning that in 
1817, i.e., almost a century before Debye, II Carlini 14 (see also Ref. 15) derived an approximate formula that, when expressed 
in terms of the Bessel function J y (5), when 5 ( < v) is proportional to v, is essentially equivalent to the next lowest order of the 
corresponding asymptotic formula derived by Debyell in a quite different way; see Ref. 16. 

A new, alternative derivation of Debye's asymptotic formulas is achieved by appropriate series expansion ofthe phase
integral formulas (2.31a) and (2.31b) and (2.32a) and (2.32b). To demonstrate this alternative way of deriving Debye's 
formula for J y (z) when z> v, we start from (2.31a) and obtain, when N> 1, the approximate formula 

J y (z) = (:Z) 112 Q -1/2(Z) [cos( w(l)(z) - :) (1 + ntl y(2n + I)) -112 cosCtl W(2n + I) (Z») 

-sin(W(l)(z) - :) (1 + ntl Y(2n+ll)-1I2 sinctl w(2n+1)(z»)], z>v. 

Inserting (2.22b)-(2.22d) and (2.23b)-(2.23d) into (1.12) with A. = 1, we obtain (when2N + 1>7) 

(1+ ntl Y(2n+I))-1I2 exp( ±intl w(2n+1)) 

(3.6) 

= 1 =+= i...£... (3 + 5~) -! (...£...)2 (81 + 462c2 + 385c4) ± ~ (...£...)3 (30375 + 369 603~ + 765 765c4 + 425 425c6
) 

24v 2 24v 30 24v 

+ _1_ (_C_)4 (4465125 + 94121 676c2 + 349 922 43Oc4 + 446185 74Oc6 + 185910 725c8
) 

120 24v 

=+= _i_ (_c_)S (1519035525 + 49 286 948 607c2 + 284 499 769 554c4 + 614135872 350c6 

840 24v 

+ 566098 157 625c8 + 188699385 875clO) 

- _1_ (_C_)6 (2757049477 875 + 127 577 298 354 75Oc2 + 1050760774457 901c4 
25200 24v 

+ 3369032068261 860c6 + 5104696716244 125c8 

+ 3685 299 006 138 750ClO + 1023694 168 371 875c 12 ) + .... (3.7) 

Taking the real and imaginary parts of (3.7), and inserting the resulting two formulas into (3.6), where now 2N + 1 is 
assumed to be > 7, and using also (2.20), (2.21), and (2.23a), we obtain 

2745 J. Math. Phys., Vol. 27, No. 11, November 1986 FrOman, Karlsson, and Yngve 2745 



                                                                                                                                    

Jv(z) = (~:r/2{[ 1- ~ (2:V r (81 + 462c
2 

+ 385c
4

) 

+ _1_ (_C_)4 (4465 125 + 94 121 676c2 + 349922 430c4 + 446 185 740c6 + 185910 725c8) 
120 24v 

__ 1_ (~)6 (2757049477875 + 127577 298 354 75Oc2 + 1050760 774 457 901c4 + 3369032068261 86Oc6 
25200 24v 

+ 5104 696 716 244125c8 + 3685 299006 138 75OcIO + 1023694168371 875c12) + ... ]COS[ VG - arceot C) - :] 

+ [_c_ (3 + 5c2) __ 1_ (_C_)3 (30375 + 369 603c2 + 765 765c4 + 425 425c6) 
24v 30 24v 

+ _1_ (_C_)5 (1519035525 + 49 286948 607c2 + 284499769 554c4 + 614135872 35Oc6 
840 24v 

+ 566098157 625c8 + 188699385 875clO) + ",]sin[ v( + -arccot c) - :]}, z> v. (3.8) 

This formula is equivalent to the formula (39a) with the definitions (38) and (39c) in Ref. 12. Since the asymptotic expansion 
ofYv (z) for large positive values ofvandz ( > v) differs from that ofJv (z) only in the shift of phase by - 1T/2 [see Eq. (7) on 
p. 229 in Ref. 10], one easily obtains from (3.8) an approximate formula for Yv (z) when z > v; this formula is equivalent to the 
formula (39b) with the definitions (38) and (39c) in Ref. 12. Analogously as we have for z> v obtained (3.8) from (2.31a), 
we can for 0 <z < v obtain corresponding approximate formulas for Jv (z) from (2.31b) and for Yv (z) from (2.32b); these 
formulas are equivalent to the formulas (4la) and (4lb), respectively, with the definitions (39c) and (40) in Ref. 12. 

The above derivation of Debye's asymptotic formulas is much simpler than the derivation by means of the method of 
steepest descents. In fact, it is a herculean task to obtain further terms in the expansion (3.8) with the method of steepest 
descents, whereas the amount of work is reasonable with the above derivation, if a desk calculator is used to obtain the 
numerical coefficients. 

C. The case of fixed argument of sufficiently large order 
Inserting (2.38b) and (2.38c) and (2.39b) and (2.39c) into (1.12) with A = 1, we obtain for N~2 

( 
N )-112 (N ) 1 + n~1 y(2n+l) exp ±i n~1 W(2n+l) 

Z2 8z2 + Z4 96r + 36z4 + Z6 1536z2 + 1344z4 + 96z6 + Z8 
=1+-+ + + + .... (3.9) 

- 4v 320 - 384v 6l44v4 -

Inserting then (3.9) into (2.40a) and (2.40b), we obtain 

Zv ( r 8r + Z4 96z2 + 36z4 + Z6 1536z2 + 1344z4 + 96z6 + Z8 ) 
J (z) = 1 - - + - + - ... 

" 2"r( v + 1) 4v 320 384v 6 1 44v4 ' 
(3.lOa) 

Y (z)= _ 2"r(v) (1+~ 8r+z4 96r + 36z
4

+Z6 1536z2 + 1344z
4 

+ 96z6+Z
8 

_ ... ). 
v 1TZv 4v + 320 + 384v + 6144v4 (3.lOb) 

These formulas can also be obtained from the power series 
expansion of Jv (z) and the corresponding series expansion 
of Y" (z), where the additive part of Yv (z), which for integer 
values of v, has a branch point at z = 0, is to be deleted, since 
it is not significant in the approximate formula (3.lOb). Us
ing Stirling's formula for evaluating the gamma functions in 
( 3 . lOa ) and (3 . lOb ), and keeping only the leading term in 
each one of these two formulas, we obtain 

Jv (z)::::: [l/(21TV) 112] (ez/2v)", 

Yv (z)::::: - (2/1TV)I/2(2v/ez)v. 

IV. CONCLUSIONS 

(3.lla) 

(3.11b) 

A great advantage of using the phase-integral method 
instead of the method of steepest descents for deriving 

2746 J. Math. Phys., Vol. 27, No. 11, November 1986 

tsymptotic formulas is that the amount of work is much 
reduced, so that higher-order terms are obtained compara
tivelyeasily. Furthermore, one can obtain different kinds of 
asymptotic formulas by choosing the base function in differ
ent ways. For every appropriate choice of the base function, 
it is possible to calculate two linearly independent approxi
mate solutions in a straightforward way and to handle the 
connection problems for these approximate solutions effi
ciently. We have illustrated this in Sec. II for Bessel func
tions under the assumption that v and z are both positive, but 
the treatment can be generalized to complex values of v and 
z. 

The phase-integral formulas of Sec. II have certain very 
important properties, which sometimes make these formulas 
more convenient than the conventional asymptotic formulas 
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of Sec. III. For corresponding order of approximation, the 
former formulas are much simpler than the latter ones. This 
is obviously seen when one compares the formulas in Sec. II 
with the correponding formulas in Sec. III. Furthermore, 
the phase-integral formulas of Sec. II have such a form that 
the two linearly independent functions "'1 and "'2 defined in 
(2.2a) and (2.2b) have a Wronskian that is exactly con
stant. This is an important property, which the asymptotic 
formulas of Sec. III in general do not possess. In fact, apart 
from the particular case when v is a half-integer number (!, 
~,~, ... ), the Wronskian of the functions "'1 and "'2 in (2.2a) 
and (2.2b) withJ,,(z) and Y,,(z) given by (3.4) and (3.5) is 
not constant, if the series are truncated in corresponding 
ways and higher-order contributions are included. Further
more, neither Debye's asymptotic formulas nor the formulas 
of Sec. III C have the property of exact constancy of the 
Wronskian of the functions "'1 and "'2 in higher orders of 
approximation. 

It should be pointed out that there are, however, situa
tions when the phase-integral formulas of Sec. II are less 
convenient than the conventional asymptotic formulas of 
Sec. III. Assume, for instance, that we have an integral with 
a Bessel function in the integrand. Sometimes it may then be 
possible to evaluate the integral analytically, if the conven
tional asymptotic formula for the Bessel function is used, 
while this may not be possible if the corresponding phase
integral formula is used. 

One can consider the phase-integral formula as a useful 
asymptotic representation of the function in question. When 
this representation is advantageous, one uses it directly, but 
when the corresponding asymptotic representation of con-
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ventional form is preferable, one goes over to it by using the 
expansion (1.12) with A = 1, as we have shown in Sec. III. 
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Rotation in cosmology: Comments on "Imparting rotation to a Bianchi type II 
space-time," by M. J. Rebouqas and J. B. S. d'Olival [J. Math. Phys. 27, 417 
(1986)] and similar papers 

Robert T. Jantzen 
Department of Mathematical Sciences, Villanova University, Villanova, Pennsylvania 19085 

(Received 19 March 1986; accepted for publication 4 June 1986) 

The aim of this paper is to clarify confusing notions of the word "rotation" as applied to 
cosmological solutions of metric theories of gravity, both in general and in the specific case 
addressed by the article in which these confusing notions have recently reappeared. 

Flat Minkowski space-time or open submanifolds of it 
may be sliced by a family of three-dimensional spacelike or
bits of three-dimensional subgroups of the Poincare group of 
Bianchi types I, III, V, VIIo, and VIIh;o'o and thus be made to 
appear as a spatially homogeneous Bianchi-type cosmologi
cal model. I Timelike congruences that are spatially homo
geneous with respect to any of the non-Abelian groups of this 
list (all but type I) are in general rotating congruences: they 
have nonzero vorticity. No one would correctly call Min
kowski space-time a rotating cosmology because of this fact, 
yet articles in the literature continue to do exactly this in 
similar circumstances. 

Rotation in cosmology can refer to one of two distinct 
notions that are often related. Either ( 1 ) the space-time pos
sesses an intrinsically defined timelike congruence with non
zero vorticity,2 or (2) a natural slicing exists in terms of 
which an orthonormal basis of eigenvectors of the extrinsic 
curvature necessarily rotates as one moves along the con
gruence normal to the slicing. 

The first idea is relevant to stationary space-times where 
rotation is usually first met in studying relativity; unfortu
nately intuition about this case is often extended to other 
situations where it is no longer appropriate. Nonstatic sta
tionary space-times possess a Killing vector field that is 
timelike on an open submanifold of the space-time and has 
nonzero vorticity, i.e., the corresponding one-form is not hy
persurface forming.2 On the other hand, perfect fluid filled 
space-times whose fluid velocity vector has nonzero vorti
city are often justifiably referred to as rotating cosmologies. 
In both cases the rotation refers to a component of the mo
tion along the congruence of the perpendicular projections 
of Lie dragged "connecting vectors" associated with the 
congruence relative to a Fermi-propagated triad of ortho
normal vectors spanning the local rest space relative to that 
congruence (a "nonrotating spatial frame"). 3,4 In the fam
ous Godel solution,5 which originally challenged people's 
ideas about rotation in relativity, the fluid velocity vector is a 
timelike Killing vector field, combining both of these possi
bilities into a single example. 

The second idea is relevant to space-times where a natu
ral slicing exists, since it refers to quantities defined not by 
the space-time but by a slicing of the space-time. A "Kasner 
frame6" could be defined as an orthogonal spatial frame con
sisting of eigenvectors of the extrinsic curvature relative to a 
particular slicing. The orthonormal frame obtained by nor-

malizing such a frame (a unit Kasner frame) can then be 
compared to an orthonormal spatial frame that is Fermi
propagated along the congruence of unit normals to the slic
ing. If the unit Kasner frame rotates relative to the nonrotat
ing spatial frame and is unique (nondegenerate 
eigenvalues), the slicing might be called a rotating slicing of 
the space-time. When the eigenvalues of the extrinsic curva
ture are degenerate, one may freeze out the rotational free
dom in the eigenvectors due to this degeneracy by minimiz
ing the square of the angular velocity vector, which describes 
the rotation. If the rotation is still nonzero, the term rotating 
slicing may again be used. 

Like rotating congruences, all space-times have such ro
tating slicings; for this to be significant the rotating slicing 
must be intrinsically defined by the space-time. Probably the 
best candidate for such a slicing is one for which the trace of 
the extrinsic curvature (Tr K), also called the mean extrin
sic curvature, is constant on each slice.7- 14 Such a slicing is 
referred to as a constant mean curvature slicing or a 
"Tr K = const" slicing, and in the case of vanishing mean 
curvature, a maximal slicing, and is a choice preferred by the 
simplifications that occur both in the initial value problem15 

and in geometric coordinate conditions. 16,17 A space-time 
with a synchronous spacelike singularity also has a unique 
slicing associated with the maximum lifetime function. 18.19 

For a nonstatic, stationary, axially symmetric space
time, an example of which is the Kerr rotating black hole,20 a 
unique maximal slicing21 exists consisting of the hypersur
faces orthogonal to the congruence of locally nonrotating 
observers.20-

23 Some thought shows that this slicing is a ro
tating slicing, suggesting that the idea of describing rotation 
of a space-time by an intrinsically defined slicing rather than 
a congruence is not unreasonable. 

Spatially homogeneous space-times have a natural con
stant mean curvature slicing by the family of spacelike orbits 
of the homogeneity group. When these space-times have an 
initial big bang or final big crunch singularity, this slicing 
coincides with the maximum lifetime slicing. It therefore 
makes sense to classify spatially homogeneous space-times 
as rotating or nonrotating according to the second sense us
ing the natural slicing. Such a space-time is rotating in this 
sense if one cannot diagonalize (for all time) the matrix of 
components of the spatial metric with respect to an invariant 
spatial frame that is comoving with the normal vector field 
to the natural slicing. This means that in orthogonal spatial 
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gauge (zero shift vector field), the invariant spatial frame 
cannot remain an orthogonal frame ifit is chosen so initially. 
If it does, the space-time is nonrotating, a term which is 
therefore synonymous with "diagonalizable" as used in the 
literature. 2 

All Bianchi types including Bianchi type I can be rotat
ing in this sense provided the source is general enough. For 
example, an electromagnetic Bianchi type I space-time will 
be rotating as long as the electric and magnetic field densities 
are not eigenvectors of the extrinsic curvature. As one might 
expect, all of the spatially homogeneous slicings of Mink ow
ski space-time are nonrotating. 

For a spatially homogeneous perfect fluid space-time 
both notions of rotation are relevant but not synonymous. If 
the fluid has nonzero vorticity, the natural slicing is neces
sarily rotating, but the converse is not true. For certain sym
metry types the slicing may be rotating without the fluid 
having nonzero vorticity. This is true of the class B "sym
metric case" models, which rotate in the Kasner frame sense 
even in vacuum but which do not admit a rotating fluid 
source. 

In the case of Bianchi type II space-times, a general ho
mogeneous perfect fluid has nonzero vorticity before one 
imposes the Einstein equations. If no other source is present 
with nonzero supermomentum, the degeneracy of the gravi
tational supermomentum components that occurs for Bian
chi type II, requires the single component of the fluid veloc
ity vector which is responsible for the vorticity to vanish. If 
one includes a general spatially homogeneous electromag
netic field as a source, one can have general values of the 
individual supermomenta of the fluid and the electromag
netic field while still satisfying the supermomentum con
straints and thus have a rotating fluid. Bianchi type I is the 
only symmetry type that cannot support a rotating fluid un
der any conditions. 

The form of the metric presented by Rebou<;as and d'O
lival is a locally rotationally symmetric (LRS) Bianchi type 
II metric with an LRS electromagnetic field. This is a mem
ber of a continuous family of exact nonrotating LRS Ein
stein-Maxwell solutions of Bianchi types I, II, VIII, and IX 
known as the Brill solution.24 The type VIII solution follows 
from the type IX solution by the Weyl unitary trick, which 
relates these two semisimple groups, while the type I and II 
solutions are obtained by Lie algebra contraction of the 
semisimple case. All of these may be obtained from Taub's 
original vacuum solutions25.26 by a "variation of param
eters" trick discussed for the semisimple case by Jantzen. 27 
One may easily write the structure constant tensor param
eters back into the equations of that discussion and thus ex
tend them to the type I and II cases. 

By introducing the new spatial coordinate 
x = x - S C -2A dt and defining WI = dx + y dz, the 
Rebou<;as--d'Olival metric takes the usual orthogonal gauge 
form 

_ ds2 = _ N 2 dt 2 + C 2(ivl)2 + B2(W2)2 + (W3)2) , 

N=Bmc n
, (m,n) = (1, -1), 

which is explicitly diagonal, where {WI,W
2
,W3} are time inde

pendent one-forms in the new spatial coordinates having the 
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same exterior derivative relations as the original one-forms. 
As originally noticed by Bonanos,28 different choices of 
(m,n) lead to different decouplings of the various equations 
determining Band C. The choices (m,n) = (2,1), (2, - 1), 
and (0, - 1) were made, respectively, by Taub,25 Brill,24 
and Misner26 for the type IX case. For the choice n = - 1, 
the vacuum zero cosmological constant equation 

O=Goo+R\=!(ROo-R\) , 

which is also valid for an LRS electromagnetic source and 
nonzero cosmological constant, decouples and provides a 
second-order equation for B alone which simplifies for 
m = 1, where the solution is B = (2/3)-1 cosh/3t, neglect
ing an integration constant associated with the origin of the 
time variable. (This equation is identical in the Bianchi type 
VIII and IX cases.) The vacuum zero cosmological constant 
equation 

O=R\+R\, 

also valid for an LRS electromagnetic source, then provides 
an easily integrated equation for the natural variable C (not 
the unnatural variable A) which has the solution 
C = r sech /3t. (This changes for the semisimple case.) The 
super-Hamiltonian constraint then relates the two param
eters /3 and r to the single conserved quantity determining 
the LRS electromagnetic energy-momentum tensor exactly 
as in the case (m,n) = (0, - 1) used by Misner. The same 
"variation of parameters" enables one to insert a stiff perfect 
fluid as well. 

The initial Rebou<;as--d'Olival ansatz 

-ds2 = _ (dt+Aw l )2+B2(W I )2+ (W2)2+ (W3)2) 

_B2(B2_A2)-ldt 2 + (B2_A2)2 

X (WI - C -2A dt)2 + B 2( (W2)2 + (W3)2) 

== - N 2 dt 2 + gab (Wa + Na dt) (Wb + N b dt) 

is motivated by the stationary case for which - (dt + AWl) 
is the covariant form of a Killing vector with nonzero vorti
city and is not particularly relevant to rotation in the nonsta
tionary case. It manifestly expresses the metric in an obvious 
orthonormal frame, which is tilted with respect to the slicing 
and expressed in coordinates that are comoving with respect 
to the timelike member of the frame. The above coordinate 
transformation to orthogonal gauge coordinates represents a 
translation of the group manifold that eliminates the non
zero shift vector field while leaving the restrictions of the 
spatial one-forms to the slicing unchanged. 

The above ansatz is a special case of a slightly more 
general ansatz introduced for the same LRS family of type I, 
II, VIII, and IX space-times by Bradley and Sviestens29 for 
the purpose of studying rotating imperfect fluids where one 
no longer has deterministic field equations. This form of the 
metric 

_ ds2 = _ (dt + AW I )2 + B 2(WI)2 

+D2(W2)2 + (W3)2) , 

dwa = n(a)wb 1\ we, n(2) = n(3) , 

where (a,h,c) is a cyclic permutation of ( 1,2,3) and n (0) are 
constants, may easily be reexpressed in lapse/shift form with 
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C Z =Bz -A 2: 

- dr = - B 2C- Z dt 2 + CZ(O)! - C-2A dt)2 

+ DZ(O)z)z + (0)3)Z) , 

= _BZC-ZdtZ+C Z«(ij!)2 + DZ((ijz)z + «(ij3)Z). 

The new one-forms Of' , defined by 

S=/k l
, e=NI=-C-zA, N Z=N3=0, 

kl = - n(Z)e3
z + n(3)e2

3 , (ija = S -lab (O)b + N b dt) , 

where eb
a is the matrix with whose only nonzero entry is a 

one in the ath row and b th column, satisfy the same exterior 
differential relations as the original one-forms and corre
spond to a new spatial frame which is comoving with the 
normal vector field to the homogeneous slicing. This shows 
the ansatz to be entirely equivalent to the usual orthogonal 
gauge form of the metric for this family of space-times. 

The velocity vector u for a perfect fluid must coincide 
with the normal vector field for this class of space-times. By 
choosing u to be a/at in the original coordinate system (a 
vector field that is tilted with respect to the normal as long as 
A is nonzero), one cannot satisfy the perfect fluid Einstein 
equations. However, one can impose a single condition on 
the Einstein tensor of this metric to be able to define an iso
tropic pressure and let the other independent components of 
the Einstein tensor determine a heat flow vector field. The 
original frame and coordinates then comove with the fluid 
velocity vector of this imperfect fluid, which has nonzero 
vorticity as long as An(3):;6:0. This procedure is entirely ad 
hoc and done only to investigate rotating fluids. One should 
not forget that these are more appropriately described as 
"nonsolutions" than as "solutions" of the Einstein equations 
in the usual sense in which the word "solution" is used. 

This ansatz was misunderstood by Gr0n30 who integrat
ed the Bradley-Sviestens equations in the vacuum type IX 
case with a positive cosmological constant to obtain an exact 
solution already found by Brill and Flaherty8 for the Misner 
choice of time corresponding to (m,n) = (0, - 1). (The 
same solution with a "variation of parameters" allows an 
electromagnetic source and extends to the other Bianchi 
types of the Brill family. The general vacuum type IX case 
with cosmological constant was studied qualitatively by Sir-
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ousse-Zia. 31) Then using the imperfect fluid vorticity for
mula, Gr0n claims the solution is rotating when in fact it is a 
vacuum solution which is nonrotating in every sense. 
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The general spherically symmetric dyonic solutions of vacuum Einstein equations compatible 
with a K-dimensional toroidal fiber structure in 4 + K dimensions are found. Solutions with no 
electric and/or magnetic charges can be obtained by suitable limiting procedures. 

I. INTRODUCTION 

In Kaluza-Klein theories, I we try to unify the gravita
tional interaction and the gauge interactions by considering 
only the gravitational interaction but in a higher-dimension
al manifold. This manifold is assumed to have the structure 
of a fiber bundle with a four-dimensional base manifold and 
a compact homogeneous fiber. Furthermore, the metric is 
assumed to have a special form compatible with the bundle 
structure and, when restricted to the fiber, to be invariant 
under the "internal" group G that acts on the fiber. The 
question then arises as to why nature chose such a (pseudo) 
Riemannian manifold rather than, say, a flat higher-dimen
sional Minkowski space. In particular, if one assumes that 
the Lagrangian governing the higher-dimensional gravity is 
the Einstein-Hilbert Lagrangian generalized to higher di
mensions, as the geometrical arguments would suggest, then 
it is natural to ask if there are any stationary points of the 
Lagrangian that display the characteristics of our ansatz. 
Moreover, those stationary points that cannot be continu
ously deformed to the trivial one, the higher-dimensional 
Minkowski space, are of particular interest. The monopole 
solution of the vacuum Einstein equation discovered by 80r
kin2 and by Gross-Perry3 is such an example in five dimen
sions. This solution has the special property of being regular 
everywhere. In five dimensions, the internal group G is nec
essarily Abelian. 

In this work, we shall investigate the general spherically 
symmetric dyonic solutions of vacuum Einstein equations 
under the Kaluza-Klein (KK) ansatz with an Abelian Lie 
group G. This may not be of direct physical relevance, how
ever, it is one of the simplest cases where one may analyze the 
predictions of classical KK theories in an analytical way. 
Moreover, in other works,4-6 we have pointed out the rela
tions of such systems to the nonlinear sigma models in two 
dimensions, which have received a lot of interest for other 
reasons. 

In a previous work,7 we found a Lax form for the field 
equations we are considering. A method of integrating these 
equations was outlined later.s Using the results of these 
works, we can express a general solution of our system in 
terms of parameters that satisfy nonlinear constraint equa
tions. The purpose of this work is to fill in the details and to 
solve the nonlinear constraint equations. The investigation 

of the various properties of the explicit solutions will be car
ried out in future works. 

In the next section, we review very briefly the previous 
work 7 following largely the same notation. In Sec. III, we 
show how to integrate the field equations and write out the 
explicit solutions in terms of constrained parameters. The 
constraint equations are solved in Sec. IV. The general solu
tions can then be expressed explicitly in terms of indepen
dent parameters. A brief discussion is given in the final sec
tion. 

II. FIELD EQUATIONS 

The metric of the (4 + K)-dimensional manifold is as
sumed to have the following form: 

g = gp,v (x)dx? ®dxv + <l>ab (x){Ja ® 0 b, 

where 

oa = dya + Ap, Q(x)dxP" a = 1, ... ,K, 

and 

gp,v (x)dx? dxv = exp(2'1'(r»)dt 2 

(1) 

(2) 

+ exp(2A(r»)d~ + ~ dO?, (3) 

pa(N) =gasin(O), patr=p(J(r), P;v =0, otherwise, 
(4) 

<l>ab (x) = (exp(2x(r)))ab' x(r) = Tr x(r). (5) 

The field equations are given by the vanishing of the Ricci 
tensor. The equation Rp,a = 0 can be integrated once to give 

<l>ab pb~ exp('I' + X + A) = Ca' (6) 

where the Ca are the integration constants. The vanishing of 
Rab , Rm R", and R(J(J gives 

= ~ (gagb exp('I' + X + A) - cach exp('I' + A - X»), 
(7) 

!!... (~exp('I' + X - A)'I") = ~ caca exp('I' + X - A), 
dr 2, 

(8) 
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!!.... (r exp('I1 + X - A») 
dr 

= exp('I1 + X + A) - 2~ g"ga exp('I1 + X + A), 

(9) 

i" - X' ('11' + A') + l.. Tr(<I>-IJr <l»2 = ~ ('11' + A'), 
4 r 

(10) 

where/, = df Idr, 

ga = <I> ab gh, ca = <l>abgb , <l>ac<I> cb = {jab' ( 11 ) 

and summation for repeated indices is implied. 
Let us change variables from r to z defined by the equa

tion 

dz = l.. exp(A - '11 - X). 
dr r (12) 

Combining Eqs. (8) and (9) and the trace of Eq. (7), we 
find 

~ ('11 + X + In r) = r exp(2'11 + 2X), (13) dr 
which can be integrated to give 

r exp(2'11 + 2X) = (k Isinh kZ)2, (14) 

where k is the integration constant. This equation gives the 
relation between rand z once '11 and X are known. Our solu
tion will express 'I1,X, and <I> as functions ofz. A andpa then 
follow from Eqs. (12) and (6), respectively. We find 

exp( - 2A) = (sinh kzlk) 2 ['V + X + k coth kZ]2. (15) 

Introducing the vielbein ea m for <I> so that 

<I> ab = ea meb m, 

we find that Eqs. (7)-(9) can be written as a single matrix 
equation8 

.iJ + [L,B] = 0, (16) 

where Band L are (K + 2) X (K + 2) matrices given as 

B=HG-IG+(G-IG)T], (17) 

L = HG -IG - (G -IG)T]. (18) 

The matrix G is an extension of the vielbein e and is defined 
by 

Go.o = exp('I1), GO•m = i( yTe)m' 

GO•k + I = W exp( - ('11 + X»), 

Ga.o = 0, Gam = ea m, Ga.k + I = iXa exp( - ('11 + X»), 

Gk + 1.0 = 0, Gk + I.m = 0, 

GK + I,K+ I = exp( - ('11 + X»), l<>;m, a<>;K, (19) 

where X, Yare column vectors and W is a scalar defined by 

X = <l>g exp(2('11 + X»), y = <I>-Ic exp(2'11), 

w = _XTy = - gT <l>Yexp(2('I1 + X»). (20) 

Note the use of matrix notations for <l>ab' g", and Ca' It fol
lows from Eq. (5) that det <I> = exp(2x) so that 

det G = 1. (21) 

From this and Eq. (17), we find that 

TrB=O. (22) 
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We still have to check that Eq. (to) is satisfied. One can 
show that it is equivalent to the equation 

TrB2=2k 2. (23) 

Since Tr B n are constants of motion, as follows from Eq. 
(16), Eq. (1 0) merely relates k 2 to other integration con
stants. Let the initial value of B be Bo. Since Bo is symmetric 
we can write 

Bo = KoHKo T, KoK l = 1, Ko = IKo I, (24) 

where H and I are diagonal, 

HOa = - !wa , 10,0 = Ik+ I,k+ I = - 1, 

Iaa = 1, otherwise, (25) 

where Ko is the complex conjugate of Ko. The condition on 
Ko is necessary to guarantee that the real and imaginary ele
ments of Bo appear in the proper places. Equations (22) and 
(23) become, respectively, 

L Wa = 0, L Wa 2 = 8k 2. (26) 
a a 

In the following section, we shall indicate how to inte
grate Eqs. (16)-(18). 

III. INTEGRATING FIELD EQUATIONS 

The integration of the field equations is based on a 
theorem known in the mathematical literature in a more 
general context. 9 For simplicity, we shall choose a gauge so 
that the vielbein e is upper triangular. Then G is also upper 
triangular. The theorem states that if 

Ko exp(zH) = S(z)K(z), (27) 

where S is upper triangular and K(z) satisfies the same con
straints as Ko, i.e., 

KKT = 1, K=IKI, 

then 

B(z) = K(z)HK(z) T, 

G(z) = GoS(z), 

(28) 

(29) 

(30) 

where Go is the initial value of G if the initial value of S, So is 
chosen to be identity. 

The proof of this theorem is quite simple and can be 
found in Ref. 8. 

This theorem reduces the integration of the field equa
tions to the problem of matrix decomposition. The required 
decomposition was carried out in the previous work. 8 It was 
also pointed out there that to find "gauge invariant" quanti
ties, Le., those independent of the choice of the extended 
vielbein G, such as the metric components <I> ab' there is no 
need to do the matrix decomposition. Indeed, from Eqs. 
(27) and (30), we find 

GG T = Uexp(2zH)U T, 

where 

U=GoKo' 

It is also convenient to introduce the matrix 

V = U exp(zH). 

(31) 

(32) 

(33) 

We shall denote the rows of U,Vby Ua,Va, respectively, 
and consider them as (K + 2)-dimensional vectors. 
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From the definitions of G in Eqs. (19) and (20) and 
using Eq. (31), we can express the metric components in 
terms of Vas follows: 

exp( - 2('1' + X» = I VK+ 11 2, (34) 

<l>ab = Va . Vb' (35) 

exp(2'1') = Iv12, (36) 

iXa = (Va' VK + I )/1 VK + I 12, (37) 

i(<I>Y)a = Va . Vo, (38) 

W = (Vo' VK + I )/IVK + I 12, (39) 

where a,b = 1, ... ,K and 

Va = Va -iXaVK+1, (40) 

Vo= Vo-WVK+1, (41 ) 
K 

V = Vo - i L yaVa. (42) 
a=1 

Similarly, if we take the inverse on both sides ofEq. (31), 
and define 

v· = (VT)-I, u· = (U T )-I, (43) 

then we can obtain alternate formulas to those presented in 
Eqs. (34 )-( 36). In particular, we have 

exp( - 2'1') = IV· 01 2, (44) 

(<I>-l)ab = V:. V:, 

- iYa = (V~ . V:)/I V~12, 

where 

V!'= V!,+iYaV~. 

(45) 

(46) 

(47) 

Let us observe that X, Y, and W are auxiliary variables 
that depend on the metric components through their defini
tions in Eq. (20). This has two consequences. First, Eq. (20) 
will give constraints among the initial data U. Next, since 
Eq. (20) involves only the first derivatives of X, Y, and w, the 
metric components will not depend on their initial values. 
This is also obvious from Eqs. (35) and (36). Weshallrefer 
to this as gauge degrees offreedom. More explicitly, the met
ric components are invariant under the following gauge 
transformations: 

Ua--+-Ua +ikaUK+I, a= 1, ... ,K, 
K 

Uo--+-Uo+i L k,aUa - (k,)K+IUK+ I, 
a=1 

(48) 

(49) 

where k a, k la, are arbitrary constant vectors of dimensions 
K and K + 1, respectively. 

The constraints following from Eq. (20) are the follow-
ing: 

K 

i L g"Van + (wn - a) VK+ I,n = 0, a = 1, ... ,K, (50) 
a=1 

K+I _ 
iCa Ivl2 + L Wn (Va )nvn = 0, a = 1, ... ,K, (51) 

n=O 
where a is a constant parameter. 

These constraints need only be satisfied at z = O. Equa
tions of motion will guarantee that they be satisfied at any z. 
This is also obvious from the explicit solutions (34)-(39). 
Finally, we have, following from Eqs. (21) and (32), 
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(det U)2 = 1. (52) 

In the following section, we shall show how to solve the 
constraint Eqs. (50)-(52) on the initial data U. 

IV. SOLVING CONSTRAINTS ON INITIAL DATA 

Let us begin with Eqs. (51). This equation can be writ
ten as 

- iCa = V~ . v/lvl2 

= Det( V~,VI"",VK + I )/Det(v,VI,· .. ,VK+ I) 

= Det( U~,UI,,,,,UK+ 1 )/Det( UO,U1'."'UK+ 1)' 
(53) 

where V~ is the (K + 2)-vector with the components 
Wn (Va)n and U~ is the (K + 2)-vector with the compo
nents Wn Uan . In the arguments of "Det," we have written 
out the rows of the determinant. To obtain the second equa
lity, we used the fact that v is orthogonal to VI'"'' VK + I . To 
obtain the last equality, we used Eq. (50), and factored out 
thezdependence. It follows from Eq. (53) that we can write 

K 

L YabUbn + i/3a UK+I,n -icaUon =WnUan ' a= 1, ... ,K, 
b=l 

(54) 

where Ya b and/3a are constants. 
Equations (50) and (54) can now be combined into a 

single matrix equation 

(Wn - y) utn = - iUonc, n = O, ... ,K + 1, 

where y is the (K + 1) X (K + 1) matrix 

(55) 

(56) 

and utn' care (K + 1 )-vectors with the components 

(Utn)a=Uan , (Utn)K+I=iUK+1,n' a=I, ... ,K, 
(57) 

(c)a = Ca, (C)K+ I = 0, (58) 

respectively. 
It is convenient to write 

K+I 
UOn = if" det(wn -y) = if" L wnK+I-mam(y), 

m=O 
(59) 

where the last equality defines am (Y). 
Using the Hamilton-Caley equation, 10 i.e., if 

P(A) = det(A - y), thenP(y) = 0, we can compute the in
verse of Wn - Y to get 

K 

(det(wn - y)j(wn - y)-I = L Wn K-mR m , 

m=O 
where Rm are the (K + 1) X (K + 1) matrices 

m 

Rm = L an (y)ym-n. 
n=O 

Defining the (K + 1)-vectors um by 

um (y,c) = Rmc 

and using Eqs. (55), (59) we obtain 
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K 

Uan=/n L WnK-m(Um)a, a=I, ... ,K, 
m=O 

K 

UK+I,n = -if" L WnK-m(Um)K+I' 
m=O 

Note that the matrix U can be decomposed as 

U=II/2. r.A. W·F.I- I/2, 

where I 1/2 and Fare diagonal matrices 

(63) 

(64) 

(65) 

(11/2)00 = i, (11/2) K + I,K + I = - i, (1112)aa = 1, 

Foo = ifo, FK+ I,K+ I = - ifK+ I' 

Faa =/a, a = 1, ... ,K; 

l' is the matrix 

roo = 1, rOa = l' aD = 0, 

rab = (jib-Ie)a, a,b = 1, ... ,K + 1; 

and A is upper triangular, and is given by 

Ai,i+j = aj (f), i,j = O, ... ,K + 1. 

Finally, W is the matrix 

Wij = (Wj)K-i+I, det W= A(wO,,,,,WK+I)' 

It is now trivial to find the determinant of U, we get 

det U = Cij.~/n) A(wo,""wK+ I )det r. 
The constraint equation (51) can be solved by 

K+I 
(Fnn)2 = bhn ( - l)n II ' (wn - wm )-1, 

m=O 

n = O,I, ... ,K + 1, 
K+I 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

II hn =l, hn>O ifwo>wl >'" >wK+1> (72) 
n=O 

where the superscript"'" in Eq. (71) means the term 
m = n is to be omitted and the constant b is given by 

b K + 2 = (det rrT)-1 (73) 

and is a function of f,c only. 
Computing VV T, we find 

(VVT)ij =Eij Aij/A, Eij=(11/2)jj(1I/2)jj' (74) 

where Aij is the determinant obtained from A(wO"",wK + I ) 
by replacing the first row of 

Wn K + I-+bhn Inn Pij (Wn )exp( - WnZ); 

P ij is the polynomial 
2K+2 

(75) 

p .. (w ) = ~ W 2K+2-na .. (76) 
IJ m L m 'J.n 

n=O 

with 

r l = max(O,n - K - 1), r2 = min(n,K + 1). (77) 

Similarly, we can compute V* V*T to get 

(V*V*T)ij =E*ijA*ij/A, E*ij = (1-1/2>U(1-1/2)jj' 

(78) 

where again A * ij is obtained from A by the replacement of its 
first row 

2754 J. Math. Phys., Vol. 27, No. 11, November 1986 

Wm K+ I-+b -Ih;;; IImmPt exp(wmz); 

P t is now given by 
K+I 

(79) 

Pt= L (r*A*)ir(r*A*)jsar(Dm)as(Dm)' (80) 
r.s=O 

where Dm is the (K + 1) X (K + 1) diagonal matrix ob
tained from the diagonal matrix D, Dnn = Wn, by deleting 
the mth row and column. The matrices 1'* rA * are defined 
similarly to V*,U*. Note that we have, from Eq. (26), 

al(Dm)=wm, a2(Dm ) = -4k2+wm2. (81) 

In general, ar (Dm) can be written as a polynomial in Wm 
with coefficients depending only on Tr D n. 

The components of the metric tensor then follow from 
Eqs. (34), (35), (44), and (45). We have 

exp( - 2('11 + X») = - AK+ I,K+ I/A, 

exp( - 2'11) = - A*o,o/A, 

(82) 

(83) 

<l>ab = (Aa,K+ I Ab,K+ 1- AabAK+ I,K+ I )/(AAK+ I,K+ I), 
(84) 

(<1>-1 lab = (A * O,a A *O,b - A * abA * 0,0)' (85) 

The remaining components exp( - 2A) follow from Eq, 
(15) and the electric fields pa (r) follows from Eq. (6). 

We have expressed the general solution of the field equa
tions in terms of f, ca , W n , and hn , which are related to the 
initial conditions. Here Wn and h n satisfy constraints that are 
trivial to solve. There are, however, still redundant param
eters due to the gauge degrees of freedom as expressed in 
Eqs. (48) and (49). Substituting these equations in Eq. 
(55), we find that the gauge transformations are equivalent 
to the following transformations on f: 

_ ( 1, 
Y-+ 

0, 
- k ) _ (1, 

1 Y 0, 
(86) 

where the vectors k a, (k ')i are gauge parameters that ap
pear in Eqs. (48) and (49). 

Let c* be an arbitrary K-vector that may depend only on 
Ca' Ff and is such that (C*)TC = 0. Then one can choose a 
gauge such that 

K 

Pa = 0, a = 0, L c.aYa b = - gh. 
a=1 

In this gauge, it is easy to see that 

det l' = aK (Y) (c· T . c)Det(c,yc, ... ,yK-lc ), 

aK+ 1 (f) =0, an(f) =an(y), n =0,1, ... ,K. 

(87) 

(88) 

(89) 

Since the gauge constraints [Eqs. (87)] are linear, it is easy 
to solve explicitly. However, as in the case of Wn ,hn, we may 
leave it here to preserve the symmetric appearance in the 
indices. 

Equations (82)-(85) represent our principal results. 
An application of these formulas to the six -dimensional case 
to obtain an explicit expression for all dyonic solutions can 
be found in Ref. 11. 

V. CONCLUDING REMARKS 

By adding 2K + 1 auxiliary variables, namely X, Y, and 
w, we have shown that the system of field equations for 
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(4 + K)-dimensional KK dyons is equivalent to a Toda 
type system9 based on the symmetric space SL(K + 2,R)/ 
SO(K,2). (Although pure imaginary quantities seem to ap
pear in our formulas, they can all be removed by conjugation 
with I 1/2.) In five dimensions (K = 1), it is well known that 
the group SOC 1,2) appears12 and SO(K,2) appears to be the 
proper generalization to higher dimensions. 

The fact that we have to add auxiliary variables means 
that the true physical system is a reduction of the corre
sponding Toda system. This reduction is carried out by alge
braic manipulations in this work. A more geometrical ap
proach will bring the symmetric aspects forward and may 
help in global analysis of the solutions. 

Our initial motivation is to look for regular dyonic solu
tions in higher dimensions. We have succeeded in obtaining 
an expression for the general solutions. The analysis of regu
larity, even around the origin, by examining the curvature 
scalars is quite tedious. We hope to reformulate the problem 
of regularity in the language of Toda flows and see if a more 
powerful method can be applied. This is still under investiga
tion. 

2755 J. Math. Phys., Vol. 27, No. 11, November 1986 

ACKNOWLEDGMENT 

This work is supported in part by a grant from the Na
tional Science Council, Taiwan, Republic of China, under 
Contract No. NSC74-0208-MOOI-15. 

lTh. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. K I, 
966 (1921); o. Klein, Z. Phys. 37, 895 (1926). 

2R. Sorkin, Phys. Rev. Lett. 51, 87 (1983). 
3D. J. Gross and M. J. Perry, Nucl. Phys. B 226,29 (1983). 
4S._C. Lee, Lett. Nuovo Cimento 44, 133 (1985). 
5S.-C. Lee, Phys. Lett. B 158, 413 (1985). 
·S.-C. Lee, Phys. Lett. B 164, 75 (1985). 
7S._C. Lee and S.-L. Lou, Lett. Nuovo Cimento 44,69 (1985). 
·S.-C. Lee, Class. Quantum Grav. 3, 373 (1986). 
9W. W. Symes, Invent. Math. 59, 13 (1980); Physica D 1, 339 (1980); R. 
Goodman and N. R. Wallach, Commun. Math. Phys. 83, 355 (1982); 94, 
177 (1984). 

lOp. R. Halmos, Finite-Dimensional Vector Spaces (Van Nostrand, New 
York, 1958), or other textbooks in linear algebra. 

IIS._L. Lou, Thesis, National Tsing Hua University, Hsinchu, Taiwan. 
l2A. Salam and J. Strathdee, Ann. Phys. (NY) 141,316 (1982). 

s. -C. Lee and S. -L. Lou 2755 



                                                                                                                                    

Wavelike solutions to the Einstein equations coupled to neutrino and gauge 
fields 

G. F. Torres del Castillo 
Departamento de Fisica Matematica, Instituto de Ciencias de la Universidad Aut6noma de Pueblo, Puebla, 
Mexico and Departamento de FIsica, Centro de Investigaci6n y de Estudios Avanzados del IPN, Apartado 
Postal 14-740, 07000 Mexico, D. F. Mexico 

(Received 14 April 1986; accepted for publication 18 June 1986) 

Starting from the plane-wave metric, solutions to the Einstein field equations coupled to a 
Weyl neutrino field and to a Yang-Mills field are found. These solutions can be superposed to 
yield a solution with both sources if the direct interaction between them is neglected. A 
solution to the coupled Einstein-Yang-Mills-Weyl equations that represents a multiplet of 
neutrino fields interacting with the gauge field and the gravitational field is also found. All 
these solutions contain arbitrary functions. 

I. INTRODUCTION 

In a previous paper,I some type D solutions to the Ein
stein field equations coupled to different sources were given 
which, in the gauge employed there, where the metric has a 
Kerr-Schild form, can be superposed in the sense that, neg
lecting any interaction between the matter fields, the form of 
the solution found for each of the matter fields in interaction 
with the space-time metric is unaltered by the presence of the 
other sources, while the structural function contained in the 
metric is the sum of the expressions corresponding to each 
source separately. Thus, in those cases, the indirect interac
tion between the matter fields via the space-time metric does 
not change the form of the solutions as expressed in the basis 
used. 

In the present paper a similar result is given starting 
from the plane-wave metric, which is a type N metric of the 
Kerr-Schild form, with a Weyl neutrino field and a Yang
Mills field as sources. We also give a solution of the coupled 
Einstein-Yang-Mills-Weyl equations, which represents a 
multiplet ofWeyl neutrino fields interacting with the gauge 
field. The limiting case where the gauge field is absent and 
there is only one neutrino field corresponds to a solution 
previously found by Audretsch and Graf,2 while when the 
Weyl neutrino fields are absent, the solution is a non-Abelian 
generalization (for an arbitrary gauge group) of the plane
wave solution of the Einstein-Maxwell equations found by 
Robinson.3 In the flat-space limit, this second limiting case 
corresponds to the non-Abelian plane wave found by Cole
man.4 We find that the gravitational field produced by a 
plane wave (Abelian or non-Abelian) can also be produced 
by a neutrino plane wave. 

The formalism used in this paper is mostly the null tet
rad formalism as presented in Ref. 5. We also make use of the 
spinor formalism; the necessary information concerning its 
connection with the null tetrad formalism is summarized 
here (see also Ref. 1). 

II. INTEGRATION OF THE FIELD EQUATIONS 

We shall assume that the metric of the space-time has 
the Kerr-Schild form 

g = 2 dt; dt + 2 du dv + 2h(k,., dx'" )2 , (la) 

where u and v are real coordinates, (; is a complex coordinate, 
and 7: denotes its complex conjugate, with the choice 

k,., dx'" = du (lb) 

and 

h = h({;,I,u) . (Ie) 

Writing g = gObeoeb = 2el e2 + 2e3e\ with 

el=d{;, e2 =dt, e3 =du, e4 =dv+hdu, (2) 

one finds that the tangent null tetrad aa, defined by 
eO (ab ) = 8:, is 

al = ar;, a2 = iJr, a3 = au - h av , 

a 
a4 = av = k'" ax!-' (3) 

and that the independent connection one-forms, which sa
tisfy deo = eb /\ rOb' are given by 

r 42 =o=r12 +r34 , r 3l (a lh)e3
• (4) 

Therefore, the curves defined by ({;,{;,u) = const, which 
have a4 as tangents, form a nonexpanding and nontwisting 
shear-free congruence of null geodesics. 

With respect to this tetrad, the nonvanishing indepen
dent components of the curvature areR313l = - al alh and 
R3132 = - al a2h. Hence if C(1)=2R3131 is different from 
zero the metric is of type N and a 4 defines a quadruple princi
pal null direction of the conformal curvature. The only non
vanishing component of the Ricci tensor Rob = R C obc is 
then given by 

R33=2ar;~h, (5) 

therefore, 

R,.,,, = ak,.,k" , (6) 

where u is a real-valued function. The metric ( 1) admits the 
Killing vector field av , which is covariantly constant. 

We now solve the field equations for the gravitational 
field represented by (1) coupled to a Weyl neutrino field and 
to a gauge field separately. 

A. Weyl neutrino field 

The Weyl neutrino equation-VABIJI A = 0 in spinor no
tation---<:an be written explicitly in terms of a null tetrad aa 
as 
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(a4 - r 421 + !(rI24 + r 344 »)'112 

- (a1 - !(rI21 + r 341 ) + r 314)'111 = 0, 

(a2 + r 423 + !(rI22 + r 342 »)'1'2 

+ (a3 - !(rI23 + r 343 ) - r 312)'1'1 = 0, 

(7) 

where rabe = rab (ac ) and'l'A denotes the components of 
the neutrino field. The energy-momentum tensor is 

Tab = (i1i/8) [ga AB('I' B Vb 'I' A - 'I' A Vb'llB) 

+gbAB('I'BVa'llA -'IIAVa'llB)] ' (8) 

where 'II A = 'I' A' g12i = g21i = - g32i = g4 1i =,fi, and all 
other ga AB are equal to zero. The covariant derivatives of'll A 
are obtained from 

Va'l'A =aa'l'A -WBA(aa)'I'B, 

with 

w\ = -W22 = !(r12 + r 34 ) , W12 = r 31 , W21 = - r 42 , 

and 

Va'l'A =aa'l'A -WBA(aa)'IIB, 

where 

WBA = "wB
A· 

In order to satisfy the Einstein field equations 

Rab - !Rgab = - 81TTab , (9) 

with Rab given in (6), we impose the condition '1'1 = 0, 
which implies, using (4) and (8), that T 44 = T42 = T22 = O. 
Then from Eqs. (4) and (7) it follows that 
a4'1'2 = a2'1'2 = 0, which implies that '1'2 = 'l'2(t,U), and 
from T31 = 0 we get '1'2 = 'l'2(U). Now, expressing '1'2 as 
'1'2 = Rei9

, with Rand B being real-valued functions of u, 
from Eqs. (5), (8), and (9) we find that 

r;\ -dB - -
h = - 2,/21T1iR 2t;- + /(t,u) + /(t,u) , 

du 
(10) 

where/is an arbitrary function. When B = const, with R =1= 0, 
'I' A is a ghost field and the space-time corresponds to the 
general plane fronted gravitational wave.6 

The neutrino field given by '1'1 = 0, '112 = '112 (u) has an 
energy-momentum tensor of the form T",,, = pk", k", with 
k", being proportional to its flux vector, which is analogous 
to that of an electromagnetic plane wave, but, in contrast 
with the electromagnetic case where p > 0, for the neutrino 
field p can be positive, negative, or zero, depending on the 
value of dB /du. This solution, together with the metric (I) 
and ( 10), was obtained previously in Ref. 2; in the flat space
time, corresponding to h = 0, it represents a plane wave. 

B. Yang-Mills field 

A gauge (Yang-Mills) field is described locally by a 
matrix-valued one-form, A = AI' dx"', which can be re
garded as defining a connection on a principal fiber bundle 
with a certain structure group G. The field strength 
F = VI''' dx'" 1\ dx" that corresponds to the curvature of the 
connection defined by A, is given by 

F=dA+HA,A], (11) 
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with the definition [A,A] = [A",,A,,] dx'" 1\ dx". The Yang
Mills equations are 

d"'F+ [A,"'F] = 41T"'j, (12) 

where "'F denotes the (Hodge) dual of the two-form F, 
[AI' dx"', !"'F.,.p dx'" I\dxP] = [A",d"'F"p ]dx'" I\dx" I\dxP,j 
is a matrix-valued one-form and "'j denotes its dual. The cur
rent one-formj is constructed out of the matter field interact
ing with the gauge field. If the gauge group G consists of 
unitary matrices, then A, F, andj are skew-Hermitian. 

The energy-momentum tensor of the Yang-Mills field is 

41TTab = - tr(FacFb c - AFcdFCdgab) , ( 13) 

where tr denotes the trace. In order to have all Tab = ° ex
cept for T33, as required by (5) and (9), F31 and F32 must be 
the only nonvanishing independent components of the field 
strength; then 

41TT33 = - 2 tr(F31F32 ) . (14) 

We shall assume that A 3 is the only nonvanishing component 
of A (in some specific gauge), then A =A3 du, and 
F = dA3l\du. From the condition F43 = 0 it follows thatA3 
must be a function of u, t, and t only. 

Defining the components of '" F by '" Fab = (i/2) 
X EabcdFcd ,with E1234 = 1, we get 

*F= - i a1A3e11\e3 + i a~3e2I\e3; 
therefore 

d"'F+ [A,*F] =2ia~a;A3e1I\e2I\e3 (15) 

[cf. Eq. (5)]. In the sourceless case (j = 0) from Eqs. (12) 
and (15) it follows thatA3 = y(t,u) + 8Ct,u), where yand 
8 are arbitrary matrix-valued functions. If the elements of G 
are unitary matrices, then A must be skew-Hermitian and, 
therefore,8 = - yt, where yt is the Hermitian adjoint of y. 
The Einstein field equations C 9) with C 5) and (14) give 

h = - 2tr yyt + / ct,u) + I (Iou) , (16) 

where/is an arbitrary function. 
The particular solution y(t,u) = cCu)t represents, in 

the flat space-time corresponding to h = 0, a non-Abelian 
plane wave.4 The gravitational field corresponding to this 
wave, according to (16) is determined by 

h= -2(trcct ){t+/(t,u)+1 (t,u) , (17) 

which is similar to the expression given by Eq. C 10). Thus, 
when dB /du > 0, the gravitational field given by Eq. (10) 
can be considered as produced by a neutrino field or by a 
plane wave, Abelian or non-Abelian. An analogous dual in
terpretation for the source of a gravitational field has been 
found in Ref. 1. 

III. SOLUTION OF THE EINSTEIN-YANG-MILL5-WEYL 
EQUATIONS 

It is easy to see that, expressed with respect to the tetrad 
(2) and (3), the fields 

A = [yct,u) + 8Ct,u) ]du, 

'1'1=0, 'l'2=R(u)expiB(u) , 

with 
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h = 2 tr(r15) - 2/itrliR 2~I ~~ + f(~,u) + f(I,u) , 

satisfy the Einstein-Yang-Mills-Weyl equations provided 
that any interaction between the Yang-Mills field and the 
Weyl field be neglected. This means that the perturbation of 
the space-time geometry produced by each of these matter 
fields does not change the expression ofthe other. This result 
is similar to that given in Ref. 1. 

In the present case we can also take into account the 
interaction between the Yang-Mills field and a multiplet of 
Weyl neutrino fields. Labeling with Latin indices, i,j, ... , the 
components with respect to a basis of the "internal space," a 
multiplet ofWeyl fields has components \IIA I that, interact
ing with a gauge field Aa = (A ~I)' satisfy the equation ob
tained from Eq. (7) by replacing aa byaa + Aa (regarding 
\II A as a column with entries \II A I ). Expression (8) must be 
modified by replacing Va \II A by Va \II A + Aa \II A and Va \II iJ 

by Va \II iJ - \II iJAa (regarding \II iJ as a row with entries \II iJ·) 

and placing the dotted components to the left of the undott~d 
ones. 

Assuming, as before, that \11/ = 0 and thatA 3 ¥=O only, 
one gets essentially the same equations as in Sec. II, which 
imply that \112

1 are (complex-valued) functions of ~ and u 
only. Then condition T3l = 0 requires that \IIil a~\II21 = 0 
(summed over i); thus, ·\IIi; \112

1 has to be a function of u only. 
The Weyl field multiplet acts as a source of both the gauge 
field and the gravitational field. The (matrix-valued) cur
rent one-form corresponding to the multiplet \II A I is given by 
·k • AB\TI \TI k a h . 
il = l€ga Y iJl Y A e ,were € IS a (real) coupling constant. 
[The value of € is already fixed by the normalization used in 
Eqs. (8), (12), and (13).] In the present case we have 

l = - /ii€\II i; \II /e3, 

therefore 

*l = - 6/i€\IIil \ll/e
l /l.e2 /l.e3, 

and from Eqs. (12) and ( 15) it follows that the gauge field is 
determined by 

a~ ~A3/ = 12/ii€\IIil\ll/ . 
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Then, from Eqs. (5), (8), (9), and (14), one finds that the 
solution of the Einstein equations is given by 

a~~h = 2 tr(a~A3) (~A3) 

+ /ii1m(\IIij au \11:1- \11:1 au \IIij + 2\11ijA3/\II/) . 

IV. CONCLUDING REMARKS 

We have shown that the metric considered in this paper 
is compatible with a Weyl neutrino field, with an electro
magnetic field, and with a Yang-Mills field. Furthermore, 
the effect produced by each of these fields on the metric of 
the space-time does not change the form of the other solu
tions. This is due to the fact that, with the proposed align
ment of the fields, the function h included in the metric does 
not appear in the expressions for these matter fields. The 
metric studied in Ref. 1 also has these properties; moreover, 
according to Ref. 6, these two metrics are the only ones that 
admit a ghos!Eeutrino field and, in the auxiliary Minkowski 
metric 2 d~ d; + 2 du du, the corresponding geodesic shear
free null congruences defined by kp [see Eq. (la)] consti
tute geometric representations oftwistors (see, e.g., Refs. 7 
and 8). 
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In general relativity there is a well-defined prescription for defining a quantity that represents 
the radiated energy of an exact, asymptotically flat solution of Einstein's equation. This 
quantity is called the Bondi energy flux. However, in linearized gravity off a stationary and 
asymptotically flat background, the second-order Einstein tensor has been used as a stress
energy tensor for the perturbed gravitational field, enabling one to calculate the energy 
radiated away in gravitational radiation. It is natural to ask how this method compares to the 
exact method for calculating the Bondi energy flux. In this paper, it is shown that if the metric 
perturbation satisfies certain falloff and gauge conditions, then the radiated energy calculated 
using the second-order Einstein tensor equals the second-order contribution to the Bondi 
energy flux associated with the perturbation. As an application, the second-order Einstein 
tensor is used to demonstrate gravitational superradiance from a Kerr black hole. Also, the 
Appendix contains a theorem that makes precise the notion that ifV(aSb) and its derivative is 
"small," then Sa is close to a Killing field. 

I. INTRODUCTION 

For asymptotically flat space-times there is available a 
natural, well-defined prescription for calculating the total 
energy carried off in gravitational radiation. We call this 
prescription the Bondi prescription and the energy carried 
off in gravitational radiation is called the total Bondi energy 
flux. 1 The Bondi prescription is natural in the sense that no 
additional geometric structures, other than those present for 
all asymptotically flat spaces, must be introduced on the 
space-time to define the procedure. The Bondi prescription 
is also satisfying in the sense that the Bondi energy flux is 
equal to the change in the Bondi mass of the system. In prac
tice, however, the Bondi energy flux is difficult to calculate. 
This is because the Bondi energy flux is defined as an integral 
over f+, the future null boundary of the space-time. If one 
wants to calculate the Bondi energy flux given a certain as
ymptotically flat solution of Einstein's equation, he must 
first perform the tedious process of constructing the mani
fold f+ and its relevant fields before the integral may be 
evaluated. 

A different method has been proposed to calculate the 
energy contained in gravitational waves that employs the 
Landau-Lifshitz complex. In a suitable coordinate system 
this method has been shown to agree with the Bondi pre
scription. 2 

In this paper we propose another method for calculating 
the total energy flux in gravitational radiation, which we call 
the second-order Einstein method. This method is defined in 
connection with linearized perturbations off a stationary as
ymptotically flat background. The idea is the following. To 
any solution rab of the linearized Einstein equation we asso
ciate a divergence-free, symmetric tensor field G(2)[red lab 
called the second-order Einstein tensor, defined by 

G (2) [] 1 d 2 G [ A red ab = 2" dA 2 ged + red] ab I A. = 0' (1.1) 

where G [g cd + A red lab is the Einstein tensor for the metric 
gab + Arab' We formally treat - 81TG(2)[red lab as ifit were 
a stress-energy tensor for the field r ab' The total radiated 
energy flux, denoted ;-[ rab l, is now calculated by contract
ing the timelike Killing field into - 81TG (2) [ red lab and inte
grating the resulting mass-energy current over a timelike 
three-surface surrounding the source of the gravitational ra
diation. This method has been used3.4 to calculate the energy 
flux associated with linearized gravitational waves on a Min
kowski background. 

The main goals of this paper are to define rigorously the 
second-order Einstein method and to demonstrate that, un
der suitable conditions, the energy flux calculated with this 
method equals the second-order contribution to the total 
Bondi flux. With these goals in mind, we begin in Sec. II with 
a review of the mathematical machinery needed to define the 
total Bondi energy flux. 

In Sec. III we discuss some properties of the second
order Einstein tensor and define the second-order Einstein 
method for perturbations off a stationary asymptotically flat 
background. One problem that arises in using the second
order Einstein tensor as a stress-energy tensor for the pertur
bation rab is that it is gauge dependent. That is, two different 
metric perturbations, r ab and r' ab , which differ by a symme
trized derivative of a covector field, generally produce differ
ent second-order Einstein tensors. Hence, it is possible that 
;- [ r ab 1 will not equal ;-[ r' ab 1 even though r ab and r' ab rep
resent the same physical situation. This threatens to destroy 
the uniqueness of the second-order Einstein method. How
ever, in Sec. III we show that if one restricts attention to 
perturbations that satisfy a certain set of falloff conditions, 
called the weak falloff conditions, then the second-order 
Einstein method is unique. Roughly, the weak falloff condi
tions require rab, in a neighborhood of null infinity, to van
ish identically in the past of some spacelike slice and it and its 
first and second derivatives are required to approach zero in 
the future of the slice. 
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While imposing the weak falloff conditions on r ab is 
enough to insure that the second-order Einstein method is 
gauge invariant, an additional restriction is imposed on rab 
in Sec. IV in order to prove that the radiated energy calculat
ed using the second-order Einstein method equals the sec
ond-order contribution to the total Bondi energy flux, de
noted E (2) [ r ab ]. This restriction requires r ab to be gauge 
related to some perturbation r' ab that is in the Geroch
Xanthopoulos gauge and satisfies a strengthened set of 
falloff conditions. These strengthened falloff conditions, 
which imply the weak falloff conditions, apply to the confor
mally related perturbation r' ab = n2y' ab' which is defined 
on the "unphysical" conformally related space-time used to 
defined the asymptotic flatness of the background space
time, where n is the conformal factor. The Geroch-Xantho
poulos gauge choice requires certain components of r' ab to 
fallofftozeroonf+ liken, n 2, andn3

• GerochandXanth
opoulos5 have shown that any perturbation satisfying the 
weak falloff conditions can be brought into the Geroch
Xanthopoulos gauge through a gauge transformation. How
ever, it is not clear when a perturbation satisfying the weak 
falloff conditions is gauge related to a r' ab that satisfies both 
the Geroch-Xanthopoulos gauge conditions and the 
strengthened falloff conditions; therefore we impose this re
striction on rab in the hypothesis of our theorem. 

The key steps in the proof of our main theorem and their 
motivation are best illustrated by first describing a seemingly 
reasonable approach to the proof of the theorem, pointing 
out its major flaw, and then describing how this flaw is dealt 
with in the acutal proof in Sec. IV. The seemingly reasonable 
approach is the following. First, write the integral for defin
ing t [ r ab ] in terms of "unphysical" quantities, such as r ab' 
on the unphysical conformally related space-time used to 
define the asymptotic flatness of the background space-time. 
Second, because this integral is independent of surface (since 
G (2) [red] ab is divergence-free), we may push the surface of 
integration out to f +. We then compare this integrand on 
f+ to that used to defineE(2) [rab ]. Iftheintegrands are the 
same, the theorem is proved. The major flaw that appears 
when one tries to implement the above approach is that the 
integrand may not smoothly extend to f+. In our proof in 
Sec. IV, we get around this difficulty by first gauge trans
forming the perturbation so that it satisfies the Geroch
Xanthopoulos gauge and the strengthened falloff condi
tions. With our perturbation in the Geroch-Xanthopoulos 
gauge, it turns out that the integrand used to define the sec
ond-order Einstein method now extends smoothly to f+. 

Comparing this integrand on f+ to the integrand that de
fines E (2) [r ab ], we find that they differ by a term that inte
grates to zero; thus proving the theorem. We have yet to 
mention the role that strengthened falloff conditions have in 
the proof. Essentially, these conditions insure that we can 
push the integration surface out to f+ without changing the 
value of the integral. Without these conditions, we knew 
only that the integral was independent of surface within the 
physical space-time. 

To complete our discussion of the second-order Einstein 
method, we use it to demonstrate that the Kerr space-time 
possesses superradiant gravitational modes. Press and Teu-
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kolsky6 have previously shown that Kerr possesses superra
diant modes by a different method involving a separated ver
sion of the spin-2 field equation in Kerr. 

Finally, the Appendix contains a theorem that is used in 
Sec. III. Essentially the theorem makes precise the notion 
that if V (atb) is "small" then ta is close to a Killing field. 

II. ASYMPTOTICS AND THE GEROCH
XANTHOPOULOSGAUGE 

In this section we review the asymptotic machinery 
needed to define the total Bondi energy flux. A more exten
sive account of the material contained in this review can be 
found in Ref. 1. The Geroch-Xanthopoulos gauge choice for 
the linearized metric perturbation rab is also defined, and 
the expression for the second-order contribution to the 
Bondi energy in this gauge is presented. 

Recall that to an asymptotically flat space-time (M ,gab) 

we associate an asymptote (M,gab ,n,f) that consists of a 
space-time (M,gab) with null boundary f and a conformal 
factor n that conformally relates the interior of (M ,gab) to 
(M,gab)' i.e., iPgab = gab' The conformal factor n is re
quired to satisfy the following four properties: n = 0 on f, 
V- A - -'-0 d:' - - nab 0 d:' d -a - nab . aH=nar on.r,nanblS = on.r,an n =nblS IS 

to be a complete vector field when restricted to f. The 
boundary f is required to be diffeomorphic to two discon
nected copies of S2XR. The components of f are denoted 
f+ and f-, where f+ is called future null infinity and 
f- is called past null infinity. Here (M,gab) is called the 
physical space-time while (M,gab) is called the unphysical 
space-time. Heuristically we think of the asymptote as a 
means of attaching the points at infinity (the boundary f) 
to the physical space-time. 

The physical Ricci tensor Rab is related to the unphysi
cal Ricci tensor Rab through 

(2.1 ) 

where Va is the derivative operator associated with the un
physical metric, and Sab' Sab , andlare defined by the follow
ing expressions: 

Sab = Rab - i Rgab , 

Sab = Rab - i Rgab , 

1= n- I jzajzbgab , 

(2.2) 

(2.3 ) 

(2.4 ) 

with Rand R being the physical and unphysical scalar cur
vature, respectively. 

As a manifold, f+ inherits many geometrical struc
tures from M, including a vector field, a degenerate metric, 
and a volume element. We denote tensor fields defined on 
f+ by underlining their symbol. The vector field, denoted 
~a , is simply the restriction of iia to f+. The degenerate 
metric gab is obtained by restricting the action of gab tof+. 
The volume element Eabc on f+ is defined by the require
ment that iia ?bcd ~bcd - = 3!, where ?bcd is the contravariant 
volume element on M. It follows from (2.1) that if n is 
chosen so thatlvanishes on f+ then both 8,ab and ~abc are 
Lie derived by na • Such a conformal factor is said to be in the 
Bondi gauge. We shall impose this gauge choice on our n. 

Even though 8,ab is not invertible, it is still possible to 
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define an object(,b , which is similar to an inverse. Let('b be 
any tensor on f+ that satisfies £ac('b£bd =£cd' We note 
that ft is unique up to addition of any tensor of the form 
~ (a £ ) . Of course, we must only use £ab in places where the 
freedom in choosing ('b does not affect the result. 

If our physical space-time satisfies the vacuum Einstein 
equation in a neighborhood of f+, then f+ also possesses a 
symmetric tensor field iYab called the Bondi news tensor. 
Here Nab contains information about the asymptotic gravi
tationi! radiation field. In particular the total outgoing 
Bondi energy flux is obtained by integrating the square of the 
Bondi news over f+ with the volume element Eabc' A few 
important properties of the news tensor are the following: 

(i) iYab~a = 0 , 

(ii) iYab(,b = 0 , 

(iii) iYab = ~ab - e.ab , 

(2.Sa) 

(2.Sb) 

(2.Sc) 

where Sab is the pullback ofSab to f+ and /!.ab is a tensor 
field on-f+ uniquely defined by ~a and £ab' The expression 
for e.ab in terms of ~a and £ab is complicated and will not be 
given here. 

(iv) if t a is an asymptotic time translation vector field 
on M and fa restricted to f+ equals na , then the total Bondi 
energy flux at f+, denoted E, associated with fa is given by 

(2.Sd) 

We note that the use of the inverse metric ('b is justified in 
(2.Sd) since ~a iYab = O. Also since the signature of £ab is 
(0, +, + ), Evanishes if and only if iYab vanishes. 

Fix (M,gab) as a stationary asymptotically flat space
time with timelike Killing field r and asymptote 
(M,gab,O,f). We would now like to calculate the lowest
order change in the total Bondi energy flux due to a first
order metric perturbation in the Geroch-Xanthopoulos 
gauge. For this calculation we keep the Bondi gauge choice 
in force and we further choose our conformal factor so that 
the extension ofthe timelike Killing field to f+ equals ~a • 
Let Yab be a solution of the linearized Einstein equation in a 
neighborhood of f+. Because the Bondi news tensor for a 
stationary space-time vanishes, the lowest-order contribu
tion to the total Bondi energy flux, denoted E (2) [ Yab ], of the 
metric perturbation Yab is second order and is given by 

where N lab is the first-order contribution to the Bondi news 
due to r ab' We need not include any changes in ('b , ~e.fh ' or 
changes in the conformal factor 0 in (2.6) because these 
would only contribute to the total Bondi energy to third 
order or higher. Hence the integral in (2.6) is performed 
using the inve!:.8e metric ('b , volume element ~e.fh' and con
formal factor 0 associated with the background space-time. 
To computeN lab' we will employ the properties of the Ger
och-XanthoPoulos gauge. 

The perturbation Yab is said to be in the Geroch-Xanth
opoulos gauge if rab = 02¢ab is smoothly extendable to and 
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satisfies the following three properties on f+: 

(i) rab l.r = 0, (2.7a) 

(ii) a-Irabiial.r =0, (2.7b) 

(iii) 0-2rabiiaiib l.r =0. (2.7c) 

As a consequence of the Geroch-Xanthopoulos gauge, we 
have 

I - -1- + 
iY ab = £;;(0 Yab) pulled back to f. (2.8) 

Indeed, (2.8) follows directly from (2.7a)-(2.7c), (2.1), 
and (2.Sc). Equation (2.7a) implies that to first order £ab 

and na are unchanged; hence/!.ab (which is dependent on£ab 
and na ) is unchanged to first order. Therefore (2. Sc) implies 
N I a; = Slab' where Slab is the first-order contribution to 
- --I ---1- + -I' 
Sab' That S ab = £;; (0 Yab) on f ,where S ab IS the 
first-order contribution to Sab' follows from (2.7a)-(2.7c), 
(2.1 ), and the fact that Yab satisfies the linearized Einstein 
equation. Therefore N l

ab = £;; (O-I rab ) pulled back to 
f+. -

Using Eqs. (2.6) and (2.8) we can now express 
E(2)[Yab] as 

E(2)[Yab] = (321T)-1 r £;;(O-lrab)£;;(O-I?a)~e.fh' J.r 
(2.9) 

We were allowed to convert the inverse metric ~b on f+ in 
(2.6) to the full Lorentz metric gab on Min (2.9) because of 
(2.7b). One nice feature ofEq. (2.9), besides the factthat it 
is the formula for E (2) [y ab ] that we have sought, is that the 
only geometrical object it contains that is intrinsic to f+ is 
the volume element. Even though the integral is over f+, 

the integrand £;; (0 -Ira b ) £;; (0 -I? a ) is a function on M. 
This fact helps us in comparing E(Z)[Yab] to ~[Yab] in the 
proof of our main theorem. 

At this time, we also introduce some auxiliary struc
tures on M that we will need in order to state and prove our 
theorems in Secs. III and IV. The auxiliary structures are a 
neighborhood of f+ denoted U, a three surface 0', a time 
coordinate t on U, and a norm on tensors on U. We require U 
to be a neighborhood of f+ in which gab satisfies the vacu
um Einstein equation and which contains complete integral 
curves of r , the timelike Killing field. We require 0' to be a 

FIG. 1. The unphysical space-time (M,gab ) with future null boundary f+, 

past null boundary f-, open neighborhood U of f+, and spacelike slice of 
U denoted u. 
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space1ike three-surface in U that intersects f+ in a cross 
section and intersects each integral curve of t" in U; see Fig. 
1. Also let us define t on U using the following two equations: 

(2.10) 

(2.11 ) 

Finally, let hab be a positive definite metric on U that satisfies 
the property 

(2.12) 

We now define the norm of an arbitrary tensor T a···b c ... d in 
the tensor space of Uby the formula 

I T a ... b I 
c···d 

= {Ta, ... b, Ta, ... b, h ... h h c,c, .•• h d,d,}1/2 
ct,··d. c2 ···dz Q 1Q 2 b1b1 ' 

(2.13 ) 

where hab is the inverse of hab . 

III. THE SECOND-ORDER EINSTEIN TENSOR 

The second-order Einstein tensor associated with the 
metric perturbation r ab is defined by (1.1). Expressed in 
terms of the background derivative operator, the second
order Einstein tensor is given by 

G(2)[rCd lab 

=~ydVaVbrcd +! (Vayd)Vbred 

+ (v[eyd1a) (Verdb) - ! Cd (2V(b ra)d - V drba) 

-! yd ( 2Ve V(bra)d - Ve Vdrba) 

+{ _!ydveVered -§ (veyd)Vered +ACdCd 

+ 1 ydVeCd +! (vdye) (Verde )}gab' (3.1) 

where Cd represents the combination 2Ve red - V dYe. The 
expression (3.1) is rather lengthy. It is one of the goals of this 
paper to present a simple method, in some cases, of calculat
ing quantities involving the second-order Einstein operator 
without actually writing out this lengthy expression. Essen
tially this is achieved by replacing G(2)[red lab wherever it 
appears by the Einstein tensor associated with the metric 
gab + Arab· One then calculates the appropriate quantities 
as functions of A and takes their second derivative to arrive at 
the desired result. This is done in Sec. V to demonstrate 
superradiance off a Kerr black hole. 

The second-order Einstein operator arises naturally in 
perturbation theory. Recall that in perturbation theory one 
considers a one-parameter family of solutions to Einstein's 
equation, g(A) ab. The perturbation equations are generated 
by expanding out Einstein's equation in powers of A and 
equating like powers. In the absence of matter the first few 
lowest-order equations become 

0= G [ged lab , 

0= G (1) [red Jab' 

0= G(1)[r2)ed lab + G(2) [red Jab' 

(3.2a) 

(3.2b) 

(3.2c) 

where red and r(2)ed are the first- and second-order contribu
tions tog(..i)ed' respectively, and Gab and G(J)ab are the Ein
stein operator and the linearized Einstein operator, respec
tively. The second-order Einstein operator first appears in 
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Eq. (3.2c). Let us define the tensor field 'Tab as 

'Tab = - (81T)-IG(2)[red lab 

and rewrite Eq. (3.2c) as 

(3.3 ) 

G(1)[r2)ed lab = 81T'Tab . (3.4) 

We are now tempted to regard 'Tab as a stress-energy tensor 
for red for the following three reasons. First, 'Tab is quadratic 
in its dependence on red. Second, 'Tab is symmetric and diver
gence-free with respect to the background derivative opera
tor. And, third, 'Tab is sourcing the higher-order correction 
,)2)ab in the same way that a first-order matter stress-energy 
term T(l)ab would have sourced rab if a one-parameter fam
ily of matter stress-energy tensors, T(A) ab' would have been 
included in the perturbation expansion (i.e., 
G(l)[red] = 81TT(1)ab). 

The divergence-free property of 'Tab is a consequence of 
the definition of G(2)[red lab and the first two perturbation 
equations (3.2a) and (3.2b) in the absence of matter. To 
show this let Va be the background derivative operator and 
let r' (A) a be be the connection between Va and the deriva
tive operator associated with the metric g' (A) ab defined by 
g' (A) ab = gab + Arab. Taking the second derivative with re
spect to A of each side of the identity 

0= g'(A)ae {Va G [g'(A)ed leb + r'(A)\e 

xG [g'(A)ed hb + r'(A)h abG [g'(A)ed leh}' 

(3.5) 

setting A = 0, and using (3.2a) and (3.2b) we get 

0= vaG (2) [red lab + r'(o)ae eG (2)[red lab 

+ r'(o)eb aG (2) [red lae . (3.6) 

Substituting r'(o)a be = 0 into (3.6) produces the desired 
result 

0= - (81T)-IVaG(2)[redlab =Va'Tab . (3.7) 

We are cautioned against taking this analogy too far, though. 
Probably the main drawback in using 'Tab as a stress tensor 
for the perturbed gravitational field is that it is gauge depen
dent. That is, two different rab'S, which differ by a symme
trized derivative of a covector field, and hence represent the 
same physical perturbation, will not in general produce equi
valent second-order Einstein tensors. 

Weare now in a position to describe the second-order 
Einstein method for calculating radiated gravitational ener
gy. Basically, the second-order Einstein method is a proce
dure for assigning a total radiated energy flux ;[rab 1 to a 
linearized metric perturbation rab off (M,gab), which satis
fies the linearized Einstein equation in U. In this method, Eq. 
(3.3) is used to construct 'Tab' which is then contracted into 
the timelike Killing field t" to produce a conserved mass
energy covector j a = - 'Tab tb. This covector is integrated 
over a timelike three-surface l: in U surrounding the source 
of the radiation to obtain; [ r ab 1 . 

To insure that l: catches all the outgoing radiation, we 
require l: to approach future and past timelike infinity and to 
stay away from f, see Fig. 2 (there are timelike surfaces 
that intersect f+). A reasonable restriction that we shall 
impose on l: which will insure that this condition is met is 
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FIG. 2. The unphysical space-time (M,gab) with a typical timeIike surface 
of integration ~. 

that the surface should lie tangent to and contain complete 
orbits of the timelike Killing field. 

In order for the second-order Einstein method to be 
uniquely defined. we impose a few relatively minor con
straints on the metric perturbation. The uniqueness of the 
second-order Einstein method is assured if t[ Yab ] exists and 
is independent of choice of integration surface 1: and if a 
class of gauges for Yab can be specified such that if Yab and 
rob are gauge related and both belong to the specified gauge 
class then t[ Yab 1 = t[ Y' ab ]. We will find that both these 
requirements will be satisfied by requiring Yab to satisfy a set 
of falloff conditions called the weak falloff conditions. 

The perturbation Yab is said to satisfy the weak fall-off 
conditions if Yab vanishes in the past of 0' and t( 1 + £)12 I Yab I. 
t(1 +£)/2 IVaybc I. and to +£)/2 IVa VbYed I each approach 
zero uniformly to the future of U, where E is some positive 
constant and t is the time coordinate described at the end of 
Sec. II. By a function p approaching zero uniformly to the 
future of U we mean that for each D > 0 there exists a number 
teD) such that Ipi <D in that part of U for which t> teD). 

Let Yab satisfy the weak falloff conditions in U and let 
j a = G (2) [ Y cd 1 ab rh . Because j a depends algebraically on Yab • 
Va Ybc. and Va Vb Yed. we conclude that lia I will fall off uni
formly faster than t - (I + £) • where E is some positive con
stant. This is enough to guarantee the existence of the inte
gral defining t(Yab)' Now consider two surfaces 1:1 and 1:2 
satisfying the above criterion imposed on 1:. Since Vaja = 0, 
the integral ofja over 1:1 will equal the integral of ja over 1:2 
provided the past and future boundary integrals of ja van
ish. However. the boundary integrals are assured to vanish 
due to the uniform falloff of 1 j a I. Therefore t [ Yab 1 is inde
pendent of the surface 1:. 

The fact that requiring Yab to satisfy the weak falloff 
conditions is sufficient to make the second-order Einstein 
method independent of gauge on Yab is proven in the follow
ing theorem. 

Theorem: Let Yab satisfy the linearized Einstein equa
tion and the weak falloff conditions in U. Also let Y' ab = 
Yab + 2V(aSb) satisfy these same falloff conditions. Then 
t[Yab] = t[rab]' 

Proof: Let rp (A) be the one-parameter family of diffeo-
morphisms on M associated with sa . Because gab satisfies 
the vacuum Einstein equation in U and Yab satisfies the lin
earized Einstein equation in U, the second-order part of the 
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expression G[ged + AYcd lab will equal the second-order 
part of the expression rp. (A)[G[ged + AYed lab]' Therefore 
we can express the second-order Einstein tensor in U as 

G(2) [Y cd] ab = ~ ~22 rp. (A)[G [gcd + AYcd Jab] IA O' 

(3.8) 

Now rp. (A) commutes with the Einstein operator, hence 

G (2) [Ycd Jab 

1 d
2 I =2" dA2 G[rp. (A) [gcd] +Arp.(A)[Yed]1b hO' 

Computing the right side of (3.9) we get 

G(2)[Ycd Jab = G (2) [Ycd + 2V(eSd) Jab 

(3.9) 

+ G(1)[ £,;(Ycd + V(eSb) )Jab' (3.10) 

From (3.10) we conclude that 

t[Yab] -t[y'ab] 

= (817') Ii G(1) [£,;(Ycd + V(cSb) )]abtb~ejh' 
(3.11 ) 

Now the integrand in (3.11) is divergence-free. hence it is 
locally the divergence of some two-form Fab . In fact, we can 
find a global Fab as follows. Let 

Hed = £5 (Ycd + V(eSb» 

and define Fab as 

Fab = - f[a Vb ]Hec + tra VCHblc - VICe V[atb I 

Then 

vaFab = G(1)[£5(Ycd + V(cSd) )]abta . 

Applying Stokes' theorem, we get 

S[Yab] S[rab] = (81T)-1 ( Fededab' Ja:!. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

To prove that the integral in (3.15) is zero, we first note that 
Fab is algebraically dependent on Yab and its first and second 
derivatives. V(aSb) and its first and second derivatives. Sa' 
V [a Sb)' and Va V [bSc) . All but the last three terms listed 
vanish uniformly to the future of U due to the hypothesis. 
Let a l:1' a 1:z .... be a sequence of compact two-surfaces in 1:. 
which are time translates of each other and approach the 
future of 1:. The theorem in the Appendix implies that there 
exists a c > 0 such that if the norm of V (a S b) and its first 
derivative is less than someD ona 1:;, then there exists as(O a 

that differs from Sa by a Killing field and for which both 
Is(i) a I and 1 V [a S(i) bl 1 are less than cD on a 1:;. Also since 
Va V [bS(i) cJ is algebraically dependent on Rhea d S (i) d and 
Va V(bSe) through the formula 

Va V[bS (Oc] = RbcadS (i)d + 2La[bcl' (3.16) 

where Labc = Vb V(cSa)' we could choose c such that 
I Va V (b S(i) cJ 1 is also less than cD ona 1:;. Now the integral of 
Fcded ab over a 1:; [Eq. (3.15)] is unchanged by adding a 
Killing vector to Sa in (3.12). This is because the integral in 
(3.11) depends only on Sa through its symmetrized deriva-
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tive. Therefore the integral of Fed Cd ab over a 1:i is equal to 
the integral of Pi) cd ~ ab over a 1:iJ where Pi) cd is defined 
by (3.12) and (3.13) except that 5(i) a is substituted for Sa . 
But it is clear that the norm of Pi) cd Cd ab on a 1:i ap
proaches zero as i -- 00. Hence the integral of Fed Cd ab over 
a 1:i approaches zero as i -- 00 (i.e., as a 1:i approaches the 
future of 1:). Therefore ~[Yab] = ~[y'ab ]. 

Q.E.D. 

IV. MAIN THEOREM 

In this section we will prove a result that states sufficient 
conditions on Yab so that ~[Yab] = E(2)[Yab]' However, to 
state the result we need to introduce a new set offalloff con
ditions on Yab' called the strengthened falloff conditions. Let 
Yab be in the Geroch-Xanthopoulos gauge. Then Yab is said 
to satisfy the strengthened falloff conditions if Yab vanishes 
~n !.he"pa~~ of u and the quantiEe~(~+E)~2In-IYab I, t(1 +E)I 

IVaO- Ybcl, and t(1+€)12 IVaVbO- 1Ycdl approach zero 
uniformly to the future of U, where € is any positive constant. 
The strengthened falloff conditions are slightly stronger 
than the weak falloff conditions mainly because they require 
that the perturbation also obey falloff conditions on f+. 
The strengthened falloff conditions imply the weak falloff 
conditions. 

Theorem: Let Yab be a solution of the lineaized Einstein 
equation in U that satisfies the weak falloff conditions and is 
gauge equivalent to a perturbation that satisfies the Geroch
Xanthopoulos gauge conditions and the strengthened falloff 
conditions. Then ~[Yab] equals the second-order contribu· 
tion to the total Bondi energy flux E (2) [ Yab ] . 

Proof: We begin by choosing our conformal factor n 
judiciously so that subsequent calculations are simplified. 
We choose n so that it is Lie derived by ro and so that the 
extension of the timelike Killing field ro to f+ (which we 
still denote as ro), when restricted to f+, equals na. With 
this choice of conformal factor, it follows that -

tana = 0, (4.1a) 
- b Vat l.r = 0, (4.1b) 

n-ltaVanb = n-lnaVanb =! v'i +! n-Ijnb on f+ . 
( 4.1c) 

Furthermore, ro is a Killing vector field for gab and the 
Bondi gauge condition is satisfied. We now proceed to prove 

these claims. Equation (4.1a) is obvious. We next prove that 
the Bondi gauge condition,! vanishing on f +, is satisfied. 
Evaluating (2.1) on f+ we get 

(4.2) 

Furthermore, since na = ro on f+, there exists a Vb such 
that on f+ we have 

(4.3) 

Lowering the index on this expression with gab, symmetriz
ing, and using the fact that t is a Killing field, we get 

Vanb = n(aVb) (4.4) 

on f+. Comparing (4.2) and (4.4) we conclude that 
n(a Vb) = !!gab on f+, which can only be satisfied when! 
and Vb both vanish on f+; thus satisfying the Bondi gauge 
condition. Furthermore, (4.3), (4.4), and the vanishing of 
Vb on f+ imply (4.1b). Equation (4.1c) follows the defini
tion of J This completes the proof of the claims. For further 
reference, let us also denote the timelike three-surfaces of 
constant n in Uby 1:(n). We note 1:(0) = f+. 

Because the second-order Einstein method is gauge in
dependent, we may assume that Yab satisfies the Geroch
Xanthopoulos gauge conditions and the strengthened falloff 
conditions. Furthermore, because the second-order Einstein 
method is independent of surface ~[Yab] is given by 

~[Yab]=(81T)-1 f _ G(2)[Ycd]abtbE"ejh, (4.5) 
Jl:(!)') 

where n can take any value, except possibly n = 0, where 
G (2) [ Y cd ] ab t E" ejh will not, in general, be smooth. 

We now demonstrate that, as a consequence of the Ger
och-Xanthopoulos gauge choice, if we view G(2)[Ycd Jab 
X t E" ejh not as a three-form on M, but rather as a three
form defined on 1: (n) then it is smoothly extendable to f + . 
Using the fact that na is normal to 1: (n), we may write the 
integral in (4.2) as 

~ [Yab] = - (81T)-1 f _ n-2G(2)[YCd ]abtbnaEejh , 
Jl:(o) 

(4.6) 

where Eejh is the intrinsic volume element to 1:(n) defined 
by na ?bcd Eejh = 31. The minus sign was introduced in (4.6) 
because na is the inward normal. Expressing the integrand in 
(4.6) in terms of Yab and its unphysical derivatives we have 

n-2G(2)[Ycd ]abtbna = n-2t bna{V[a (AdC]bYCd) +! Aeb[aNc]e + n-lycdAcabnd -! n-IAdeendYab 

- n -I1"e (V m ne ) Yab + 3n - 2ycdnc nd Yab + terms proportional to gab} , ( 4. 7) 

where Aabc represents the combination 2V (b Yc)a - Va Ybc' Now the variables Kab , Ka, K, Ma, and M defined by n -Iy b' 
n-2Yabnb, n-3Yabna tb, n-2Yabt, and n-3Yabna t, respectively, are smooth on f+ due to the Geroch-Xanthopoulos 
gauge choice. Expressing (4.7) in terms of these variables, and using the fact that t b is Killing and Lie derives n, we get 

n-2G(2)[v ] tbna 
'cd ab 

=! rtf;; (KCdK d
c) - !(£tKab )£;;Ka b + Vc (KcdKbdtaVaiib) + ~!£t (KCdK d

c ) + (t bVciia)KcdVCaKb)d 

+ {2K- dK- -c + -aK- cdV K- + 1f-K- K- cd + 1 K- - K- cd 1 -cV- K- a K- d 1 K- -cV-eK- a bdn n (a b)d 2 bd 2 dnb - 4 n b d a - 2 ben a 

_1 K a K iic _ 2i( dK nC + iicKdK + K [d (Vc]na)K _1 K- e £_Kc + 1K- C £ K- d }V- t b 
2 a b bd bd a bd 4 b n e 4 d;; b C 

+ n(terms smooth at f+ involving Kab , Ka, K, Ma, M,j; ita, ro ,n, and their derivatives). (4.8) 
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Clearly, (4.8) is smooth at f+. 

Next, we evaluate 0 - 2G (2) [ Y cd ] ab I' iia on f + . Using 
the fact thatj; Va ii b , and Val' vanish on f+, we get, from 
(4.8), that 

0-2G(2)[ Ycd ]ab tbiia 1 p 

= A £,£;, (icdKdc) - A (£,K a
b )£"Ka b 

- -d- - b + Vc(KC KbdtaVa ii ) Ip . (4.9) 

The last term in (4.9), it turns out, also vanishes. Indeed, 
(4.1c) implies that O-I~Vaiib is proportional to ii b on 
f+. This, together with the fact that Kbdiib vanishes on 
f+, implies that KcdKbdtaVaiib falls off on f+ like 0 2• 

Hence V c (Kcd Kbd ~ Va iib ) vanishes on f+. Therefore 

0-2G(2)[r] tbiial cd ab f+ 

=A£,£"(KCdKdc)_!(£,Kab)£,,K/lp. (4.10) 

Now, if the value of the integral in (4.6), as a function of 
0, was continuous at 0 = 0, then we could evaluate t[Yab ] 
by substituting (4.10) into (4.6) and integrating over f+ . 

To show that the integral is continuous at 0 = 0, we invoke 
the strengthened falloff conditions. Let t{j be some positive 
real parameter, and consider the following two integrals, II 
and 12 : 

( 4.11) 

(4.12) 

where l:(O,t{j <t) is that region ofl:(n) for which t>t{j, 
and similarly, l:(O,O<t<t{j) is that region of l:(0) for 
which O<t<t{j. Clearly, II + 12 = t[Yab] for 0#0. The 
strengthened falloff conditions imply that the integrands in 
( 4.11) and (4.12) falloff uniformly in U like t - (I + E) from 
which one can show that for every 8 > 0 there exists a value 
for t{j such that II < 8 for any value of 0, including 0 = O. 
Furthermore, since the region in U that satisfies 0 < t < t{j is 
compact we have that 12 is continuous in 0 for any value of 
0, including 0 = O. Since 8 is arbitrary and 12 is continuous, 
it follows that (4.6) is a continuous function of 0, even at 
0=0. 

Using (4.10) to evaluating (4.6) on f+, we get 

(4.13) 

The second term in (4.13) integrates by parts to zero. Mak
ing use of the fact that Eabc = Eabc and £, (0 -Iy d) 
= £" (O-IYd) on f+, we c~n write t[Yab] as 

t [Yab] = (3217') -II £;; (O-IYd)£" (O-Iy/) Eefh · 
f+ -

(4.14 ) 

The expression for t[Yab] in (4.14) is identical to the 
expression for E (2) [Yab ] given in (2.9). Therefore t[Yab] 
= E(2)[Yab]' Q.E.D. 
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FIG. 3. A space-time diagram of 
that portion of the Kerr space
time exterior to the black hole. 
J+ and J- are the future and 
past null boundaries and H and 
Ware the black hole and white 
hole horizons, respectively. 

V. SUPER RADIANCE FROM A KERR BLACK HOLE 

In this section we use the second-order Einstein method 
to demonstrate that, in the framework of linearized gravity, 
there are superradiant gravitational modes in the Kerr 
space-time. 

Consider that portion of the Kerr space-time that is ex
terior to the black hole as shown in Fig. 3. Let Yab be a 
solution of the linearized Einstein equation in Kerr that van
ishes in a neighborhood of the white hole horizon and let 
E(Z)fut [Yab] and E(2)past [Yab] denote the second-order con
tribution to the total Bondi energy flux evaluated on f + and 
f-, respectively. We say that Yab is superradiant if 
E(2)fut [Yab ] > E (2) past [Yab ]. 

Now, the second-order Einstein method has been pre
sented as a method for calculating E(2)fut [Yab] when Yab 
vanishes in the past of some spacelike three-surface inter
secting f+. We could also use this method to calculate 
E(2)past [Yab] when Yab vanishes in the future of some space
like three-surface intersecting f-. This particular falloff 
condition (i.e., the vanishing of Yab in the past or future of 
some spacelike surface intersecting f) essentially required 
Yab to vanish in a neighborhood of spacelike infinity. How
ever, this condition was imposed to make the proofs of our 
theorems manageable. We expect that if Yab does not vanish 
near spacelike infinity, but instead falls off at an appro
priate rate at spacelike infinity, then the second-order 
Einstein method would actually calculate E(2)fut [Yab] 
- E (2) past [y ab ] . We will assume this is the case. Hence Yab is 

superradiant if its associated total energy flux calculated us
ing the second-order Einstein method is positive. Also be
cause the second-order Einstein tensor is divergence-free, 
the integral defining t[Yab] may be evaluated on the black 
hole event horizon, which we denote as H. We conclude that 
Yab is superradiant if 

(817')-IL G(2)ab [Ycd ]ta~efh >0, (5.1) 

where ~ is the timelike Killing field in Kerr (even though it 
is not timelike on the horizon). 

Because Kerr also has a rotational Killing field qJa , we 
may decompose Yab into modes. A mode is a solution to the 
linearized Einstein equation of the form 

y(w,m)ab = Re{lab exp( - i(j)t + imqJ)}, (5.2) 

where t and qJ are the time and rotational Boyer-Linquist 
coordinates in Kerr, andlab is a complex tensor field that is 
Lie derived by ~ and qJa . Since the contribution to the inte-
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gralin (5.1) due to each mode that comprises Yab isindepen
dent of the other modes comprising Yab' it is sufficient to 
study the value of the integral in (5.1) for each mode. In 
order to avoid infinities when evaluating the integral in (5.1) 
for a mode we will only integrate over a compact portion of 
the horizon that corresponds to one period of the mode in the 
timelike direction. We denote this compact region asH'. Our 
project, then, is to discover which modes, if any, superra
diate. 

We start by listing the relevant geometric structures in 
the Kerr space-time that we will use. Let Yab be a mode of 
frequency w and azimuthal quantum number m and define 
t ' [y ab ] by the formula 

t'[Yab] = (81T)-d G~~)[Ycd]ta~efh' (5.3) JH' 
Also let 

if/'=ta+flHq:ya (5.4 ) 

be the Killing field that is normal to, and null on, the hori
zon. fiH is a positive quantity sometimes referred to as the 
angular velocity of the horizon. Let 

Ka=ta+wif/'/(mflH-w) (5.5) 

denote the Killing field that Lie derives Yab' The surface 
gravity, which is a constant, is denoted as K. It is defined by 

!Va(tfI'l/Jb) = -Kl/Ja on the horizon. (5.6) 

One other fact we will find useful is that the derivative of l/J a 
on the horizon has the form 

(5.7) 

for some covector field Va' It follows that on the horizon we 
get 

if/'va = - 2K. 

We will demonstrate that, for a mode, 

sgn{t' [Yab P = sgn{mflH - w}. 

(5.8) 

(5.9) 

Therefore, the mode is superradiant if mflH > w. Below we 
present three lemmas that we will employ to demonstrate the 
validity of (5.9). 

Lemma 1: The integral in (5.3) is gauge invariant in the 
following sense: 

t'[Yab] =t'[Yab + V(aSb)]' 

as long as S b is of the form 

Sa = Re{/a exp( - iwt + imq:y)}, (5.10) 

where /a is a complex convector Lie derived by ~ and q:ya . 
The proof that (5.3) is gauge invariant is similar to the 

proof of gauge invariance in Sec. III except for the way the 
boundary integrals are treated. In Sec. III the boundary inte
grals were shown to go to zero. Here the boundary integrals 
cancel each other because of the periodicity of Yab and Sa' 

Lemma 2: There exists a gauge transformation satisfy
ing the hypothesis of Lemma 1 which brings Yab into a gauge 
satisfying (5.11) and (5.12) on the horizon: 

Yab if/' I H = 0, 

~a IH =0. 

(5.11) 

(5.12) 

For the proof of this lemma assume that Yab still con-
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tains its imaginary part. That is, Yab is given by (5.2) with
out taking the real part. We will now proceed to find a com
plex gauge transformation that will bring Yab into a gauge 
satisfying (5.11) and (5.12). By taking the real part of this 
expression we produce the desired real gauge transforma
tion. 

Consider the expression 

r'ab = Yab + V(a (PYb)cl/JC) , (5.13) 

where P is a complex constant. Contracting (5.13) with 
if/' l/Jb and using (5.8) and evaluating the expression on the 
horizon we get 

if/'l/Jbr'ab = if/'tfI'Yab + p£", (if/'l/Jbyab ) - PKif/'tfI'Yab' 
(5.14) 

Since £", (l/Jatfl'Yab) - Kl/Jal/Jb Yab is nonvanishing (unless 
l/Jal/Jb Yab vanishes) and is proportional to if/'tfI'Yab' we can 
choose P such that if/'l/Jbr' ab vanishes on the horizon. Now 
consider a further gauge transformation as follows: 

y" ab = r'ab + V (a (qY'b)C~)' (5.15) 

where q is a complex constant. Contracting with l/Jb we get 

y" ab l/Jb = Y' ab l/Jb + !q£", (tfI'y' ab) 

+ ~qVa (l/Jbl/Jcy , bc) - qtfl'y' cb V a~' (5.16) 

By choosing q so that the first two terms in (5.16) cancel we 
get 

( 5.17) 

Using (5.8) and the fact that tfl'l/Jcy, bc = 0 on the horizon, it 
follows that y" ab l/Jb is proportional to l/Ja on the horizon. 
Using (5.8) again we find that 

(5.18) 

on the horizon. Now consider our third and final gauge 
transformation 

y"'ab = y" ab + V (Jl/Jb) , (5.19) 

where/is given by 

/ = ry" bc (Vd", b) (vcl/Jd )/(K2) (5.20) 

and r is a complex constant. Contracting (5.19) with l/Jb and 
evaluating the expression on the horizon we get 

r''' ab l/Jb = y" ab l/Jb + !£", (l/JJ) = y" abtfl' + !r£", (y" abtfl')· 

(5.21 ) 

Clearly r can be chosen so that the expression in (5.21) van
ishes on the horizon. We have transformed Yab into r''' ab' a 
gauge in which y"'ab l/Jb vanishes on the horizon. r'"a a = 0 
on the horizon is a consequence of this particular gauge 
choice, the fact that y'''ab is a mode and the fact that r'''ab 
satisfies the linearized Einstein equation in Kerr. 

Lemma 3: The value of the integral in (5.3) is un
changed if we substitute - wif/' l(mflH - w) for ~. 

To prove Lemma 3, consider the integral 

(5.22) 

which is similar to (5.3) except ~ is replaced with Ka
• We 

will show this integral vanishes. Because Yab satisfies the 
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linearized Einstein equation we may rewrite J as 

J = (81T)-IL. (R (2)ab [Yed] - ~ R (2) [Yed ] gab )Ka~ejh' 
(5.23 ) 

where R (2)ab [Yed ] and R (2) [Yed ] are the second-order Ricci 
tensor and second-order scalar curvature defined in a similar 
manner to the second-order Einstein tensor. Since Ka is tan
gent to the horizon, the second term in (5.23) vanishes. We 
now write the first term in (5.23) as 

J = (161T)-I£i (V(A) VeAl K a 
dA 2 H' a b 

- VeAl b VeAl aKa)g(A)bcE(A)eejh 1 A =0' (5.24) 

where E(A) abed and VeAl a are the volume element and deri
vative operator associated with the metric g(A) ab defined by 

g(A)ab = gab + AYab (5.25) 

with inverseg(A )ab. We note that parametrizing the volume 
element does not affect the value of Jbecause the fact that the 
background Ricci tensor and the linearized Ricci tensor van
ish implies that perturbations of the volume element contri
bute in (5.24) to terms third order or higher in A. For the 
same reason, we are able to raise the index on the volume 
element in (5.24) withg(A)bc. For the rest of this section we 
will, by convention, raise and lower indices on tensors para
metrized by A withg(A)ab' 

Because Ka Lie derives Yab we have 

V(A)aKa = !g(A)abA£KYab = O. (5.26) 

Hence, the second term in (5.24) vanishes. The first term in 
(5.24) can be split into a symmetric and antisymmetric part 
as follows: 

(5.27) 

where K(A)a = Kbg(A)ab and the index on the A-depen
dent derivative operator was raised with the A-dependent 
metric. The symmetric term in (5.27) is zero becauseKa Lie 
derives Yab and the antisymmetric term integrates by parts 
to zero because of the periodicity of Yab' Therefore J vanish
es. Using (5.5) we can rewrite (5.3) as 

- m(81T)-I(mnH - m)-li G(2)ab [Yed ]tf'~ejh' 
H' 

(5.28 ) 

This proves the lemma. 
We now evaluate t ' [ Yab ] to demonstrate the validity of 

(5.9). In light of Lemmas 1 and 2 we may assume that Yab is 
in the gauge discussed in Lemma 2. Because tf' is tangent to 
the horizon, the scalar curvature part of the second-order 
Einstein tensor vanishes in (5.28). We can write the second
order Ricci part of (5.28), using the parametrized derivative 
operators introduced in the proof of Lemma 3, as follows: 
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t'[Yab] = -m(161T)-I(mnH -m)-I d
2

2 dA 

X L.{V(A)aV(A)(b¢'(A)a) + V(A)av(A)[b ¢,(A)a] 

- V(A)b V(A)atf'}E(A)bejh 1 A=O , (5.29) 

where ¢,(A)a = ~g(A)ab' The second and third terms in 
(5.29) both integrate by parts to zero due to the periodicity 
of Yab' The first term in (5.29) can be written as 

t'[Yab] = -m(321T)-I(mnH -m)-I£ 
dA2 

X L.(AV(A)a£",Yab )E(A)bejh IA=o' (5.30) 

Now, the vanishing of the trace of our perturbation implies 
that the first-order change in E(A) bejh vanishes. Likewise, 
theA dependence introduced in (5.30) by raising the index 
of the volume element with g (A ) ab does not contribute to the 
A dependence of the integral because our perturbation is or
thogonal to the normal of the horizon [i.e., raising and low
ering the index of the horizon's normal vector field is inde
pendent orA due to (5.11)]. Therefore, we replace E(A)b ejh 
with ~ Eejh' where Eejh is the appropriate, unparametrized, 
volume element on H. Equation (5.30) now becomes 

t'[Yab] = -m(321T)-I(mnH -m)-I d
2

2 dA 

X L. {AV(A)a£",(Yab~) 

-A£",(Yab)V(A)(a~)}Eejh IA=o, (5.31) 

Because £", (Yab ~) vanishes on the horizon we may use the 
background derivative operator to evaluate the first term in 
(5.31) as 

~22(AV(A)a£",(Yab¢'b»)IH'A=0 = - 2yaeve£"'(Yab~)' 
(5.32) 

Here £", (Yab~) vanishing on the horizon implies that 
Ve £", ( Y ab ~) on the horizon is proportional to ¢' era for 
somera' Therefore (5.11) implies that (5.32) vanishes. Us
ing 

(~)V(A)(a~) IA=o = (~)£",Yab' 
we evaluate (5.31) as 

t'[Yab] 

(5.33 ) 

=m(321T)-I(mnH -m)-li (£",yab) (£",Yab)Eejh' 
H' 

(5.34) 

Now (£",yab)(£",Yab) is positive due to our gauge choice 
(5.11). Therefore t'[Yb] has the same sign as mnH -m. 
We conclude that a mode will be superradiant if mn H > m. 

ACKNOWLEDGMENTS 

I would like to thank R. Wald for many helpful discus
sions. This work was submitted in partial fulfillment of the 

Chris X. Habisohn 2767 



                                                                                                                                    

requirements for a Ph.D. degree at the University of Chi
cago. 

This research was supported in part by National Science 
Foundation Grant No. PHY84-16691 to the University of 
Chicago. 

APPENDIX: A KILLING FIELD THEOREM 

We prove a theorem that makes precise the notion that if 
V (aSb) is "small" then Sa is close to a Killing field. 

Theorem: Let Mbe a connected compact manifold, pos
sibly with boundary, with metric gab and associated deriva
tive operator Va' Also equip M with a positive definite met
ric hab for taking norms of tensors, i.e., 

I Tab I = {Tab Tcdh aCh bd}l12. 

Then there exists a c > 0 depending only on M, gab' and hab 
such that given a covector field Sa with Vab = V (a S b) satis
fying 

SUp{lVabl + IV[aVblcl}<E, (Al) 

for some E, then there exists as' a satisfying 

sup{IS'al + IV[aS'b Ji}<CE, (A2) 

which differs from Sa by a Killing field, that is, 
Vab = V(aS'b)' 

Proof: For the purpose of obtaining a contradiction sup
pose there is no such c. Then there will exist a sequence 
{S(i) a} of covector fields satisfying 

sup{ls (il a + ka I + IV[aS (i) b I + V[akb Ji};> 1, (A3) 

for all Killing fields ka and its sequence of symmetrized de
rivatives {V (i) ab}' where V iab = V (a S (i) b) will satisfy 

lim [sup{lV(i)abl + IV[aV(ilblcl}] =0. (A4) 
,- 00 

We will show that (A3) implies there exists a subse
quence of {sup{IV(i)abl + IV[aV(ilblcl}} bounded away 
from zero, hence (A4) cannot hold. 

Without loss of generality we may assume that the equa
lity is attained in (A3) for all i when ka vanishes. Also, since 
M is compact the supremum in (A3) is always attained. 
Therefore for each S(il there is a point i for which 

<IS(i)al + IV[aS(i)b Ji)lpi= 1. 

Let 

r/= (S(ila,V[aS(i)b 1)lpi. 

For convenience let us denote the vector bundle that is the 
direct sum of the cotangent bundle and the bundle of two
forms as B. Then r/ EB. Now, the subbundle of B which 
consists of all possible pairs of covectors and two-forms hav
ing norms that sum to 1 form an S9 bundle over M that is 
compact. Hence, the sequence {r/} will have a point of accu
mulation, say TJ. Let the base point ofTJ in Mbe denotedp. 

We will arrive at our contradiction by arguing that there 
exists a neighborhood Uri of TJ in B and a {) > 0 such that if the 
cross section (S (i) a' V [a S (i) b I) of B intersects Uri' then 

suP{IV(i)abl + IV[aV(i)blcl};>{). (AS) 

To prove the existence of Uri and {) we consider the following 
two cases. 
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First suppose that there is no Killing field ka for which 
(ka,V[akb 1)lp =TJ. We will argue that there must exist a 
closed curve a in M beginning and ending at p such that 
transporting TJ around a using the transport equations for 
(ta ,Fab ) 

aaVatb = aaFab , (A6a) 

aaVaFbc = aaRcba dtd (A6b) 

(where aa is the tangent vector to a) results in a point in B, 
say TJ', different from TJ. Suppose a did not exist. Then this 
type of transport, which is called Killing transport, would be 
independent of path. Hence we could uniquely construct the 
entire covector field t a by transporting TJ over the entire 
manifold using Killing transport. Therefore; a must be Kill
ing by virtue of (A6a) and (A6b). But we have assumed that 
TJ is not data for any Killing field. Therefore a must exist. 

Solutions to transport equations like (A6a) and (A6b) 
are continuous in both initial data and coefficients. There
fore sufficiently small modifications of the transport equa
tions, of the curve a, and of the initial data TJ, will not affect 
the result that transporting the initial data around the curve 
produces a pair of tensors different from the initial data. 

We cast this result in a useful form in the following state
ment. There is a neighborhood U., of TJ and a {) > 0 such that 
if Wab is a tensor field satisfying 

sup{IWabl + IV[aWblcl}<{) (A7) 
then for every point VEU., there is a closed curve {3(v) 
around which we can transport v using 

{3(V)aVatb = {3(v)aFab + {3 aWab' 

{3(V)aVaFbc = {3(v)aR cba dtd + 2{3(V)aV[b Wcla , 

(A8a) 

(A8b) 

and the result of this transport is an element of B different 
from v. 

(i) ~ (i) ~ U) But ta = S a' Fab = V[a~ b I' and Wab = V(a~ b) 
identically satisfy the transport equations (A8a) and 
(A8b). Set Wab = V(aS(i)b) in (A8a) and (A8b) and use 
these equations to transport initial data that is attained by 
(S(ila,V[aSU)b I) atp around any closed loop. The result 
must be equal to the initial data. We conclude that if 
(S (ila,V[aS (i)b I) intersects U., then V(i) ab must satisfy 
(AS). 

Now suppose (ka,V[akb I) Ip = TJ for some Killing field 
ka, and denote TJo = (Oa ,O[abl ) Ip as the pair consisting of 
the zero covector and the zero two-form at p. Let us connect 
every point in M to p by curves. Because M is compact, we 
can assume the lengths of the curves measured with hab are 
bounded. Using Killing transport to transport TJo along any 
of these curves will result in the zero pair. By continuity of 
the transport equations there will exist a {) > 0 with the prop
erty that if Wab satisfies (A 7) and X = (fa ,Jab) Iq is the 
result of transporting TJo along one of these curves using the 
modified transport equations (A8a) and (A8b), then 

(11a1+llabl)lq <1. (A9) 

Again because the transport equations are continuous in 
their parameters, we can expand the above result to a neig
borhood of TJo in the following sense. There exists a {) > 0 and 
a neighborhood Uo of TJo such that if (ta,V[atb I) intersects 
Uo and satisfies 
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(AW) 

then (A5) holdswhereV(atb) replaces V(i)ab' Weare now 
ready to finish the proof. Translate Uo by ka to get UTI' a 
neighborhood of1J. If (S (i)a,V[aS (i)b J) intersects UTI then 
(S (i) a - ka' V [as (i) b ] - V [akb J) intersects Uo. Hence 
V(i)ab satisfies (A5). Q.E.D. 
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Dynamical quantities b (t) are considered that depend on the canonical variables of a small 
number n of particles of a classical N-particle condensed system being in thermal eqUilibrium. 
It is proved that equalities like d 2(b(O)b(t) /dt 2 = - (h(O)h(t» are in general violated, if 
the interparticle interactions have a finite range and sufficiently short times t are considered. 
This violation reflects the continuous-in-time creations and destructions of s-particle 
correlations n <s~N, which are due to the thermal motion. 

I. INTRODUCTION 

In previous work, I we have studied some quantum me
chanical aspects of the molecular motion in liquids, in the 
picosecond time range. In particular, the connection 
between (i) the molecular reorientation of small polar mole
cules and (ii) the corresponding far-infrared (FIR) band 
shapes has been treated within the formal framework of lin
ear response theory (LRT). In these investigations we have 
found that the equation 

d 22 (e(O)e(t» = - (~(O)~(t» , (1) 
dt 

which seems to hold true very generally in the case of ther
mal equilibrium, may be violated in the physical context un
der consideration. [The unit vector e(t) represents the ori
entation of some characteristic molecular axis, e.g., the axis 
defined by the two nuclei of a diatomic molecule; the brack
ets represent equilibrium ensemble averages.] The physical 
reasons for the violation of Eq. (1) have been discussed in 
detail. In particular, van Vliet's2 and van Kampen's3 critical 
remarks concerning the standard version4 ofLRT have been 
explicitly taken into account; their importance in the inter
pretation of the anomalous temperature dependence5

,6 of the 
spectral FIR absorption bands has been shown. 

Now let us consider a liquid as a classical dynamical 
system that contains N interacting particles, N _ 1023; the 
system is assumed to be in thermal equilibrium. In this paper 
it will be shown that Eq. (1) may be (and, in general, is) 
violated in the picosecond time range, if standard experi
mental conditions are considered. This statement appears to 
be surprising since 

d 2 d· d . 
dt 2 (a(O)b(t» = dt (a(O)b(t» = dt (a( - t)b(O» 

= - (a( - t)h(O» = - (a(O)h(t) . 

(2) 

(a and b may represent two arbitrary one- or many-body 
dynamical functions, 7 i.e., they are functions of specific 
numbers of generalized coordinates and/or momenta.) 
These equations seem to be valid, because (i) the complete 
equilibrium distribution function does not depend on time 

explicitly and (ii) the above correlation functions are invar
iant under time translation. Similar calculations can be 
found in many textbooks of statistical mechanics. 

II. N-PARTICLE DYNAMICAL FUNCTIONS 

For reasons of clarity and simplification, let us consider 
in the following a monoatomic liquid (or dense fluid) with 
two-body interaction potentials H2 (xi,xj ) between the par
ticles i andj. Using the abbreviationS Xj = (qj 'Pj ) for the set 
of canonical variables pertaining to particlej, the total Ham
iltonian reads 

N 
N 

H(xl,· .. ,xN) = I HI (xj ) + I I H 2(xi ,xj) . 
j~1 

(3) 

Additionally it is assumed that the interactions H2 have a 
finite spatial range Ro; i.e., 

H 2 (xoxj ) = 0, if Iqi - qjl >Ro. (4) 

The corresponding Liouvillian reads7 

N 
N 

LN=LN (xI, .. ·,XN ) = I L J + II Lin' (5) 

with obvious notation. The complete distribution function 
F=F(xl, ... ,XN ) represents an equilibrium ensemble, and 
thus 

(6) 

The observables of the system are described by dynamical 
functions b of the canonical variables xj . As the particles in 
the system are identical, we may restrict our interest to those 
functions in which all particles play the same role; these are 
the only ones that represent physically relevant quantities. 
[This remark implies the validity ofEq. (10), see below.] In 
order to make the presentation self-contained, let us just 
mention the following points.9 

(i) The general form of a dynamical function reads 

N 
N 

b(xl, .. ·,XN ) = bo + I b l (Xj ) + II b2 (xj ,xn ) 
j~ I 

(7) 
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Here bs is a function of s variables only, which cannot be 
decomposed into a sum of functions depending on less vari
ables. 

(ii) The definition of the reduced s-particle distribution 
functions s<,,N is 

(8) 

Hence, we may express the ensemble average of the dynami
cal function b completely in terms of reduced distribution 
functions lo: 

(b )= J dxl .. · dXN F(xI,,,,,XN )b(xl, .. ·,XN) 

= t (s!) -I J dx)". dxs bs (xl, .. ·,xs)/s (xI,,,,,xs) . 
s-O (9) 

(iii) All functions/s and bs , s<,N, are symmetric under 
permutation of any two variables. 10 For example, one has 

b ( ... x· ... x· ... ) = b ( ... x· ... x· ... ) 
S 'J S J ,. • (10) 

The particles of the dynamical system under considera
tion undergo thermal motions. Thus the canonical variables 
and the dynamical functions must fulfill the appropriate 
equations of motion. As is well known, 8 

hs = -LNbs , (11 ) 

Xj [t ] = exp( - LNt)xj , (12) 

and also 

bs (XI [t ], ... ,xs [t ]) = exp( - LNt)bs (xl, ... ,xs)' (13) 

due to the fact that the time-evolution operator preserves the 
algebraic structure of the set of all the dynamical functions. II 
Here the abbreviation Xj ==Xj [0] has been used. 

Now let us consider the special case of the dynamical 
function B(x l, ... )=bN (XI, ... ,xN), cf. Eq. (7). By definition 
one has l2 

(B(O)BU) )= J dxl · .. dXN B(xl , .. ·) 

.B(xl[t], ... ) .F(xl, ... ,xN)' (14) 

(.8(0).8(t)= J dx]' .. dXN [ - LN{B(x1, ... )}] 

. [-LN{B(xl[t], ... )}] 

XF(xl,· .. ,xN) . (15) 

From Eq. (14) it follows immediately 

:t22 (B(O)BU» = J dx]' .. dXN B(x l,· .. ) 

. [( -1)2LN {LN {B(xd t ], ... )})] 

XF(xI"",XN) . (16) 

Since (i) LN is a linear differential operator and (ii) F to
gether with a sufficient number of its derivatives can be as
sumed to vanish at the boundaries of the system in configu
ration space and also for Pj = ± 00,

7 one can carry out the 
appropriate partial integrations straightforwardly and ob-
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tain from Eq. (15) 

(.8(0).8(t) = - J dx]' .. dXN B(x1,· .. ) 

• [ - L N{ - LN{B(xdt ], ... )} 

XF(xl,· .. ,XN )}] , 

which, with the aid ofEq. (6), proves that 

d: (B(O)BU» = - (.8(0).8(t) . 
dt 

(17) 

(18) 

It is easily seen that this equation can be proved also by 
starting with Eq. (16), and then by carrying out the appro
priate partial integrations that bring L N "on the left" of 
B(x l ,· .. )· 

III. s-PARTICLE DYNAMICAL FUNCTIONS (s<N) 

Now we are in the position to study in detail the validity 
of equations like (1), (2), (18), etc. For simplicity, let us for 
the moment consider a one-particle dynamical function b. 
The second time derivative of the correlation function 
(b(O)b(t» is7 

N 

XL bl(xj ). [LN{LN{b1(xj[t])}}]. 
j= 1 

(19) 

We also have 

(h(O)h(t) = J dx]' .. dXN F(xl,· .. ,XN) 

N 

XL [-LN{bl(xj )}] 
j=l 

(20) 

Before the integrations on the right-hand side can be carried 
out, however, the variables Xj [t] must be substituted with 
expressions depending on the integration variables xj , 

j = 1, ... ,N. But it is clear that Xj [t] is, in general, a compli
cated function of several variables, which are the "initial 
values" in the dynamical problem involving Xj [t]. This is, of 
course, due to the interactions L In, Eq. (4). Thus, in the 
limit t-. 00, Xj [t] becomes a function of all the variables Xj 
(j = 1, ... ,N). Therefore the following identities hold true: 

Xj [t] g(xj, ... ;j;t). (21) 

The functions g depend parametrically on the particular par
ticle number j as well as the time t. 

Now let t be sufficient "small," in the sense that the 
function g(xj, ... ;j;t) depends on a small number u(j) of 
variables, u (j) <N. The terms 

~,=LN{bl(xj[t])} and Wj, LN{~,} (22) 

depend then on specific numbers v (j) and w (j) of variables, 
respectively. Due to the dynamical couplings which are 
caused by the interaction Hamiltonian, one has very general
ly 

u( j) <,v(j) <,w( j) <N , (23) 
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for all} (and for sufficient small t and Ro). For thejth sum
mation term appearing in the right-hand side (rhs) of Eq. 
( 19), one obtains 

Sj:= f dxc" dXN F(xl,· .. ,xN) . bl (xj ) 

• LN (LN{b l (Xj [t ])}} 

= f dxc" dXN F(xl, .. ·,xN) . bl (XI) 

,LN (LN{b l( g(xI"",xu(j) ;};t))}} . (24) 

The renumbering of the integration variables on the rhs of 
this equation is permitted, because of the aforementioned 
symmetry properties of the functions bs and Funder permu
tation of the variables. Correspondingly, thejth summation 
term 1) in the rhs ofEq, (20) reads 

1):=f dxc"dxNF(XI""XN) ,LN{bl(xl )} 

,LN{bl(g(xI""xu(j);};t»)}. (25) 

From the above considerations it immediately follows that 
the factor LN{bl(xl )} depends on those variables that ap
pear in the factor LN{bl(g( ... »)}, too. Thus, those two fac
tors depend on the v( j) variables x, ... ,xv( j) • Let m be the 
maximum of v (j) and w (j). One is now in the position to 
carry out immediately the same number (N - m) of integra
tions over the variables Xm + I ,,,,,XN' in the rhs of equations 
(24) and (25). Thus, 

Sj = N! f dx!", dXm 1m (XI,· .. ,xm) 
(N -m)! 

,bl(xl ) ,LN{J'},}, (26) 

1) = N! f dxc" dXm 1m (XI,· .. ,xm) 
(N -m)! 

.LN{bl(xl )}· J'},. (27) 

In these formulas, of course, only a part of the complete 
Liouvillian LN becomes "active," since, by definition of the 
number m, it is true that 

L k/{J'},}=O, for k,l> m . (28) 

For this reason, the replacement 

(29) 

in Eqs. (26) and (27) is permitted; cf. definition (5). 
In order to prove the desired equation 1) = - Sj, one 

would try to make use of the partial integrations that proved 
Eq. (18). Because of the linearity ofLm and the vanishing of 
1m at the "boundaries" of the system [cf. the remarks after 
Eq. (16)], one obtains 

N! f s. = - dx l,·, dx V. 
J (N _ m)! m J' 

,Lm {1m (X1""'Xm )bl (XI)} 

= - N! fdxI ... dx V. 
(N-m)! m J' 

,bl(xl ) • Lm {1m (x!>· .. ,xm)} -1) . (30) 

But, in general, the first term on the rhs does not vanish 
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identically. This follows with the aid of the BBGKY hierar
chy7: in the special case of equilibrium ensembles (alsl 
at) = 0, s<.N, and one obtains explicitly 

Lm {1m} = itl f dXm+ 1 L ;m+ 1 {Im+ I (XI,· .. ,Xm+ I)}' 

(31) 

Thus it follows that, in general Sj + 1) # 0, for each 
} = 1, ... ,N. Therefore we conclude that, for t #0 (cf. Ref. 
13), 

d 22 (b(O)b(t» # - (h(O)h(t) , 
dt 

in opposition to the specific result (18). 

IV. DISCUSSION 

(32) 

Q.E.D. 

From the above considerations one obtains easily the 
following generalizations. 

( 1) The result (32) holds true also in the case of polya
tomic particles; in this case, however, the interaction Liou
villians must be characterized with sufficiently more indices. 

(2) The explicit introduction of the "reduced" Liouvil
lians Lm is illustrative but not crucial. This follows easily 
from the above Eq. (28) and Eqs. (3.4.4) of Ref. 7. 

(3) The quantities b can also depend at t = 0 on the 
degrees of freedom of several particles. 

( 4) The result (32) holds true also for the "cross-corre
lation function" (a(O)b(t», cf. Eqs. (2). 

(5) Similar relations concerning many-time correlation 
functions (a(O)b(t)c(t + t l ),,·) may also be affected by the 
above considerations, if strict stationarity [as in Eqs. (2) ] is 
used by their derivation. 

(6) The violation (32) also holds true for stationary 
nonequilibrium ensembles that represent systems in steady 
states. This is due to the fact that in the presented derivation 
only the conditions als I at = 0, s<.N have been used. Equa
tion (31) still remains valid in this case; cf. Ref. 7. 

It can be shown that the assumption (4) concerning the 
finite range Ro of the interactions is also not necessary.14 
Here, however, let us merely state on physical grounds that 
(i) the repulsive potentials do have a very short Ro and (ii) 

many theoretical long-range potentials have also a relatively 
small Ro in condensed matter, due to shielding effects. 

The result (32) reflects the continuous-in-time cre
ations and destructions of s-particle correlations between 
each particle} and (s - 1) particles of its environment 
s>m + 1; this process is due to the thermal motion. It is 
easily seen that, with increasing time, the numbers w (}) and 
m will also increase. Thus, for sufficient large t,both sides in 
(32) will become equal, because (i) it will be m = Nor (ii) 
the BBGKY hierarchy can be truncated. 

These considerations also illustrate the physical reason 
for the violation (32) together with the validity ofEq. (18): 
The Liouvillian L, acting on Is, s<.N, reveals information 
concerning correlations in an N-particle system (that are 
time independent for equilibrium ensembles, by definition). 
On the other hand, the action of L on b (t) determines the 
dynamical function h (t) (which, in general, is not a constant 
of the motion). But the partial integrations leading to Eqs. 
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(17) and (30) also interchange the quantity on which L 
acts, drastically revealing this subtle difference. 15 
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Details are given for the reduction of Baxter's expression for the exact partition function per 
site of the Zamolodchikov model to explicit form. 

I. INTRODUCTION 

In his remarkable exact solution for the free energy per 
site of the Zamolodchikov model on a cubic lattice, Baxter l 

obtains the expression 

K = s(l - V12) -1/4(1 - v/) -1/4exp{UI41T)G _ (VI2) 

(1) 

where 

G ± (x) = f [ In( ly+ y) - yl::l] dy + const. 

The parameters, defined in Ref. 1, are expressible in terms of 
the angles °1, °2, and 03 of a spherical triangle on the unit 
sphere and the corresponding sides ai' a2, and a3• After a 
short, but indirect transformation ( 1) can be put in the form 

InK= -lnr+ (1/1T)L 

1 3 [(0;) (0;)] +-.L Incos - -1T- Ia; In tan - , 
2 l~ I 2 2 

(2) 

where 

L la, X sin x d 
= f-l x, 

o 1 - (v - f-l cos X)2 

f-l = sin O2 sin °3, v = cos O2 cos °3 , (3 ) 

The purpose of this paper is to present the details of a reduc
tion of (2) to the symmetric form presented in Eq. (23) of 
Ref. 1. This result is of independent mathematical interest in 
that it is certainly not evident that the integral L is symmet
ric with respect to the angles °1, °2, and °3• 

II. CALCULATION AND RESULTS 

First, by a partial fraction decomposition and integra-
tion by parts 

L - 1 I (1 - f-l cos al/(l + v») 1 I --aln +-, 
2 1 + J.l cos al/(l - v) 2 

1= ra
, In ( 1 + f-l cos xl (1 - v) ) dx. 

Jo 1 - f-l cos xl(1 + v) 

Next, let 

(4) 

Al = (1/f-l) [(1 - v) - ~ (1 - v - f-l) (1 - v + f-l) ], 
A.2 = (1/.u) [v' (1 + v - f-l) (1 + v + f-l) - (1 + v) ] 

or 

Al = [1 - cos O2 COS O2 - 2 sin !I02 - 03 1 

X sin! (02 + ( 3 ) ]!sin O2 sin (}3' 

..12 = [2 cos !(02 + (3)COS !«(}2 - ( 3) - 1 

- cos O2 cos 03 ]!sin O2 sin °3 , 

We have the spherical triangle identities2 

t 1 Btl A cos(b - s)cos !c an - co - = - cos c, 
2 2 sin !A cos !B 
1 1 cosssinlC 

tan-Btan-C=cosc- 2, 
2 2 cos !B cos !A 

sin(s-b) .1 1 1 
--'----'-- = sm - C cos - B sec - A, 

sin a 2 2 2 
sin s 1 1 1 
-- = cos -B cos - C csc -A, 
sin a 2 2 2 

in the notation of Fig. 1. 

(5a) 

(5b) 

(5c) 

(5d) 

With A = (}2' B = °3, and C = 0 1 in (5a); A = °3, 

B = °2, and C = °1, in (5b); A = (}I' B = (}3' and C = (}3 in 
(5c); and A = °1, B = °2, and C = 03 in (5d); we get the 
simpler forms 

; _ sin(s - a2 ) 
/1.1- , ..12= 

sin(s - a3 ) 

By means of the identity 

sin(s-a l ) 

sin s 
(6) 

1 + _f-l_ cos x = _s_in_2_x:-- [1 + (A ± s+1.n cxos x )2] 
- 1 +v 1 +..1 2± 

with ..1+ = AI' ..1_ = ..12, the integral in (4) is reduced to 

I=alln(I+A~)+ ra

'ln(l+cot
2

U I )dX, (7) 
1 + A i Jo 1 + cot2 

U2 

where 

tan uj = sin xl(Aj + cos x), 

sin uj = sin(x - uj )IAj" 

Now, 

FIG. 1. Spherical triangle for Eq. (5). 
The perimeter is s = a + b + c. 
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la, In( 1 + coe U
j 
)dx 

= 2[ a l - $j ]lnlAjl 

- 2 f' -Si In I sin t Idt - 2 LSi Inlsin t Idt, 

where 

f;o _ t -I ( sin a l ) !>. - an . 
J Aj+cosal 

Eq. (3) becomes 

(8) 

Equation (8) was not easy to derive, but is easily verified by 
differentiating both sides with respect to a I' With the aid of 
(6) we have 

$1 = s - a3, $2 = S. 

In terms of Clausen's function 

f . 00 sin 2 kx 
¢J(x) = - 2 In 21sm t Idt = I 2 

k=1 k 

L = ~ alln 11 -,u cos al/(1 + v). sin
2 

s + sin
2
(s - a l ) sin

2
(s - a3) I 

2 1+,ucosal/(1-v) sin2(s-a2)+sin2(s-a3 ) sin2(s-al ) 

+sln ISin(~-a.I)Sin(S-a2) I +a2ln I s~n(s-a3) I +H¢J(s-al ) +¢J(s-a
2

) +¢J(s-a3) -¢J(s)]. (9) 
sm s sm(s - a3 ) sm(s - a2 ) 

Finally, by means of the identities in (5), the first two factors in the argument of the first logarithm in (9) can be shown to 
cancel and the remaining terms can be manipulated into the form 

L - 1 { I ISin(S-a2)Sin(S-a3 )I I ISin(S-a l )Sin(S-a3 )I -- al n +a2 n 
2 sin s sin(s - a l ) sin s sin(s - a2 ) 

+a3 ln ..1 2 +¢J(s-a l ) +¢J(s-a2 ) +¢J(s-a3) -¢J(s) . 
I 
sin(s - a )sin(s - a ) I } 

sm s sm(s - a3 ) 

(10) 

By combining (2) and (10) with the further identity2 

sinssin(s-a l ) _ t2~() -----'----'-'-- - co I' 
sin(s - a2)sin(s - a3 ) 2 

we arrive at Eq. (23) of Ref. 1. An alternative proof of this 
result starting from the form ( 1) has been found by Baxter3 

by using the properties of the Euler dilogarithm function. 
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It is shown that commuting transfer matrix models in statistical mechanics are parametrized 
by algebraic varieties having a set of automorphisms deduced from the so-called "inversion 
relation." In general this set of automorphisms is infinite: this shows that for algebraic varieties 
of dimension 1, the models are parametrized by algebraic curves of genus 0 or 1. 

I. INTRODUCTION 

Commuting transfer matrices provide the best known 
criterion for exactly solvable lattice models in statistical me
chanics (or models of quantum field theory). A key role is 
played by a special system of algebraic equations, the so
called Yang-Baxter equations (or star triangle relation or 
factorization equations): the underlying reason is that the 
(local) star-triangle relation is a sufficient (and, to some 
extent, necessary I ) condition for the commutation of (glo
bal) transfer matrices. 

These Yang-Baxter equations can be seen as certain ho
mological conditions that describe the structure of the exact
ly solvable models. A large number of solutions of the Yang
Baxter equations have been found and recorded.2

•
3 One 

should, however, note that all these solutions are parame
trized in terms of elliptic, trigonometric, or rational func
tions. The few examples that gave some hope to elaborating 
more sophisticated structures seem to confirm a somewhat 
disappointing situation: the two-dimensional vertex models 
for which a uniformization by theta functions of genus g > 1 
was introduced do not satisfy the Yang-Baxter equations 
despite the fact that a Zamolodchikov algebra does exist for 
these models (because of the Frobenius relation on theta 
functions)4,5; on the other hand, the remarkable solution to 
the three-dimensional generalization of the star triangle 
equation, namely the "tetrahedron equation," obtained by 
Zamolodchikov and Baxter, turned out to be closely related 
with the two-dimensional free fermion Ising model (for 
which an elliptic parametrization occurs). 6,7 The star-trian
gle relation appears to be a very stringent structure (overde
termined set of equations) and this fully legitimatizes the 
attempts to classify exhaustively these remarkable nontrivial 
solutions. Along this line one should recall the beautiful pa
pers of Belavin-Drinfeld (in which an exhaustive classifica
tion of some "classical" limit of the Yang-Baxter equations 
related to simple Lie algebras is displayed8

) as well as Jim
bo's success at "quantizing" this classical limit by introduc
ing a q-analog of the universal enveloping algebra and an 
associated Hecke algebra.9 But an exhaustive list of solutions 
is still unavailable. 

We will not deal in this paper with the (infinite-dimen
sional) Lie algebra aspects of the problem. The aim here is 
rather to suggest an approach to this classification problem 
that concentrates on the parametrization of the Yang-Bax-

a) Laboratory associated with CNRS VA 280. 

ter equations in the framework of algebraic geometry. We 
shall show that the parameter space of the exactly solvable 
models of statistical mechanics is naturally foliated by alge
braic varieties that are stable under the action of a generical
ly infinite number of birational transformations. Our prob
lem then reduces to classical problems of algebraic geometry 
(algebraic varieties possessing an infinite set of automor
phisms, diophantine equations, etc.) for which numerous 
results are available. 

In that generic case, the existence of an infinite set of 
automorphisms does not allow these algebraic varieties to be 
of the so-called "general type." In particular when these are 
of dimension 1 it means that the model can be parametrized 
by curves of genus 0 or 1 only (elliptic or rational parametri
zation). The study of these varieties, which are not of the 
general type, will lead us to make a distinction between the 
varieties obtained by a complete and an incomplete intersec
tion. 

The requirement that the group of automorphisms be 
finite very sharply constrains the model: for instance, in the 
case of the anisotropic q-state Potts model this imposes a 
restriction to the values 

q = 2 + 2 cos 21Tm/n (m,nEZ). 

These particular values have already been singled out by 
many authors (Tutte-Beraha numbers, two-dimensional 
models with conformal covariance, rational critical expo
nents, etc. 10,11 ) • 

The results of that paper are not restricted to two-di
mensional exactly solvable models. No assumption is made 
on the existence of a particular classical limit for the Yang
Baxter (or tetrahedron) equations. 

II. THE BAXTER MODEL 

Let us recall briefly some basic results concerning one of 
the most important exactly solvable model: the symmetric 
eight-vertex Baxter model. I2 It is parametrized by four ho
mogeneous variables (a,b,c,d)EP3' and the Yang-Baxter 
equations take the form of six trilinear homogeneous equa
tions for three sets of points in P3: (a,b,c,d), (a',b ',c',d '), and 
(a" ,b " ,c" ,d " ). This system of homogeneous equations has 
nontrivial solutions if 

FI(a,b,c,d) =FI(a',b',c',d') =FI(a",b",c",d") (1) 
and 

F2 (a,b,c,d) = F2 (a',b ',c',d') = F2 (a",b ",c",d"), (2) 

where 
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Fl = (a2 + b 2 - c2 _ d 2) lab 

and 

F2 = cd lab. 

The Yang-Baxter equations imply the commutation of the 
2N X 2N row-to-row transfer matrices for arbitrary N (N is 
the number of vertices in a row), that is, 

[TN (a,b,c,d), TN(a',b',c',d)] =0, 

when Eqs. (1) and (2) are satisfied. 
The integrability of the model leads thus to the follow

ing foliation of the parameter space: 

Fl (a,b,c,d) = Kl = const, 

F2(a,b,c,d) = K2 = const. 
(3) 

One recognizes the well-known projective representation of 
an elliptic curve as an intersection of quadrics in P 3 

(Clebsch's biquadratic). One can introduce the following 
elliptic parametrization: 

a = p.sn(v + 1J,k), 

b =p·sn(1J - v,k), 

c = p·sn(21J,k), 

d = pk·sn(21J,k)sn(1J - v,k)sn(v + 1J,k), 

with 

Kl = 2 cn(21J,k)·dn(21J,k), 

K2 = k sn2(21J,k), 

(4) 

where sn, cn, and dn are the Jacobian elliptic functions of 
modulus k. With that elliptic parametrization the Yang
Baxter equations simply read 

v + v' + v" = 1J. (5) 

In this particular case we have an obvious connection 
between the Yang-Baxter structure and the Abelian charac
ter of the algebraic curve. There also exist exact symmetries 
on the model, the so-called inversion relations, 13 which cor
respond to rational transformations on the parameters of the 
model. These transformations are involutions and will be 
denoted by I and J: 

I: a __ al(a2 - d 2), b--b I(b 2 - c2), 

c-- - cl(b 2 - c2), d-- - d l(a2 - d 2), (6a) 

J: a __ al(a2 - c2), b--b I(b 2 - d 2), 

c __ -cl(a2-c2). d __ -d(b 2-d2). (6b) 

Here Fl and F2 are invariant under I and J. With the elliptic 
parametrization I and J reduce to 

I: V---+ + 21J - v, J: v---+ - 21J - v. 

They are conjugate via the "crossing" symmetry on the mod
el 

a_b, V---+ - v. 

These involutions generate an infinite discrete group G of 
symmetries of the model isomorphic to the semidirect prod
uct 

Z2EBZ (V---+±v±2n1J, nEZ). 

This infinite set of birational transformations preserve the 
elliptic curve (3) and the modulus of the elliptic functions. 
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One should not confuse these transformations with the iso
genies of the elliptic curve (Landen, Jacobi, Legendre trans
formations). One of these isogenies, the Landen transforma-

tion k---+k L = 2$1(1 + k) can be identified with a 
generator of the renormalization group for that model (a 
fixed point of that transformation is k = 1. the critical point 
of the model): the group G and the renormalization group 
act in an "orthogonal" way. 

Finally the Baxter model trivializes on the so-called dis
order varieties of the parameter space, on which the parti
tion function reduces to that of an isolated vertex. For this 
model these varieties have a very simple expression; one of 
these varieties, for instance, reads 

a + d = b + c. (7) 

The partition function per size Z is then very simple: 

Z=a +d. (8) 

Of course these disorder varieties correspond to a trivializa
tion of the parametrization: equation (7) corresponds to a 
relation between Fl and F2 and a value of the modulus of the 
elliptic functions for which this parametrization trivializes 

III. INTRODUCTION TO THE GENERAL SITUATION 

For the sake of simplicity we restrict ourselves to the q
state IRF model3 but the ideas we develop here also apply 
straightforwardly to two-dimensional vertex models. three
(or higher-) dimensional models. In order to fix the nota
tions let us first recall the definition of the q-state IRF model. 
The spin variable associated to each site i of a square lattice 
are assumed to take q values: W( 0';. O'j, 0' k • 0'/ ) is the Boltz
mann weight associated to each of the q4 spin configurations 
around a face with sites iJ.k,l (see Fig. 1). The model de
pends therefore on q4 homogeneous parameters (Xl •...• X; , ••• , 

Xq4 ). The partition function per site Z is defined by 

ZN = I IIW(O';'O'j,O'k,O'/) (O';EZq), (9) 
{o-,} 0 

where the product is taken over all the elementary square of 
the lattice and N is the number of these squares. 

More accurately the partition function (or even the 
transfer matrices) are invariant under some "gauge" trans
formations 

D(O';.O'/) !:l(O';'O'j) 
W( 0'; 'O'j'O' k .0'/ )---+ W( 0'; 'O'j'O' k ,0'/) -------""--

D(O'j'O'k) !:l(O'/'O'k) 
( 10) 

The analysis made in this paper forgets these trivial transfor
mations. There exist two inversion relations I and J. They 
act on the Boltzmann weight to give WI and WJ defined by 
(see Fig. 2) 

I W(O';'O'j 'O'k .0'/ ) • WI (O'/'O'k,O'j'O'm) = A .~O';,O' m' (lla) 
<7> ' 

I W( 0'; 'O'j'O' k .0'/ ) • WJ (O'j'O' m ,00t,0' k) = A· ~O';,O' m • ( 11 b) 
<7> 

These transformations amount (up to a rotation 0/ the ele
mentary square) to looking at W, in two different ways, as q2 
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FIG. 1. The Boltzmann weight W(O'" O'j' 

O'k,O'/) associated to each of the q4 spin con
figurations (0'" O'j' O'k' 0'/) around a face 
with sites iJ,k,l. 

qXq matrices, and taking the inverse ofthese q2 matrices as 

(W( O'i 'O'j'O' k ,0'/ ) -> WUi,Uk (O'j'O'/ ) or WUpu/ (O';'O'k )}. 

Because of this composition by a rotation these transforma
tions are not involutions as the one previously introduced for 
the Baxter model; they are generally of infinite order. 

These transformations / and J are both birational trans
formations 

Pi (Xj> ... ,xq4) 
x·-> =/(x i ) orJ(x i ), 

I Qi (x l , ... ,Xq4 ) 

(12) 

where Pi and Qi are two homogeneous polynomials of de
gree q - I and q in the Xi'S, respectively, with integer coeffi
cients ( + 1 or - 1). 

This model may seem to be too general, depending on a 
too large number of parameters. The usual practice corre
sponds to imposing different symmetries or constraints on 
the model in order to restrict the number of homogeneous 
parameters of the model (equalities between different Xi'S, 

exclusion of some configurations Xj = 0, etc) from q4 to n. In 
the following we will restrict the parameter space to such a 
homogeneous space Pn _ I with the condition that the (ra
tional) transformations / and J leave that subspace invar
iant. Heuristic arguments based on the transfer matrix for
malism enable us to show the partition function per site pre
sents some automorphy properties with respect to these two 
transformations (1la) and (1lb) andofcoursethegroupG 

h ti · 14 generated by t ese two trans ormahons : 

Z(xI"",xn )·Z (/(XI ), ... , /(xn)) = A, 

Z(xI"",xn ).Z(J(x.), ... ,J(xn )} = A I. 

(1m (j". 

W1 ~) G"'t A.S 
W °i/um 

(J". 
'-' <:i'l 

(13a) 

(13b) 

FIG. 2. Pictorial representation of the definition of the two inverse Boltz
mann weights WI and WJ • 
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The group G is, in general, an infinite discrete group. We 
now suppose that the model is exactly solvable in the sense 
that the Yang-Baxter equations are satisfied for the model. 
This leads to the commutation of the row-to-row (and also 
column-to-column) transfer matrices for arbitrary size N 
([TN (W), TN (W')] = OJ. The commutation oftransferma
trices of specific sizes N leads to a set of algebraic equa
tions l ,14.15 (see Appendix A for a simpler demonstration 
than in Ref. 1): 

Fa.N (x 1""'Xn ) = Fa.N (xi , ... ,x~ ), 

where 

Ua.N (x ., ... ,xn ) 
Fa N (X I"",x n) = ---=:::..:...--.:~--.:-

. Va.N(XI,· .. ,xn) 

(14) 

where Ua •N and Va •N are homogeneous polynomials (of de
gree da •N ) with integer coefficients. It can be shown that the 
algebraic varieties defined by the intersection of the expres
sions Fa •N corresponding to the row-to-row and column-to
column transfer matrices are invariant under the transfor
mations / and J (see Refs. 14 and 16): 

Fa.N(XI, .. ·,xn ) = Fa.N(/(XI),· .. ,/(xn )} = ... . (15) 

This is a consequence of the fact that if a Yang-Baxter equa
tion exists for the Boltzmann weight ( W, W', W" ) there nec
essarily exists another one involving W; and Wand in fact 
an infinite set of other triplets of Boltzmann weights corre
sponding to some transformations of the initial triplet 
( W, W', W") under the action of the group G (see Ref. 14). 
In the previous example of the Baxter model this corre
sponds to saying that Eq. (5) is also satisfied if one replaces 
(v,v',v") by (2n l 1J + v,2n 21J + V',2n31J + v") with 
n I + n2 + n3 = O. 

An integrable model must therefore present the two fol
lowing remarkable features. 

(i) The infinite set of equations (14) corresponding to 
the various values of N must be redundant and equivalent to 
a finite set of m equations (m.;;;n - 2) we will denote from 
now on by Fa (a = l, ... ,m) (if this is not the case we are 
reduced to the trivial commutation of a matrix with itself). 

(ii) The algebraic variety r defined by the intersection 
of these m equations (of dimension n - 1 - m) has to be 
invariant under the infinite discrete group G of birational 
transformations in P n _ I . 

Therefore one sees that the exactly solvable models are 
naturally parametrized in terms of algebraic varieties that 
have (in the general case) an infinite group of automor
phisms. 

IV. RESULTS 

A. Algebraic curves 

In almost all the examples of exactly solvable models 
known in statistical mechanics the algebraic varieties r 
turn out to be of dimension 1 (i.e., an algebraic curve). The 
following result is well-known: the only algebraic curves 
with an infinite group of automorphisms are of genus 0 or 1 
(see Ref. 17). 

In other words, if the group G does not degenerate into a 
finite group G, one has to deal with a rational or elliptic pa-
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rametrization. This result can be understood in the following 
heuristic way: the main distinction between the curves of 
genus 0 or 1 and curves of the general type of genus g> 2 (for 
which one would have to envisage a uniformization in terms 
of automorphic functions) lies in that there exists a finite 
number of particular points, called the Weierstrass points, 
for the curves of general type. (A point is called an ordinary 
point if the gap values are 1,2, ... ,g; otherwise it is called a 
Weierstrass point.) The group G that leaves invariant the 
algebraic curve must leave invariant these points. One un
derstands that it is difficult for an infinite discrete group to 
leave invariant such a finite set of points. An old demonstra
tion of Hettner (and also N oether) is based on these ideas. It 
is amusing to notice that if we consider a rational point in 
Pn - I (XiEQ::::}FaEQ), the images of that point by the infi
nite group G are also rational points. We are thus led to an 
algebraic curve with a (generically) infinite set of rational 
points: Falting's theorem confirms that the curve has to be of 
genus 0 or 1 (see Ref. 18). 

Now that we have a precise characterization of the 
curves that can possibly arise in the context of exactly solv
able models it is useful to study the projective representation 
of an elliptic curve (in P n ); the results are the following: the 
only case when a curve of genus 1 is given by a complete 
intersection are the plane cubic in P 2 and the previous 
Clebsch's biquadratic in P3; the other representations are in 
P n (n>4) and correspond to incomplete intersections. The 
case of incomplete intersection may, at first sight, seem rath
er academic as far as statistical mechanics is concerned. 
However, there does exist at least one interesting example of 
model corresponding to that situation: for the hard hexagon 
model 19 the elliptic curve that parametrizes the model is giv
en by an incomplete intersection of a quadric 
Fl = const = C I , a cubic F2 = const = C2, and a quartic 
F3 = const = C3 in P4• 

(16) 
2 + 2 22 22 

F 
_ X IX 2X s X IX 3X 4 - X 4 X S - X 2X 3 

3-
X~3X4XS 

On these expressions one verifies immediately that the inter
section is incomplete (as it should) because it contains the 
spurious varieties XI = X 2 = X 4 = 0 and XI = X3 = Xs = O. 
The genus of the algebraic curve defined by this intersection 
can be calculated from the formula of addition of the charac
teristic of Euler-Poincare: 

with 

l-g=X(Op) -X(O( -2») 

- X(O( - 3») - X(O( - 4») + X(O( - 5») 

+ X(O( - 6») + X(O( -7») - X(O( - 9»), 
(17) 

x(O(n») = [(n + l)(n + 2)(n + 3)(n + 4) ]/4! 

leading to a rather high genus if there were no singularities. 
The g = 1 case of the hard hexagon model corresponds to 
two relations between the previous constants Ci that raise 
the number of singularities to a maximum and thus reduce 
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the genus to a minimum (g = I): 

CI,C2 = 1 and CI + C2 = C3• 

B. Algebraic surfaces 

The problem of the classification of algebraic surfaces is 
much more complicated.2o There exist invariants playing a 
role similar to the genus for curves (Kodeira's dimension, 
etc.) One can sketch the classification that way: first come 
surfaces of "general type," which have only a finite number 
of automorphisms. This case is excluded when G is infinite. 

The surfaces that are not of the general type fall into five 
different classes (up to a birational correspondence): (a) the 
rational surfaces birationally isomorphic to P 2; (b) the ruled 
surfaces (r X PI) (these are surfaces that can be mapped 
onto a curve in such a way that all fibers of this mapping are 
isomorphic to PI); (c) the elliptic surfaces (fibrations by 
elliptic curves); (d) Abelian surfaces; and (e) K 3 surfaces. 
The K 3 surfaces have the property in common with Abelian 
surfaces that their canonical class is O. However, in contrast 
with Abelian surfaces there are no regular one-dimensional 
forms on them. 

These five sets of surfaces can all admit an infinite set of 
automorphisms. 

Let us now assume that the algebraic variety r is given 
by a complete intersection (this corresponds a priori to the 
simplest situation in statistical mechanics). 

A classical theorem (see Ref. 21, pp. 401 and 402) 
shows that complete intersection of dimension 2 has a trivial 
homotopy group (17'1 = 0). Thus the assumption of com
plete intersection excludes the Abelian surfaces and imposes 
that the variety r has singularities. To be more specific, this 
situation of complete intersection occurs for a cubic or a 
quartic in P 3' for the intersection of two quadrics in P 4 corre
sponding to a rational surface, and for the intersection of a 
quadric and a cubic in P 4 or the intersection of three quadrics 
in Ps that correspond to a surface of type K 3. 

In the case of a surface of type K 3 any explicit parame
trization of the surface is, of course, hopeless. 

c. AlgebraiC varieties of dimension> 2 

Little information is available concerning the classifica
tion of these varieties. However, remarkable progress has 
been made during the past few years.21 It is possible to define 
some invariants that unfortunately play only partially the 
role of the genus for algebraic curves (Betti numbers, etc.). 
Despite this complexity it is possible to single out varieties of 
a "general type" for which the number of automorphisms is 
finite. 

The varieties that are not of a general type constitute a 
jungle, which is, however, fairly well understood in the sim
plest case of complete intersection. 

Thus the situation seems rather unsatisfactory: one 
would like to be able to find other algebraic varieties invar
iant under the action of the group G that would make it 
possible (by taking the intersection with the algebraic varie
ties r) to restrict the problem to an algebraic variety of 
lower dimension (eventually of dimension 1, leading to a 
foliation of the algebraic variety by curves of genus 0 or 1). 
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Fortunately such varieties can be obtained taking into 
account the fact that the inversion relations correspond (up 
to rotations of the elementary square) to taking the inverse 
of a set of matrices (see Appendix B). Of course, this ap
proach applies only for algebraic varieties of dimension ;;;.3. 
In the case of the Baxter model one can, for instance, exhibit 
in this way algebraic varieties defined by an intersection ac
tually invariant under the group G: 

abed /[ (a2 - c2)(b 2 _ d 2) J = const, (18a) 

(18b) 

However, the curve given by the intersection of these two 
quartics has, in general, no intersection with the elliptic 
curve (3). 

V. G IS A FINITE GROUP 

The previous analysis is based on the infinite character 
of the group G. When the group G is finite this leads to 
algebraic constraints on the parameter space that character
ize the model very precisely. For every element g of G there 
exists an integer p such that gl' is equal to the unit element of 
G. This equality translated on the homogeneous parameters 
Xj means that the model is restricted to some very particular 
algebraic varieties. 

Let us now recall the hexagon model, which can be seen 
as a subcase of the S.O.S. eight-vertex Baxter model22

: de
spite the fact that this model has a finite group G, it presents 
(as we have mentioned already) an elliptic uniformization, 
which can be seen as a restriction of the elliptic uniformiza
tion ofthe Baxter model.23 Nevertheless, it is true that it is 
difficult to specify the algebraic varieties corresponding to a 
model, with a finite group G, that is not obviously embedded 
into a larger model with an already known uniformization. 
It is, however, possible, in the case of algebraic curves of 
genus g, to give an upper bound of the order of the finite 
group G (see Ref. 17): [GJ <84g - 3. 

VI. DISORDER VARIETIES 

We have already remarked that the Baxter model trivia
lizes on a simple disorder variety (7). In fact such disorder 
varieties are quite easy to find24 and their corresponding co
dimension is rather low. For instance, in the case of the 16-
vertex model, there exist disorder varieties of codimension 1 
in the parameter space. This should be compared with the 
codimension of the parameter space of the exactly solvable 
subcase of that model, the Fan and Wu free-fermion model7 

and the Baxter model of codimensions 4 and 5, respectively. 
For instance let us consider a subcase of the 16-vertex 

model that has the two previous integrable models as sub
cases (but is not integrable in general): the asymmetric 
eight-vertex model. The homogeneous parameters of that 
model are usually denoted a,a', b,b " e,e', d, and d ' (the sym
metric eight-vertex model corresponds to a = a', b = b', 
e = e', and d = d '). That model has a disorder solution on 
the (disorder) variety given by the quartic equation (this 
result has also been obtained recently by Giacominj25) 

(a + a') + (a + a')2 - 4(aa' - dd'»)1/2 

= (b + b') + (b + b ")2 - 4(bb' - ee'»)1I2. (19) 

If the model were integrable, there should occur a trivializa-
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tion of the parametrization on this disorder variety and also 
on the images of this variety by the infinite group G generat
ed by the two inversion relations. It is a simple and instruc
tive exercise to verify that there does, in fact, exist an infinite 
number of such images except in the two already-mentioned 
cases of the Baxter model and the free-fermion model 
(aa' + bb' = ee' + dd '), where the number of images of 
(19) under the action of the infinite group G is finite. The 
checkerboard Potts is another example of an infinite number 
of images of a disorder variety under the action of G (see Ref. 
26); moreover one has a remarkable and instructive agree
ment between the exact expressions of the (analytical con
tinuation of the) partition function on this infinite set of 
algebraic varieties and the exact expression of the partition 
function on the critical variety where the model is exactly 
solvable.27 

The existence of such an infinite set of varieties at first 
seems hardly compatible with the exact solvability of the 
model. An obvious situation where this set is finite is when 
the group G is itself finite. Let us consider the checkerboard 
Ising model: this model has an elliptic uniformization and 
the modulus of the elliptic functions that occur is given (in 
terms of the high-temperature variables tj = th K j and the 
dual variable 

1 - t 
t* = --', by Eq. (20): 
, 1 + tj 

4 t.(t'!'+t'!'t*t*)(1-t 2
) k=II" J k / , , 

j=1 tr(tj +t/k t/)(1-tr2
) 

(20) 

(i,j,k,l) = (1,2,3,4). 

This algebraic expression trivializes on the disorder varieties 
of the model, on the dual of these disorder varieties (and of 
course when the coupling constant of the model trivializes 
tj = 0, tj = ± 1, t r = 1). From this example it is rather 
tempting (if one is willing to bet on the exact solvability of 
the noncritical three-state Potts model) to guess an algebraic 
expression k associated to that model from the known equa
tions of the disorder varieties and their images under the 
group G (see Refs. 28 and 29). 

VII. CONCLUSION, PROSPECTS 

The exactly solvable models are parametrized by means 
of algebraic varieties having a group of automorphisms de
duced from the so-called "inversion relations." It is very 
constraining for a model of statistical mechanics to ask for 
this group to be finite. It is, in general, infinite and this shows 
that these algebraic varieties are not of the "general type" 
(but this does not prove that they should be Abelian varie
ties). For algebraic varieties of dimension 1, this sheds a new 
light on the occurence of curves of genus 0 or 1 only for all 
the exact models known at the present moment. Of course 
this is just a preliminary work and these ideas will be pursued 
in forthcoming publications. The ideas we have developed 
here also apply, mutatis mutandis, to statistical models in d 
dimensions with the difference that the number of inversion 
relations that generate the group G grows with the dimen
sion d. A priori there is no relation between these generators. 
Therefore the group G is in general a very "large" one (infi-
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nite discrete of course): is it possible for algebraic varieties to 
have such a large group of automorphisms? 
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APPENDIX A: ALGEBRAIC CONDITIONS FOR 
COMMUTATION 

The commutation of two n X n matrices T and T' leads 
to the existence of algebraic expressions in the coefficients of 
these two matrices Fa (T) = Fa (T'). They can be seen as 
some symmetric functions of the eigenvectors shared by T 
and T'. We sketch here a simple way to get these Fa's: Let us 
denote by C and C' two matrices that are linear combinations 
of powers of T and T', 

n-I 

C= I,ap.T P
, 

p=o 

We have 

n-I 

C'= I,a;.T'p. 
p=o 

[T,T'] = O:::>[C,C'] = 0. (AI) 

Let us denote by Cij, Cij, Tij, and Tij the coefficients of these 
matrices. We can choose ap and a; some algebraic expres
sions of the Tij and T ij such that 

CIj = 0, j = I, ... ,n - 1, Cln ;60, 

Cij =0, j= I, ... ,n -1, Cin;60. 

Equation (20) then leads to 

Vi: Cin/C~i = CIJCni • (A2) 

Similar algebraic expressions can be obtained imposing C 
such that 

Cij = 0, j = I, ... ,n - 1, Cin ;60. 

APPENDIX B: G-INVARIANT VARIETIES 

The characteristic polynomial PM (A.) of an n X n matrix 
M and of its inverse matrix M - I are related: 

(Bl) 

We denote by Ci the coefficients of PM (A.) and obtain 

PM(A.) = A. n + CI'A. n - 1+ ... + CiA. n - i + ... + Cn . 

An immediate consequence of (B 1) is that the expressions 
t/Ji = CiCn _ ilcn are invariant under the transformation 
M---+M -I. These expressions are the ratio of two homogen
eous polynomials of degree n in the coefficients of the matrix 
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M. The inversion relations I and J correspond (up to a per
mutation of the homogeneous parameters of the model Xi ) 

to taking the inverse of a set of q2 matrices M a' One can 
associate to each of these matrices the corresponding expres
sions t/Jf. 

Let us consider t/Ji the product of the t/Jf and algebraic 
expressionsAj invariant under the previous permutation of 
the Xi; the algebraic variety defined by the intersection of 
equations 

t/Ji (x!>''''xn ) = const, Aj (xI, .. "xn ) = const 

is invariant under the inversion relations I and J. 
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In one space-and in one time---dimension a diffusion equation is solved, where the first time 
derivative is replaced by the A-fractional time derivative, 0 <A";; 1. The solution is given in 
closed form in terms of Fox functions. 

I. INTROOUCTION 

The concept of fractional derivatives, expressed as a 
convolution with tP J. (see Ref. I) and the theory of Fox func
tions2

-
s are used to solve the following two fractional diffu

sion equations. 
Problem I: 

a2 

a2- 2 T(x,t) =tP_J.(t)*T(x,t), xeR+, 
ax 

a>O, o <A";; I, 

T(x,O) = O(x), T(O,t) = 0, t>O. 

Problem IL· 

2 a2 

a ax2 T(x,t) = tP -J. (t)*T(x,t), xeR+, 

a>O, o <A";; 1, 

T(x,O)=O(x), T(0,t) = -1, t>O. 

(1.1 ) 

( 1.2) 

Observe that problem I and problem II only differ by a trans
lation in temperature. However, by treating the two prob
lems separately, we will see the different information con
tained in the corresponding Fox function solutions. This 
reflects relations amongst Fox functions. 

For A = 1, the problems reduce to classical diffusion 
problems. In this case we have the solutions. 

Problem I (A= 1): 

T(x,t) = Erf(1!2a)t -1/2X ), xeR+. (1.3) 

Problem II (A= 1): 

T(x,t) = Erf((1/2a)t -1/2X) - 1, xeR+. (1.4) 

The long time behavior in problem I for A = 1 is given by 

T(x,t)::::::(l!a)1T- 1/2(xt- I /2). (1.5) 

For 0 <A < 1, we have a nonstandard diffusion, possibly 
being due to impurities. We solve problem I and problem II 
exactly and discuss the asymptotic behavior. 

II. THE FRACTIONAL DIFFUSION EQUATION 

The fractional diffusion equation for both of our prob
lems is the following integrodifferential equation 

2 a2 l' (t-r)-J.-I 
a - T(x,t) = T(x,r) dr, xeR+, 

ax2 
0 rc - A) 

where 0 < A";; 1. Here we take into accoune that 

tPJ.(x)==x+J.-1/r(A) 

are distributions in (D ') + and entire in A. 

(2.1 ) 

(2.2) 

Both of our problems are invariant under the following 
scaling: 

0">0, X-+(TX and t~/J.t, 

and thus 

T(x,t) = F(t -Al2X ). 

This is shown by using the substitutions 

y=t-J.I2X , z=r-J.12x 

(2.3) 

(2.4 ) 

(2.5) 

in the integrodifferential equation (2.1). We get now an 
equation for F(y): 

a2 d
2
F(y) = 2 (00 dzyllJ.z -I-21J.F(z) 
dy2 Ar(-A) Jy 

Introduce the distribution 

{ 

2 (1_w21J.)-J.-I, 
g(w) = Arc -A) 

0, w> 1, 
then Eq. (2.6) reads 

(2.6) 

(2.7) 

a2~F(y)=y21J.loo dZZ-I-21J.F(z)g(~). (2.8) 
dy2 0 z 

The boundary conditions are as follows in the problems be
low. 

Problem L· 

F(O) = 0, F( 00 ) = 1. 

Problem II: 

F(O) = - 1, F( 00 ) = O. 

III. SOLUTIONS OF THE PROBLEMS 

(2.9) 

(2.10) 

We first compute the Mellin transform6 ofEq. (2.8): 

P(s)= loo F(y) y'-I dy, (3.1) 

a2(s-I)(s-2)PCs-2) = P(s)g(s + (2IA»); (3.2) 

with 

A(S) = r(AI2)s) 
g r( - A + (A 12 )s) 

(3.3 ) 

We then get the difference equation 

a2(s _ 1) (s _ 2)P(s _ 2) = r(1 + (A /2)s) pes). 
r(1- A + (A 12)s) 

(3.4 ) 
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Taking into account the path and pole structure, ex
plained in the Appendix, the solutions, compatible with the 
boundary conditions, are as follows. 

let 

ProblemL' 

pes) = 17- I / 2 (2a)' r( - s)r(! + s/2)r( 1 + s/2) . 
r(1-s)r(l + (A./2)s) 

(3.5) 

ProblemIL' 

pes) = _17- 1/ 2 (20)' r(s)rq + 2/s)r( 1 + s/2) . 
r(1 +s)r(1 + (A./2)s) 

(3.6) 

We now compute the inverse Mellin transforms: First 

(3.7) 

Then 

F(y) = 17- I / 2h ( 1I2a)y), (3.8) 

where h(z) is given by the following problems. 
Problem I: 

h(z) 1 [+ioo r( -s)rq + ¥)r(1 + ¥) -sd - z s. 
2m c-loo r(1-s)r(1 + (A./2)s) 

(3.9) 

ProblemIL' 

h(z) = __ l_ic+ioo r(s)r(!+!s)r(1+!s) z-sds. 
217i c-ioo r(1 +s)r(1 + (A./2)s) 

(3.10) 

Replacing s by - s and using the theory of Fox functions 
(see the Appendix) we get for our two problems the follow
ing solutions. 

Problem L' 

h(z) =-I-i r(s)rq-!s)r(1-!s) zSds. (3.11) 
217; L r(1 + s)r(1 - (A. /2)s) 

The Fox parameters are 

m=2, bl =!, /31 =~, 
b2 = 1, /32 =!, 

n= 1, a l = 1, a l = 1, 

q=3, b3 =0, /33 1, 

and thus 

h(z) =H~~ (zl (1,l);(1,A./2) ). 
(!,D,( q);(O,I) 

ProblemIL' 

(3.12) 

h(z) = --I-i r( -s)rq - ¥)r(1- ¥) zSds. 
217i L r(1-s)r(l- (A./2)s) 

(3.13) 
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The Fox parameters are 

m=3, b l =0, /31 = 1, 

b2 =!, /32 =!, 

b3 = 1, /33 =!, 

n=O, 

q=3, 

p=2, a l = 1, a l = 1, 

a2 = 1, a2 =A./2, 

and thus 

h(z) = _H~~(zl-;(1,I),(1,A./2) ). 
(O,l),q,p,(1,!); -

IV. POWER SERIES EXPANSIONS, ASYMPTOTIC 
EXPANSIONS 

(3.14) 

According to the theory of Fox functions we identify the 
following expressions. 

ProblemL' 

A(s) = r(! !a)r(l ¥), 
B(s) = res), 

C(s) = r(1 +s), 

D(s) = r(1- (A. /2)s). 

The poles of A are given by 

peA) = {s = k, k = 1,2, ... } 

and the poles of B by 

PCB) = {s = - k, k = 0,1,2, ... } 

and thus P(A) /\ PCB) =,p. 
Problem II: 

A(s) = r( -s)rq - ¥)r(1- !s), 

B(s) = 1, 

C(s) = 1, 

D(s) = r(1 - s)r(l - (A. /2)s). 

The poles of A are given by 

peA) = {s = k, k = 0,1,2, .. .} 

and the poles of B by 

PCB) =,p, 
and thus indeed P(A) /\ PCB) =,p. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

For our two problems we now get the following power 
series expansions. 

Problem I: First notice that It = 1 - A. /2 > 0. Then 

H~~ (z) = - L Res (A(S)B(S) z') (4.7) 
seP(A) C(s)D(s) 

or explicitly 

00 1 
h(z) =2 L (_l)k_ 

k=O k! 

X [_1_ r(! - k) zZk+ I 

2k + 1 r(l (A. /2) A.k) 

+_1_ r(-!-k) zZk+2]. (4.8) 
2k + 2 r(1 A. - A.k) 
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Problem /L' First notice that f.l = 1 - A /2> O. Then 

H~~ (z) = - L Res(A(S)B(S) z') (4.9) 
seP(A) C(s)D(s) 

or explicitly 

00 1 
h(z) = -V1T+2 L (_l)k_ 

k=O k! 

X [_1_ r(! - k) ~k+ 1 

2k + 1 r(1 - (A /2) - Ak ) 

+_1_ r(-!-k) ~k+2]. 
2k+2 r(1-A-Ak) 

(4.10) 

We now determine the asymptotic behavior of our solu
tions. 

Problem I: First observe that 8 = (1 - A /2)1T = f.l1T 
and thus 8> (1T/2)f.l. Then 

H~~(z);::: L Res(A(S)B(S) z') 
seP(B) C(s)D(s) 

or explicitly 

h(Z);:::V1T, 

as Izl~oo, uniformly on every closed subsector of 

larg zl < (1T/2) (1 - ..1/2). 

(4.11 ) 

( 4.12) 

Problem IL' First observe that n = ° and q = m and thus 
8 = f.l1T. Therefore we have an exponentially small behavior. 
Then 

H ~~ (z);::: - 21TE(zeiTrJt ) 

with 

a =~, f3 = 2(..1 /2)A/2, f.l = 1 - A /2. 

We find 
00 

H ~~ (z) ;:::f.l-3/2f3 - I/2Jt L (- l)kAkf.l - k 
k=O 

xf3 - k IJtz( - 1 - 2k)/2Jte - Jtll l/I'zl/I' , 

(4.13 ) 

(4.14 ) 

For x > 0 we have the following long-time behavior. 
Problem I: 

Tex,t);::: 1 J.. t -J./2x. (5.3) 
r(1-A/2) a 

Problem /L' 

T(x t) - - 1 + lit -J./2x. (5.4) 
, - r(1-A/2) a 

For the special case A = 1, we have the usual diffusion equa
tion. From (4.8), (4.10), and (4.14) we get the following 
results: 

Problem 1(..1 = J): 

2 00 1 1 (1 )2k + 1 T(x,t) =- L (_l)k __ - _t-1I2x 
.fii k=O k! 2k + 1 2a 

= Erf( 2~ t -1/2X). (5.5) 

Problem 11(..1 = J): 

T(x,t) = - 1 + Erf(l/2a)t - 1/2X) (5.6) 

and the exponentially small asymptotic behavior 

T il -1/2 ( X2) (xt);::: ---t xexp ---, .fii 2a 4a2t ' 
(5.7) 

as 

x/.Jt ~oo. 

We have treated the two problems in a parallel way to exhibit 
the richness of Fox functions especially as related to the 
asymptotic behavior. 

Remarks: (1) The above analysis is also valid for 
1<..1<2. 

(2) The fractional diffusion equation has been derived 
by Nigmatullin7 for a medium with fractal geometry (po
rous medium). 

as Izl ..... 00 uniform on every closed subsector of 
larg zl <f.l(1T/2). The coefficientAo is given by APPENDIX: FOX FUNCTIONS3.5 

(4.15 ) 

v. EXPLICIT SOLUTIONS AND DISCUSSION 

From (2.4), (3.8), (3.12), and (3.14) we find the solu
tion to our problems. 

Problem I: 

T(x,t) 

_ -1/2H 21 ( 1 t -A12 1 (1,1);(1,..1/2) ) -1T 23 - X . 
2a (!,!),( l,!); (0, 1) 

Problem IL' 

T(x,t) 

(5.1 ) 

_ -1/2H 30 (1 -A/2 1-; (1,1),(1,..1 /2) ) --1T 23-t x . 
2a (O,l),(!,P,(q);-

(5.2) 
From (4.8) and (4.10) we see that the boundary conditions 
are satisfied. From (4.12) and (4.14) we see that also the 
initial conditions are satisfied. 
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The Fox function 

H~n(z) 

( I 
(al,al),· .. ,(an,an);(an+l,an+I),···,(ap,ap) ) 

=Hmn z 
pq (b l .f3I ),···,(bm.f3m );(bm+ l.f3m+ 1 ), ... ,(bq.f3q ) 

is defined by the contour integral 

Hmn(z) =~ f A(s)B(s) z'ds, 
pq 2m JL C(s)D(s) 

with 
m 

A (s) = II r(bk - f3k S), 
k=1 

n 

B(s) = II r( 1 - ak + aks), 
k=1 

q 

C(s) = II r( 1 - bk + f3kS), 
k=m+ 1 

p 

D(s) = II r(ak - aks). 
k=n+1 
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Here m,n,p,q are integers satisfying 

O<n<p, 1<m<q. 

For n = 0 we put B(s) = 1, for q = m we put C(s) = 1, and 
for p = n we put D(s) = 1. The Fox parameters (al, ... ,ap ) 

and (bl, ... ,bq ) are complex, whereas (al, ... ,ap ) and 
(/3I, ... ,/3q) are positive numbers. 

These parameters are restricted by the condition 

peA) /\P(B) = l/J, 
where 

peA) = {s = (bj + k)//3j' j = 1, ... ,m; k = 0,1,2, ... }, 

PCB) = {s = (aj - 1 - k)laj , j = 1, ... ,n; k = 0,1,2, ... } 

are the set of poles of A (s) and B(s), respectively. The inte
gration contour L runs between s = 00 + ic and s = 00 - ic, 
where 

c> max {IImbjl//3), 
I<j<m 

and such that P(A) lies to the left of L, and PCB) to the right 
of L. From now on we assume that 

q p 

fl= L 13k - L a k > O. 
k= I k= I 

In Ref. 3, also the case fl = 0 is treated. Under these condi
tions H';qn(z) is an analytic function for z=¥O, in general 
multivalued (one-valued on the Riemann surface ofln z). It 
is given by 

H';qn(z) = - L Res(A(S)B(S) zS). 
".;P(A) C(s)D(s) 

The asymptotic behavior of H';qn(z) for Izl-oo is deter
mined by analytic continuation. Here we give the results for 
the two cases. 

First let 

Case J (n> 0, 8>fl1T12): Then 

H';qn(z)-;::; L Res(A(S)B(S) zS) 
"';p(B) C(s)D(s) 
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as Izl-oo, uniformly on every closed subsector of 

larg zl <8 - fl' (1T12). 

Case 2 (n=O, q=m): 

H;::' (z) -;::; (21T)m -Pei17"(a - 112) E(zei17"iJ) 

as Izl-oo, uniformly on every closed sector (vertex at 0) 
contained in 

larg zl <fl1T12. 

Here 

E(z) =_1._ i: Ak (/3fliJz)(I-a-k)!iJ e(PiJI'z)(I/I", 
27Tlfl k=O 

where the constants a and /3 are given by 

p q 1 
a = L ak - L bk + - (q - p + 1) 

k=1 k=1 2 

and 

andq=m. 
The coefficients Ak,k = 0,1,2, ... , are determined by 

A(s)B(s) ((3fliJ) -s-;::; i: Ak . 
C(s)D(s) k=O nflS + a + k) 

In particular 

atq= m. 
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Spinor propagators in anti-de Sitter space-time 
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Expressions are found for homogeneous and inhomogeneous propagators for spinor fields of 
arbitrary mass in anti-de Sitter space-time. 

I. INTRODUCTION 

One of the main problems in high energy physics today 
is to understand why quarks and gluons are confined. It is 
generally assumed that quantum chromodynamics (QCD) 
alone is responsible for confinement, but so far no proof has 
ever been given. It is therefore expedient to make models in 
which confinement has been built in. 

In analogy to models put forward by several authors 1 a 
model was studied in which this was done by geometrical 
means.2 Here, quarks and gluons move inside a spherical bag 
with anti-de Sitter (AdS) metric, and carry out harmonic 
oscillations with a universal frequency equal to cl R, where R 
is the radius of the bag. In quantized form this frequency can 
be related to the apparent universal level spacing of quarkon
ium spectra. 

In another article the connection between QCD was 
suggested via spontaneous symmetry breaking of the confor
mal symmetry of the QCD Lagrangian to SO(3,2) or AdS 
symmetry. 3 

In order to take quantum effects into account, like gluon 
exchange between quarks, etc., we need the use of propaga
tors. Early work has been done by Fronsdal4 for homogen
eous AdS scalar propagators and Fronsdal and HaugenS for 
spinor fields. The massless case for arbitrary spin has been 
studied by Fronsdal6 and Fang and Fronsdal. 7 In an earlier 
paper, expressions for SO(3,2) symmetric massive scalar 
propagators, homogeneous as well as inhomogeneous, were 
found, using configuration space methods8 (see also Ref. 9). 

As is well known, in order to write down a meaningful 
Dirac equation in a curved space, one has to define an ortho
normal vierbein field that cannot be specified by a unique 
covariant prescription and is therefore arbitrary to a large 
degree. Such a vierbein field must therefore also playa role in 
the definition of spinor propagators if these are to be genu
inely independent of embedding spaces. 

In our view, this point has obtained insufficient atten
tion in the present literature on propagators in curved 
spaces.9 Meanwhile we want to stress again the importance 
of inhomogeneous propagators like the Feynman propaga
tors, which are vacuum expectation values of time-ordered 
field products. Time is here a many-valued reference func
tion, and the introduction of a covering of AdS space is nec
essary. Discussion on this subject can be found in Refs. 4 and 
8. It is important to note that these propagators are not just 
trivial extensions of the homogeneous propagators. 8 In the 
present paper we use the results obtained in Ref. 8 to find 
homogeneous and inhomogeneous propagators for spinor 
fields in AdS configuration space. 

Furthermore, we have to specify implicit boundary con-

ditions in order to obtain unique propagators.8
•
10 In general 

this can be done by taking the solution, which goes fastest to 
zero, when a certain invariant quantity approaches minus 
infinity. 11.12 

In Sec. II we give a review of the scalar propagators 
obtained in Ref. 8 and discuss some properties. 

In Sec. III we obtain spinor propagators as a function of 
the coordinates S M (M = 1, ... ,5) of five-space, on the hyper
boloids MSM = R 2 = const > 0, which describes (a covering 
space of) AdS space. The generalized Dirac equation we use 
can be seen to arise from a fiintbein formalism, with trivial 
fiintbein V'1 = 8'1 (see also Ref. 4). 

In Sec. IV we obtain the spinor propagators for a natural 
vierbien by performing a local rotation of the fdnfbein, such 
that one of its "legs" points in the radial direction. This rota
tion can be performed in such a way that the AdS vierbein 
becomes independent of time. Strictly spea1.9ng, this is not a 
necessity, but it is certainly convenient. For practical pur
poses, it is better to stick to one choice of the vierbein field for 
all propagators independent of the reference point. Al
though we can use any coordinate system, in order to obtain 
a bag structure we choose special coordinates, which are 
obtained by performing a central projection. 13 This is done 
in Sec. V. 

II. SCALAR PROPAGATORS 

Consider a five-dimensional space with coordinates S M 

(M = 1, ... ,5) and metric 

'T/MN = diag( - 1, - 1, - 1, + 1, + 1) . (2.1) 

Anti-de Sitter space can be visualized as (the covering space 
of) the hyperboloid 

SMSM= _~2+S42+S52=R2=const>0. (2.2) 

Transformations leaving this hyperboloid invariant form the 
covering group of SO(3,2). Therefore a winding number 
must be introduced, or alternatively we can use a many-val
ued reference function, which plays the role of time. 

Consider the equation 

Os,p= (04 +~) ,p=0. (2.3) as 52 

We shall take as reference point S~ = (O,O,O,O,R) and de
fine the invariant quantity 

A=SpSPIR2=1-(S52/R2). (2.4) 

We are interested in those functions that are invariant under 
transformations leaving the reference point invariant. They 
have the form 
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I/J(R,J.,n) = R mtP(n) (A,m) , 

where n is a winding number. 
Introduce the angular momentum operator 

and 

M2=~MMNMMN. 

Then tP(n) (A,m) satisfies 

(M2 - m(m + 3»¢>(n) (A,m) = O. 

The time variable t is introduced by 

t4 =,jR 2 + S2 sin(t IR), 

t S = ,jR 2 + S2 cos(t IR), 

(2.5 ) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

andismany-valuedintM-space. Becausem and - (m + 3) 

are interchangeable, we limit ourselves to m;;,. -~. The ex
ceptional point m = - ~ will not be considered. For the ho
mogeneous propagators, satisfying (2.8) we have,8 for 
IA 1<1, 

G'(',,) (tM) = cos[1T(m + l)n]GZ!l) (tM) 

- sin[1T(m + l)n]O~) (tM) , 

0'(',,) (tM) = sin[1T(m + l)n]G~) (tM) 

+ cos [1T(m + l)n]O~) (tM) , 

where 

(2.10) 

Gm (.E'M) = _1_ E(t4tS) [O(A) _ (m + l)(m + 2) 
(0) ~ 21TR 2 4 

XF ( - ; , m; 3 ; 2; A )O(A) ] , 
(2.11) 

om (.E'M) =_1_ [p(J..) _ (m + l)(m + 2) 
(0) ~ 2rR 2 A 4 

XF( - ; , m; 3 ; 2; A ) 

xlnlA I - x(m,J.) ] , 

and X (m,J.) is a real analytic function, regular in the domain 
IA I < 1, with appropriate analytic continuations for IA I;;,. 1. 
The discrete function O(x) is defined by SX- 00 o(x') dx' and 
E(X) is defined by 20(x) - 1. 

We can also define positive and negative frequency parts 
by 

G': =! (Om±iGm). (2.12 ) 

Then 
Gm (.E'M) _e=F17";(m+l)nG m (.E'M) 

± (n) ~ - ± (0) ~ , (2.13) 

where 

Gm (tM)=lim_1_[_1 __ (m+1)(m+2) 
±(o) ~ 4rR2 A- 4 

+" 

F( _ m m + 3 . 2· A) 
X 2' 2 " 

xln( -A+,,) - x(m,A)] , (2.14) 
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for IA I < 1 and 

A±e =A ±iEt4t SIR 2. (2.15 ) 

The inhomogeneous propagators satisfying 

(M2 - m(m + 3»)G'(',,) (tM) = - R 20(4)(t!l-)OnO , 

(2.16) 

are the retarded and advanced Green's functions 

G:'::t = ± O( ± t)G m
, (2.17) 

adv 

and the Feynman propagator 

Gr; = (l/2i)[om + iE(t)Gm] . (2.18 ) 

Note that the singularity on the right-hand side of (2.16) 
occurs only on the principal sheet of the covering. 

In the conformal invariant "massless" case (m = - 1) 
we obtain 

GF1(tM) = (l/4riR 2)[l/(A-iEtt 4t 5
)] , for E-+O. 

(2.19) 

To find the propagators for an arbitrary reference point t t/, 
we use the invariant forms 

A = 1 - [yIR]2 

and E(YS), where 

S = t
4
t6 - t

5
t6 

and y = tMtOM' 

(2.20) 

(2.21) 

The definition of winding number n can be given as fol
lows. 

(i) n = ° when t M can be obtained from t t/ by contin
uous displacement within the allowed domain without 
changing the sign of y. 

(ii) !:J.n = ± 1, whenever y changes sign and !:J.t~O with 
t given by (2.9). 

For IA I < 1, we find 

Gm (.E'M . .E'M) =_l_EC S) [O(A) _ (m + l)(m +2) 
(0) ~ ,~o 21TR 2 Y. 4 

XF(_m m+3 '2'A)0(A)] 
2' 2 " 

(2.22) 

and O~) is given by (2.11). 
GZ'n) and 0(:1) are obtained from these using (2.10). 

We can find the inhomogeneous propagators as follows. 
Define t by (2.9) and to by 

t6 = ~R 2 + ~ sin(tolR), (2.23) 

t6 = ~R 2 + ~ cos(toIR). 

Then t - to can only change sign when A<O, n = O. More
over, either Gm(tM; tt/) = 0 or t M = tt/, which makes 
E(t - to), O(t - to) effectively invariant functions when 
multiplied by Gm(tM; ttl). We find 

adv 

Gr; = 0/2i) [om + iE(t - to)G m] . 

If we define for all propagators 

Gm(s,t; so,to) = G'(',,) (t M; tt/) , 

H. Janssen and C. Dullemond 

(2.24) 

(2.25) 

(2.26) 
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then 

[M 2 
- m(m + 3) ]G(~,t; So,to) 

= - R 2 8(3)(~ - ~0)8(t - to) . (2.27) 

III. SPINOR PROPAGATORS 

Introduce the four-dimensional Dirac matrices 

yM = (iy5y i-',y 5) , (3.1) 

where y i-' are the usual Minkowski-space Dirac matrices and 
y 5 = _ iy Iy 2y 3y 4. They satisfy 

{y M,y N} = 21lMN . (3.2) 

Consider the equation 

D5tP = yM aMyN aNtP= 0, 

and write 

tP(R,A.,n) = R m<p(n) (A.,m) . 

The <P(n) (A.,m) satisfies 

{RyM aM + [(m - l)/R] yMSM } 

(3.3 ) 

(3.4 ) 

X{RyN aN + (m/R)yNSN}<P(n) (A.,m) = 0, (3.5) 

which implies that 

S(n) (A.,m)={RYN aN + (m/R)yNSN}<P(n) (A.,m) (3.6) 

is a homogeneous spinor propagator if <P(n) (A.,m) is a homo
geneous scalar propagator. It satisfies the equation 

{RyMaM + [(m -l)/R ]yMSM}S(n) (A.,m) =0. (3.7) 

This result is the same as that found in Ref. 5. 
Here a remark is in order. From (3.6) we see that a 

differential operation must be applied to a singular function 
[see Eq. (2.11)]. However, as has been shown in Ref. 8, the 
singular function can always be written as the limit of a dif
ferentiable function that is an exact solution of the original 
homogeneous equation. The correct procedure is to apply 
the operator Ry NaN to this function and then to take the 
appropriate limit. 

We find the inhomogeneous spinor propagators by us
ing inhomogeneous scalar propagators. They are given by 
the same formula (3.6) and satisfy the equation 

(Ry M aM + [(m - l)/R 1Y MSM)S7:l) (SM) 

(3.8 ) 

Also here a differential operation must be applied to a 
singular function that is the limit of a regular function. The 
latter satisfies the original inhomogeneous equation, but 
with the 8-like source function smeared out. The proper pro
cedure for carrying out the differentiation is the same as for 
the homogeneous case. 

As an example we give the Feynman propagator for 
m= -1, 

S -I(SM) = _1_ {yi-'Si-' (A. - 2) + y5S0 } 
F 41TiR 3 (A. _ jEtg 4S 5) 2 ' 

(3.9) 

in the limit E-o. 
For an arbitrary reference point g ~ we find 
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SFI(SM;S~) 

=_1_ {YMSM(A. - 2) + 2(y/R 2)y
M

SOM} 
41TiR 3 (A. - iE(t - to)yS)2 

(3.10) 

in the limit E-o. 
In order to obtain unique propagators, we take the solu

tion that goes fastest to zero when A.---+- - 00, and limit our
selves to m > _ ~.8.11 

IV. SPINOR PROPAGATORS FOR A NATURAL 
VIERBEIN FIELD 

The generalized Dirac equation obtained in Sec. III can 
be seen to arise from a ftinfbein formalism, with a special 
choice of the ftinfbein: 

V:=8:, (4.1 ) 

where 

yM= V:yA, (4.2) 

and 

yA = (iy 5y i-',y5) . (4.3) 

HereM is the "world index" andA the local index. We make 
a rotation of this ftinfbein field, such that one of its "legs" 
points in a direction perpendicular to the hyperboloid [radi
al (R) direction]. Since the square of the Dirac operator in 
curved spaces is not simply related to the scalar field opera
tor the introduction of this rotation is necessary. Therefore 
we introduce the transformation matrix 

U(~,t) = e - O/2)ixt·yeiy4 t I2R , 

where 

X = sinh-I(I~I/R). 

Then 

(4.4) 

(4.5) 

yM=V:yA = UyMU- 1
, (4.6) 

where V f points in the radial direction. Equation (3.7) can 
be written as 

RyM [aM + u(aMU- 1
) + [em - 1)/R 21sM] 

X U(~,t)sm(~,t) = O. (4.7) 

This implies 

{- iy i-'D,.. + [(m + 1 )/R ]}y 5U(~,t)sm(~,t) = 0, 

(4.8) 

where 

y i-' = V~ Y a (I-l world index, a local index), (4.9) 

and where the covariant derivative Di-' is given by 

Di-' = ai-' + ri-' . (4.10) 

Here r i-' is defined as follows: 

r _IA a{3 
,.. - '2 iJo.i-',a{3u , (4.11 ) 

with 

( 4.12) 

and 
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and r vup is the affine connection. The matrices ya are the 
usual Minkowski-space Dirac matrices satisfying 

{ya,yp} = 2TJaP . (4.13) 

Equation (4.8) is the Dirac equation for anti-de Sitter space 
whose metric is given by 

gl'V = V ~ VpTJaP . (4.14) 

The vierbein V ~ is given by 

vg = (1 + ~2/R 2) 1/2, 

V?= V~ 0, ( 4.15) 

We obtain for gpV; 

gOO = (1 + ~2/R 2) J gO; =giO = 0, 

gij = (TJij - (sisj/R 2»). 
(4.16) 

From Eq. (4.8) we see that the "massless" Dirac equation 
corresponds to m = - 1, as should be the case. The solution 
to Eq. (4.8) can in this special frame be written as 

usm(~,t) = { iypDI' + [em + 2)/R ]}y5UGm(~,t), 

( 4.17) 

with G m(~,t) a scalar propagator. The solution for the inho
mogeneous equation 

{ - iyl'Dp + [(m + 1 )/R ]}sm(~,t) 

= U(~,t)83(~)8(t) = 83(~)8(t) (4.18) 

is given by 

sm(~,t) = {iy"Dv + [(m + 2)/R ]}UGm(~,t) , (4.19) 

where Gm(~,t) is an inhomogeneous scalar propagator. 
Consider the Lagrangian 

~ = ¢r(yN aN + [em - 1)/R ]yNSN)t,bm, 

which can be written as 

~'=~-g~=~ 

= ¢,m( _ iyl'Dp + [(m + 1 )/R ])t,b,m, 

where 

¢'=¢U- I
, t,b'=y 5Ut,b. 

(4.20) 

(4.21 ) 

(4.22) 

When quantized they satisfy the following commutation re
lation: 

(4.23 ) 

We can write (3.8) as follows for the Feynman propagator 
with arbitrary reference point 

R (y M aM + [(m - 1 )/R ]y MSM ) 

XRi(OI Tt,bm(s M)¢r(s ':/) 10) 

= R 2 83(~ - ~0)8(t - to) , 

which implies 

{- iyl'Dp + [(m + 1 )/R ]}y 5U(~,t) 

xi(OI Tt,bm(sM)¢r(s':/) 10) 

= 83(~ - ~)8(t - to) U(~,to) , 

or 
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(4.24) 

(4.25) 

{ - iyl'Dp + [(m + l)/R ]}i(OI Tt,b'm(~,t)¢'m(~,to) 10) 

= 83(~ - So)8(t - to) , (4.26) 

which is consistent with (4.23). 
Thus, for an arbitrary reference point 5':/ the solution 

for the inhomogeneous propagators is given by 

sm(~,t;~,to) {iy"D" + [(m + 2)/R ]) 

XU(~,t)Gm(S,t;so,to)U 1(~o,tO)' 
(4.27) 

Note that since for m = - 1 the scalar propagators are not 
unique,8.10 the massless spinor propagators are not unique 
either. Uniqueness can be restored by putting m # - 1 and 
taking the limit m-+ - 1. 

V. SPINOR PROPAGATORS FOR CENTRAL 
PROJECTION COORDINATES 

We can perform a central projection 13 defined by 

~i I h (5 1) t-t, ~ = x cos X. . 

For the metricgpV = V::VpTJaP we thus obtain 

gfXJ (1 - ar"), a = 1/ R 2 , 

gOj = gifl = 0, (5.2) 

i j = (l - ar)(TJij + ax/xi) , 

with vierbein V ~ : 

vg (l-ar)1/2, V? = V~ 0, 

V; = (1 - ar) J/2{8; axixj[ 1 + (1 _ ar) 1/2] -I} . 

(5.3) 

The anti-de Sitter metric is thus confined to a spherical bag 
of radius R in x P-space, which can be used as a geometrical 
description of hadrons,z·3.13 The spinor propagators can be 
obtained from the propagators of Sec. IV by performing the 
coordinate transformation (5.1). In the flat-space limit 
(R ..... 00 ) we obtain for the massless Feynman propagator 

1 yl'(x I' x~) 
- 2"r [(x-xo)2-iE]2' 

(5.4 ) 

which is a solution of 

- iy" a"SF (x,t;Xo,to) = 8 3 (x - xo)8(t - to) . (5.5) 

This is the correct result. 
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The construction of two Lie-Backlund transformations is given, which are Hamiltonian vector 
fields leading to an infinite number of hierarchies of conserved functionals and associated Lie
Backlund transformations. 

I. INTRODUCTION AND GENERAL 

In two recent papers l
,2 we constructed eight [in effect 

four, Y / , Y;- ,Z / ,Z;- (iEZ)] infinite hierarchies of Lie
Backlund transformations of the Federbush model. 3 We 
conjectured that the hierarchies Y / , Y i (iEZ) are (x,t) 
independent, while the hierarchies Z / ,Z;- (iEZ) are linear 
in x and t. These Lie-Backlund transformations turned out 
to be Hamiltonian vector fields4,5 and the corresponding 
Hamiltonian densities were given. In this way we obtained t
independent and t-dependent conserved functionals for the 
Federbush model. 

Now we shall construct two (x,t)-dependent Lie-Back
lund transformations of degree 0, with respect to the grad
ing, which are polynomial in x,t of degree 2 and from which 
we can obtain the creating and annihilating Lie-Backlund 
transformations Z ~ I' by taking the Lie bracket with the 
(x,t)-independent vector fields Y ~ I (cf. the Appendix). 
Moreover these two vector fields tum out to be Hamiltonian 
vector fields and the associated Hamiltonian densities are 
given. This will be done in Sec. II. In Sec. III we prove a 
theorem from which we obtain an infinite number of infinite 
hierarchies of Hamiltonian vector fields, where the 
Y / , Y;- ,Z/ Z;- (iEZ) are just the first four of this infinite 
number of hierarchies. The Hamiltonian densities of the vec
torfieldsZ;± (i= -l,O,I),Yl (j= -2,-1,0,1,2)are 
surveyed in an Appendix at the end of this paper for reasons 
of completeness. In this section we shall introduce the no
tions needed in Secs. II and III. All computations have been 
carried through on a DEC-system 20 computer, using the 
symbolic language REDUCE6 and software packages 7.8 to do 
the huge computations at hand. 

Lie-Backlund transformations are vector fields V de
fined on the infinite jet bundle of M,N, J 00 (M,N), where M 
is the space of independent variables and N the space of the 
dependent variables. A Lie-Backlund transformation of a 
differential equation is a vector field V defined on J 00 (M,N) 
satisfying the condition 

::t' v(D 00 I) CD 001, (1.1 ) 

where I denotes a differential ideal associated to the differen
tial equation at hand, while D 001 denotes its infinite prolon
gation toJ 00 (M,N);::t' v is the Lie derivative with respect to 

the vector field V. Since the vector field V is supposed to 
depend only on a finite number of variables, condition (1.1) 
reduces to 

::t' vICD 'I for some r. ( 1.2) 

Using this method we computed Lie-Backlund trans
formations of the Federbush model. I It can be shown that 
the Lie-Backlund transformations in this setting are just 
symmetries in the works of Magri4 and Ten Eikelder where 
(generators of) symmetries of partial differential equations 
of evolutionary type are described as transformations on spe
cial types of infinite-dimensional spaces. Suppose that 

!!!!... = n - I dH ( 1.3 ) 
dt 

is an infinite-dimensional Hamiltonian system, where n is 
the symplectic operator, H is the Hamiltonian, and dH is the 
Frechet derivative of H. Then to each Hamiltonian symme
try (also called canonical symmetry) Y there corresponds 
by definition a Hamiltonian F (Y) such that 

y=n-IdF(Y) (1.4) 

and the Poisson bracket ofF and H vanishes. 4,5 Suppose that 
YI,Y2 are two Hamiltonian symmetries, then [YI,Y2 ] is a 
Hamiltonian symmetry and 

F ( [ Y2 , Yd ) = {F ( YI ),F ( Y2 )}, ( 1.5) 

where {.,.} is the Poisson bracket defined by 

{F(YI ),F(Y2 )} = (dF(YI ),Y2 ), (1.6) 

where (.,.) denotes the contraction of a one-form and a vec
tor field. 

II. CONSTRUCTION OF TWO NEW LIE-BACKLUND 
TRANSFORMATIONS OF THE FEDERBUSH MODEL 

We construct two Lie-Backlund transformations of the 
Federbush model. This model is described by 

(
i(a, + ax) . - m(s) ) (1/1s'l) 

- m(s) z(a, - ax) 1/1s,2 

.1 ( 11/1 _s,21
2 

1/1s,l) ( 1) (2.1) 
=4S1TA I 12 s= ± , - 1/1 -s,1 1/1s,2 

where the 1/1s (x,t) are two-component complex valued func-
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tions. Suppressing the factor 41T(Ji 1= 41TJi) and introducing 
eight real variables UI,VI,U2,V2,U3,V3,U4,V4 by 

RI=ui+vi, R2=U~+V~, 

R3 = u~ + vL R4 = u~ + v~, 
and, for further use, 

(2.4a) 

I/11.I=u l +ivl, I/1_I,I=u3+iv3, m(+l)=ml, 
(2.2) R 12 = R I + R 2, R34 = R3 + R4· (2.4b) 

1/11,2 = U2 + iv2, 1/1 _ 1,2 = U4 + iv4, m ( - 1) = m2, 

Eq. (2.1) is rewritten as a system of eight nonlinear partial 
differential equations for the functions U I' ... 'V4, i.e., 

In two recent papers we obtained Lie-Backlund trans
formations for this model; results that are surveyed in the 
Appendix for reasons of completeness. Motivated by the re
sults obtained previously,2 i.e., the existence of four infinite 
hierarchies of Hamiltonian vector fields, two hierarchies 
probably being independent of x and t [ Y;+ , Y;- (ieZ)] and 
two hierarchies probably being linear in x and t [Z / ,Z ;
(ieZ)]; we now want to search for a Lie-Backlund transfor
mation that is polynomial in x,t of degree 2. 

We require the vector field to be of degree 0 with respect 

- V4t + V4t - m2u3 = JiR lu4, 

where in (2.3) 

(2.3 ) to the grading of (2.3), 

deg(u l ) = ... = deg(v4 ) = 1, 

deg(x) = deg(t) = - 2, 

deg(ax ) = deg(at ) = 2, 

deg(m l ) = deg(m2) = 2. 

The vector field has the following required structure: 

(2.5) 

Y+(2,0) =x2(a IY 2+ +a2m lYt + a 3miYo+ +a4mIY~1 +a5Y~2) +2xt(/3I Y t +/32m IY t +/33mi Y o+ 

+/34mIY~1 +/35Y~2) +t 2(Y IYt +Y2m1Y t +Y3miYo+ +Y4mIY~1 +Y5Y~2) 

+xct +tct +Co+, (2.6) 

where the Y / (i = - 2, - 1,0,1,2) are the vector fields associated to the conserved functionals F ( Y / ) surveyed in the 
Appendix; aj> /3;,Y; (i = 1, ... ,5) being constant, while C 1+ ,C t ,C 0+ are vector fields of degree 2,2, and 0, respectively. 
Substituting (2.6) into the Lie-Backlund condition (1.2), 

.!f vICD2I, (2.7) 

and solving the resulting overdetermined system of partial differential equations for the coefficients a;, /3;, Y; (i = 1, ... ,5) and 
the vector fields C 0+ ,C 1+ ,c 2+ using (2.4), we obtained the following result: 

Y+(2,0) =x2(Yt -!miYo+ + Y~2) +2xt(Y2+ - Y~2) +t 2(Yt +~miYo+ + Y~2) +xC I+ +tct, (2.8) 

where in (2.8) 

C t = (- 2vlx - mlU2 -JiR34UI)au , + ( + 2u lx - mlv2 -JiR34VI)av, + (- 2v2x + mlul -JiR34U2)au, 

+ ( + 2u2x + mlvl -JiR34V2)av" 

C t = ( + 2vlx + m lu2 + JiR 34UI )au , + ( - 2u lx + m lv2 + JiR 34VI)av, + ( - 2v2x + mlul - JiR 34U2)au, 

+ ( + 2u2x + ml VI - JiR34V2 )av" 

while in (2.6) 

C o+ = O. 

(2.9) 

(2.10) 

In a similar way, 1,2 motivated by the structure of the Lie algebra, we obtain another Lie-Backlund transformation, i.e., 

Y-(2,0) =X2(y2- -!m~Yo- + Y=2) +2xt(Y2- - Y=2) +t 2(y2- +~m~Yo- + Y=2) +xC I- +tC 2-, 

where in (2.11) 
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C 1- = ( - 2v3x - m2u4 + JiR 12u3)au, + ( + 2u3x - m2v4 + JiR 12v3)aV, + ( - 2v4x + m2u3 + JiR 12u4)a
U4 

+ ( + 2u4x + m2v3 + JiR 12v4)aV4 ' 

C 2- = ( + 2v3x + m2u4 - JiR 12u3)au, + ( - 2u3x + m2v4 - JiR I2V3)av, + ( - 2v4x + m2u3 + JiR 12u4)aU • 

+ ( + 2u4x + m2v2 + JiR 12v4)aV•• 
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To give an idea of the action of the vector fields Y + (2,0) and Y - (2,0), we compute the Lie bracket with the vector fields 
Y t , Y 0+ , Y ~ 1 , Y 1- , Y 0- , Y = 1 yielding the following results: 

[Y+(2,O),Yt] = +2Zt, [Y-(2,O),Yi:--] = +2Z I-, [Y+(2,O),yo+] =0, [Y-(2,O),Yo-] =0, 

[Y+(2,O),Y~d = -2Z~I' [Y-(2,O),Y=tl = -2Z=t> [Y+(2,O),Y j-] =0, (2.13) 

[Y-(2,O),Y/] =0 (i= -1,0,1). 

These results suggest setting 

Y±(1,i) =Zj± and Y±(O,i) = Y j± (iEZ). 

Now we arrive at the following remarkable fact: the vector fields Y+(2,O) and Y- (2,0) are again Hamiltonian vector 
fields, the corresponding Hamiltonian densities being given by 

1'(Y-(2,O») 

= x2(1'( Y 2- ) - !m~ 1'( Y 0- ) + 1'( Y = 2 ») + 2xt (1'( Y 2- ) - 1'( Y = 2 ») + t 2(1'( Y 2- ) + !m~ 1'( Y 0- ) + 1'( Y = 2 ) ) 

= (x + t)2f'( Y 2- ) - !m~ (x + t) (x - t)1'( Y 0- ) + (x - t)21'( Y = 2) (2.14a) 

and 

1'(Y+(2,O») = (x + t)21'( Y 2+) - !m~ (x + t)(x - t)1'( Yo+) + (x - t)21'( Y ~2)' 

where the densities 1'( Y r) (i = - 2,0,2) are given in the Appendix. 
This result shows a remarkable resemblance to the results for the Benjamin-Ono equation.9 

III. PROOF OF THE EXISTENCE OF AN INFINITE NUMBER OF HIERARCHIES 

(2.14b) 

In this section we shall first prove a generalization of a lemma proved in Ref. 2. The main theorem of this section is a direct 
application of Lemma 3.1 to the special cases at hand and leads to the existence of an infinite number of infinite hierarchies of 
algebraically independent conserved functionals for the Federbush model. The associated Lie-Backlund transformations are 
obtained from these results by application of formula (1.4). 

We state the following lemma. 
Lemma 3.1: LetH~ (u,v), K~ (u,v) be defined by 

H~ (u,v) = f: 00 x'(u~ + v~) (r,n = 0,1, ... ), 

K~(u,v)= f:oo X'(Un+IVn-Vn+IUn) (r,n=O,I, ... ), 

wherein (3.1) 

un = (d~r u, Vn = (!r v, 

and r,n such that the degree of H ~ ,K ~ is positive. Define the Poisson bracket of functionals F,L by 

{F,L} = foo (+ ~F ~L _ ~F ~L), 
- 00 ~v ~u ~u ~v 

then 

{H:,H~} = 4(n - r)K~, 

{H:'K~} = (4(n - r) + 2)H~+ 1 + r(r - l)(r - n - I)H~-2, 

(3.1) 

(3.2) 

(3.3a) 

(3.3b) 

{H~,H~}=4(2n-r)K~+I, (3.3c) 

{H~,K~} = (2n + 1- r)(4H~~11 - rH~-I) (r,n = 0,1, ... ). (3.3d) 

Proof: Relations (3.3a) and (3.3b) are generalizations offormulas given in Ref. 2 and can be proved in a similar way. We 
now prove (3.3c) and (3.3b). Calculation of the Frechet derivatives of H~,K~ yields 

~H' ( d )n ~H' ( d )n __ n_ = _ _ (2x'un ), __ n_ = _ _ (2x'vn)' 
~u dx ~v dx 

( 3.4a) 

~K~ =(_~)n+I(X'Vn) _(_~)n(X'Vn+I)' 
~u dx dx 

~K' (d )n + 1 (d )n __ n = _ __ (x'u
n

) + __ (x'u
n

+
I

). 

~v dx dx 
(3.4b) 

Substitution of (3.4a) into (3.2) results in 
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{Hi ,H~} = f"" - ~ (2x2vl ) . (- l)n(~)n (2xrun) + ~ (2x2u l ) • (- l)n(~)n (2xrvn ) 
- "" dx dx dx dx 

= (_ 1)n( -1)n-If"" (~)n (2x2uI) ~ (2xrVn) _ (~)n (2x2vl ) ~ (2xrun) 
- "" dx dx dx dx 

= - 4 f: "" (x2un+ I + 2nxun + n(n - 1 )un_ d(xrvn + I + rxr-Ivn ) 

- (x2vn+ I + 2nxvn + n(n - l)vn_ 1 )(xrun+ I + rxr+ IU n ) 

-4f:"" rxr+l(un+lvn -vn+lun ) -2nxr+l(un+l vn -vn+lun ) 

+ n(n - 1)xr(vn+ IUn-1 - un+ IVn_ l ) + n(n - l)rxr-l(vnun_1 - unvn_ l ) = 4(2n - r)K~+ I, (3.5) 

which proves relation (3.3c). The last equality in (3.5) results from the fact that the last two terms are just a total derivative of 

n(n - 1 )xr(vnun _ I - unvn -I)' 

In order to prove (3.3d) we substitute (3.4a) and (3.4b) into (3.2), which results in 

{H 2 Kr} =f"" -~ (2x2v ). [( _1)n+1 (~)n+1 (xrv ) _ (_I)n(~)n (xrv )] 
I' n _ "" dx I dx n dx n+ I 

+ ! (2x2u l ) • [( - l)n (d~ r+ I (xrun) + ( - l)n(! r (xrun+ I)] . (3.6) 

Integration, n times, of the terms in brackets leads to 

{Hi ,K~} = 2 f"" (~)n+ I (X2VI) . (~(xrVn) + xrvn+ I) + (~)n+ I (X2UI) . (~(xrUn) +xrun+ I) 
-"" dx dx dx dx 

= 2 f: "" (X2Vn+2 + 2(n + 1)xvn+ 1+ n(n + l)vn)(2xrvn+ 1+ rxr-Ivn ) 

+ (X2Un+2 + 2(n + l)xun+ 1+ n(n + l)un)(2xrun+ 1+ rxr-Iun )· (3.7) 

Expanding the expressions in (3.7), we arrive after a short 
computation at 

{HLK~} = (2n + 1 - r)(4H~~ II - rH~-I), (3.8) 

which proves (3.3d). 
We are now in a position to prove the main theorem of 

this section. 
Theorem 3.1: The conserved functionals F(Y ± (2,0») 

associated to the Lie-Backlund transformations Y ± (2,0) 
generate an infinite number of hierarchies, starting at the 
F ( Y / ) jEZ , F ( Y j - ) jEZ hierarchies by repeated action of the 
Poisson bracket. 

TheF (Z / )jEZ' F (Z j- )jEz hierarchies are obtained by 
the first step of this procedure [cf. (2.13)]. Moreover the 
F ( Y j + ) jEZ , F ( Y j- ) jeZ hierarchies are obtained from 
F ( Y :; I ) by repeated action of the conserved functional 

F(Z~I)= ±!F([Y±(2,0)'Y~I]) (3.9) 

(cf. Table I). 
Proof' The proof of theorem 3.1 is a straightforward ap

plication of Lemma 3.1 and the observation that the 
(A,m l ,m2 )-independent parts of the conserved densities as
sociated to Y~I' Y(+2,0), Y(-2,0), (A3), (A4), 
(2.14a), and (2.14b) are given by 

Y 1+ ~ - !(U2x V2 - V2x U2), Y:: I ~ - !(U1xV I - V1xU I), 
(3.10) 

2794 J. Math. Phys., Vol. 27, No. 11, November 1986 

Y 1- -+ - !(U4x V4 - V4x U4 ), Y = 1-+ - !(U 3x V3 - V3x U3 ), 

Y+(2,0) 

-+ - !(x + t)2(U~x + V~x) - !(x - t)2(uix + vix)' 
(3.11 ) 

Y-(2,0) 

-+ - !(x + t)2(U~x + v~x) - !(x - t)2(U~x + v~x)' 
Note that in applying Lemma 3.1 we have to choose 
(u,v)=(u2,v2), (u,v) = (UI,V I), ... , where now (upv j ) 

(i= 1, ... ,4) refer to (2.2)! 
Remark' The Lie-Backlund transformations of degree 

0, Yo+=Y+(O,O), Zo+=Y+(1,Q), Y+(2,0) and 
Y o- = Y-(O,Q), Zo- = Y-(1,Q), Y-(2,0) being just the 
first few of them, can probably be obtained by the action of 
Z ~ I on the vector fields of degree 1 (cf. Ref. 1), i.e., 

Y ± (k,O) = ad Z ~ toy ± (k, ± 1)]. 

IV. CONCLUSION 

By the construction of two Hamiltonian vector fields 
Y + (2,0) and Y - (2,0) we construct an infinite number of 
infinite hierarchies, the elements of which are all Hamilto
nian vector fields. The associated conserved functionals are 
obtained by the action of the Poisson bracket. 
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TABLE I. The Lie algebraic picture of the Lie-Backlund transformations. 

Z_1 Z:11"1_ 

.-----~>. 

APPENDIX: CONSERVED FUNCTIONALS FOR THE 
FEDERBUSH MODEL 

• 

We summarize here some of the results obtained in Ref. 
2 that are of interest in Sec. II. We derived the following 
conserved functionals: 

(AI) 

where the densities F ( .) are given by 

F(Yo+)=~(Rt+R2)' F(Yo-)=!(R3 +R4), 
(A2) 

and 

F(Y 1+) = -!(U2xV2-U2V2X) + (.1,/4)R 34R 2 

- ~mt (U 1U2 + VIV2), 

F(Y~I) = -!(UlxVI-UIVlx) + (.1,/4)R 34R 1 

(A3) 
F (Y 1- ) = - !(U4x V4 - U4V4x ) - (A. /4 )R I2R 4 

- !m2 (u3u 4 + V3V4 ), 

F(Y=I) = -!(U3xV3-U3V3x) - (.1,/4)RI2R 3 

+ !m2(u 3u4 + V3V4), 
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Y-(2,0) 

[(2,0) 

F(Y 2+) 

- !(ui" + v~x) + (A. /2)R34(U2xV2 - U2V2x) 

- !m l (U2x V1 - U1V2x ) - ~ 2R ~4R2 

+ Iml.1,R34(ulu2 + V1V2) - AmiR I2• 

F(Y~2) 

- !(uix + vix) + (A. /2)R34(UlxVI - U1Vtx) 

+ !m 1 (U 1x V2 - U2V1x ) - ~ 2R ~4Rl 

-lml.1,R34(UtU2 + V1V2) - AmiR t2, 

F(Y 2-) 

- !(u~x + v~x) - (A. /2)R 12 (U4x V4 - U4V4x ) 

- !m2(u4x v3 - U3V4x ) - ~ 2R i2R4 

-lm~RI2(u3u4 + V3V4) - Am~R34' 

F(Y=2) 

- !(u~x + v~x) - (A. /2)R I2 (U3x V3 - U3V3x ) 

+ !m2(u 3x v4 - U4V3x) - ~ 2R i2 R 3 

+ Im~RI2(u3u4 + V3V4) - Am~R34. 

The t-dependent conserved functionals are 

P. H. M. Kersten and H. M. M. Ten Eikelder 

(A4) 

2795 



                                                                                                                                    

l' (Z 0+ ) = (X + t)F (Y t ) - (X - t)F (Y ~) ), 

l' (Z 0) = (X + t)F (Y )- ) - (X - t)F (Y = ) ), 
and 

- - 2-F(Z)+) = (X + t)F(Y2+) -1m) (X - t)F(Yo+), 

(AS) 

l' (Z ~) ) = - (X - t)F (Y ~ 2) + 1mi (X + t)F (Y 0+ ), 

(A6) 
l' (Z )-) = (X + t)F (Y 2- ) - !m~ (X - t)F (Y 0- ), 

l' (Z = ) ) = - (X - t)F ( Y = 2) + 1m~ (X + t)F ( Y 0- ). 

The vector fields Y;± (i = - 2, - 1,0,1,2) and Z l 
(j= -1,0,1) obtained from (A2)-(A6) by 

(A7). 
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Gauge theories, the holonomy operator, and the Riemann-Hilbert problem 
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The so-called Riemann-Hilbert problem has arisen and plays a major role in the study of many 
nonlinear integrable systems, such as the sine-Gordon equation, stationary axial symmetric 
Einstein equations, etc. Here it is shown how the Riemann-Hilbert problem arises naturally in 
the study of self-dual Yang-Mills fields in Minkowski space via a simple geometric 
construction of the holonomy operator on anti-self-dual planes. This Riemann-Hilbert 
problem is then converted to a linear homogeneous differential equation that is considerably 
simpler to study than the original problem. Finally it is shown that the nonlinear equation of . 
Yang for self-dual fields is easily understood from the holonomy point of view. 

I. INTRODUCTION 

Over the past seven or eight years there has been, for a 
variety of reasons, considerable interest in those solutions of 
the Yang-Mills equations1

•
2 and Einstein equations3.4 that 

are self-dual (or anti-self-dual). The reasons have varied 
from the importance of these fields in quantum field theory5 

to their use in a quantized version of general relativity. 6 

Though interest in these uses remains, fresh interest in these 
self-dual fields has developed in the past few years because of 
the discovery7 that many of the nonlinear equations of math
ematical physics (e.g., the Bogomolny equation, the sine
Gordon equation, the stationary axial symmetric Einstein 
equations, etc.) tum out to be symmetry reductions of the 
self-dual Yang-Mills equations for different gauge groups. 

It is mainly for this latter reason that we have reexa
mined one of the important solution generating techniques, 1 

which is based on a version of the Riemann-Hilbert (RH) 
problem.8 (We know oftwo RH techniques for solution gen
eration which appear superficially unrelated. The first is 
based on the use of "seed" solutions,9 the latter is based on 
the use of arbitrary characteristic data. 10 It is this latter one 
we will be concerned with though there is evidence that these 
two methods are intimately related.) 

In particular we wish to describe in detail the relation
ship of this RH problem with the holonomy operator asso
ciated with the connection one-form of the self-dual field. 
This brings out clearly the geometry of the situation and the 
role played in the RH problem by the characteristic initial 
data. We will furthermore show how, from the RH problem, 
one can easily derive a simple linear differential equation 
(the Sparling equation) the solution of which solves the RH 
problem and provides a generating function for the self-dual 
Yang-Mills field. 

In Sec. II we introduce our basic notation for gauge 
fields, define the closed loop parallel propagator (or holon
omy operator), introduce the theory of complex null cones 
and the associated a and f3 planes, and finally give a brief 
discussion of the Riemann-Hilbert problem. In Sec. III we 
continue the discussion of the holonomy operator now asso
ciated with certain particular loops in the anti-self-dual f3-
planes, and relate this to a RH problem. This RH problem is 
converted, in Sec. IV, to a linear partial differential equation, 

which appears to be considerably simpler to solve than the 
original RH problem. In Sec. V we show how one can formu
late self-dual Yang-Mills equations in terms of the holon
omy operator associated with certain loops in the (self-dual) 
a planes as well as how to construct the YM field itself, with 
no use of potentials, from the holonomy operator. In the 
conclusion we discuss the prospects for solving these equa
tions for different gauge groups. 

II. NOTATION 

We consider on Minkowski space M a trivial n-complex
dimensional vector bundle B = M xC n associated with 
some gauge group. A choice of the global vector fields e A 

(A = 1, ... ,n) as a basis set is made. Covariant differentiation 
is defined by 

(2.1) 

and paralleltransport of vectors V= VAeA from point 1 t02 
along a path P is given by 

VA(xnG! (x~ ,x~,P) = VB(X~) 
with 

G=Pexp f Ya dxa, 

(2.2) 

(2.3) 

P indicating the path-ordered integral and with the matrix 
indices suppressed. The holonomy operator h! (xl,P) is a 
special case of (2.3 ) , involving a closed path P beginning and 
ending at x~ , i.e., 

h = Pexp f Ya dxa. (2.4 ) 

The gauge fields are defined by 

Fab = VaYb - VbYa - [Ya'Yb] (2.5) 

with the dual given by 

F:b = !,r=gEabcd F cd, (2.6) 

where Eabcd is the alternating symbol with E0123 = - 1. 
If 

or 
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(2.8) 

the fields are, respectively, self-dual or anti-self-dual. 
We wish now to study the Minkowski space light cones 

or more accurately some of the properties of their complexi
fication. 

Consider a point x a and its light cone, the points of 
which can be described by 

(2.9) 

where I act,;) is the null tangent vector to the null geodesics 
on the cone. The complex stereographic coordinates (;,;) 
parametrize the sphere of null geodesics while r is an affine 
parameter along the geodesics. A convenient form for I a is 

lac;,;) = [l/~(1 + ;;)] 
X [(1 + ;;),(; + ;),i(; - ;),( - 1 + ;;)]. 

(2.10) 

Note the important point that I a is a real null vector when; 
is the complex conjugate of;, but even when; is indepen
dent of;, we still have that lala = 0, but now for complex la. 
Notationally in this case we will replace; by;. 

Ifwenowa1low rto be complex and; -+; thenEq. (2.9) 
defines the complex null cone Cx of the point xa. The points 
ya in general live in complex Minkowski space Me' We would 
like now to concern ourselves with certain features of these 
complex cones. 

There are two families of two-complex-dimensional 
submanifolds that span a specific Cx • They are defined from 
(2.9) as follows. 

(i) a planes are the set of points determined by varying 
both rand; keeping xa and; fixed. 

(ii) fJ planes are determined by varying rand; with x a 

and; fixed. 
It is easy to see that both a and fJ planes have a linear 

structure and hence are really planes. 
We will refer to specific a or fJ planes associated with, 

for example';1 or;2 by a;-, or fJ1;,' The intersection of a,!! a;
andfJ 1; plane for the same Cx is simply the generator (;,;) of 
Cx . When we are dealing with a different cone, e.g., Cy , we 
will use (1],1]) to label its generators and a'1 and fJ r, to label 
its a and fJ planes. 

Both the a and fJ planes are totally null in the sense that 
any pair of vectors in either an a or fJ plane have a zero 
Minkowski space scalar product. The a and fJ planes are, 
respectively, self-dual and anti-self-dual in the sense that any 
pair of vectors in the a or fJ plane, when skewed together 
yield, respectively, self-dual or anti-self-dual tensors. [See 
(2.7) and (2.8).] 

These facts are easily checked by varying (r,;) and 
(r,;), respectively, in (2.9) obtaining for the a plane 

dya = dr la + rma[d; /( 1 + ;;)] 
and for the fJ plane 

dya = dr la + rma[d; /(1 + ;;)], 
with 

ma = Dla=( 1 + ;;) :r; la, 
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(2.11) 

(2.12) 

ma = "il a=( 1 + ;;) ~ fa, a; 
na = la + D"il a=:1 a + (1 + ;;)2 ~ la a;a; , 

(2.13) 

where (la,ma) and (la,ma) are, respectively, two indepen
dent tangent vectors in the a and fJ planes. One easily checks 
that fa I a = lama = mama = lama = mama = 0, showing 
that the planes are each totally null. Furthermore, the pair of 
two-forms I[amb land I[amb 1 are self-dual and anti-self
dual, respectively. (The na which has a zero scalar product 
with all the others except I ana = , is given here for later use.) 

[We point out that the description of the a and fJ planes 
in terms of fixed (xa,;) and (xa,;) is highly redundant. Any 
point xa in the same plane could have been used in the de
scription of the same plane. There, however, does exist an 
important nonredundant description leading to what is 
known as twistor theory. 11.12 The set of all a planes in Me is 
known as twistor space, while the fJ planes form dual twistor 
space. The use of any prior knowledge of twistor theory will 
be avoided.] 

We will conclude this section with a brief discussion of a 
special case of the RH problem. 

First consider a holomorphic function a (z) given on an 
annular region in the neighborhood of the equator of the 
Riemann sphere (or extended complex plane, CU{ 00 } ) 

with a(z) having singularities in both the northern and 
southern hemispheres and a(z) #0 in the annular region. 
The problem then is to "split" a(z) in the annular region 
such that 

a(z) = G N i(Z)GS(z), (2.14) 

with GN and Gs holomorphic in, respectively, the northern 
and southern hemispheres. The solution is quite simple and 
in fact is given by 

f log(a) 
GN (ZN) = exp dz, 

c (Z-ZN) 
(2.15 ) 

f log(a) 
Gs (zs) = exp dz, 

c (z - zs) 

where the path integral is taken along a curve C in the holo
morphic (or annular) region surrounding the singular re
gions with ZN'ZS being, respectively, points to the north or 
south ofC. 

The proof of (2.15) is a simple application of the 
Cauchy integral theorem applied after taking the logarithm 
of (2.14). 

We are now interested in a generalization of (2.14) to 
the case where a (z) is a holomorphic matrix valued function 
and the two "splitting" functions GN (z) and Gs (z) are also 
matrix valued. Though theorems for the existence of G Nand 
Gs are known, there does not appear to be any known meth
od of, in general reducing this problem to the form of a sim
ple quadrature as in (2.15). An important special case where 
this can be done is when the matrix a(z) is in either upper or 
lower triangular form. 

In the next section we will show how the holonomy op
erator for self-dual fields applied to curves on the fJ planes 
(anti-self-dual) leads immediately to the matrix version of 
(2.14) where the a(z) is the characteristic data for the fields. 
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III. HOLONOMY AND THE RIEMANN-HILBERT 
PROBLEM 

We continue our discussion of the complexified null 
cone and in particular study the intersection properties of 
two separate cones and of their a and /3 planes. 

We first consider a fixed reference or data cone C y based 
on an arbitrary but fixed point ya, given by 

(3.1 ) 

It will be on C y that characteristic data will be given. In 
addition we consider the cone Cx based on an arbitrary real 
field point xa in the interior of Cy given by 

(3.2) 

For the present the only two cones we will be concerned with 
are C y and Cx' Their associated a (and /3 planes) will be 
denoted by ar; and a"" respectively (and /3~ and /31j)' The 
intersection of Cx and Cy is determined by 

(3.3 ) 

Since points of Cy and Cx are determined by (R,;.?) and 
(r,1],fJ}, respectively, (3.3) determines a relationship 
between the triplets of the form 

; = ;(xa,ya,r,1],fJ), 

R = R(xa,ya,r,1],fJ}. 

Equation (3.4) can in fact be explicitly determined. Defin
ing 

(3.5) 

(3.6) 

Consider the following construction which is basic for 
what follows. 

On Cy choose two/3planes /3~, and /3~2' which are arbi
trary but fixed for now. On the cone Cx let /31j determine a 
variable /3 plane that intersects /3~, and /3 ~2 on the generators 
(1]I,fJ) and (1]2,fJ) ofCx ' with, from (3.14), 

( 3.16) 

We now form the following triangle, starting at xa, two legs 
are the generators (1]I,fJ) and (1]2,fJ) ending atpi andp2 on 
C y , with the base B being the unique curve on Cy deter
mined by (3.12) and (3.11), connectingpi andp2 (see Fig. 
1) . 

We will refer to this triangle as l1(x,fJ). 
If we consider self-dual Yang-Mills fields then parallel 

propagation around closed curves, as for example 11 (x, fJ), 
lying in a/3plane, is trivial, i.e., the holonomy operator is the 
identity. The reason for this is that the self-dual Fab when 
projected onto the anti-self-dual/3 plane vanishes so that the 
connection, in the plane, is integrable. 

Defining the parallel propagator from the point xa, 
along a generator (1],fJ), to a point P on Cy by 

G = G(xa,1],fJ) = Pexp [Ya dya (3.17) 

and the parallel propagator from P I to P2 by 

a = a( fJ;1]I,1]2) = P exp (P2 Ya dya, 
jp, 

we have that the holonomy operator 

(3.18 ) 

h (xa,l1(x,fJ») = G(Xa,1]I,fJ)a(fJ;1]11]2)G -1(Xa,1]2,fJ). 
( 3.19) U(wa,1],fJ}='a (Wr,)wa, 

M(wa,1],fJ}=ma (1],'r,)wa, (3.7) Since h = I for self-dual fields we have 

M(wa,1],fJ)=ma (1],fJ)wa, (3.8) 

one can by direct calculation find from (3.1), (3.2), and 
(3.3 ) 

; = (1]M - U)/(M + UfJ), 

; = (fJM - U)/(M + U1]), 

R = U(1 + (M IU) (M IU»). 

(3.9) 

(3.10) 

(3.11 ) 

We could easily have found r = r( 1],fJ,wa) but it is not need
ed. One can go further and show, using (2.10) and (2.13) 
that (3.9) and (3.10) really have the simple form 

; = ;(wa,fJ) = - (u + wfJ)/(w + vfJ), (3.12) 

(3.13) 

with u = Wo - w3, V = Wo + w3, W = Wi + iw2, and 
w = Wi - iw2 and inverses 

1] = 1] (wa,;) = - (u + w;)/(w + v;), 

fJ = fJ(wa,;) = - (u + w;)/(w + v;). 

(3.14 ) 

(3.15) 

These relationships are very important. For example, 
we see immediately that if we are given the two a planes (or 
two/3planes) ar;and a", (or /3~ and /31j ),they have a unique 
intersection point given by (3.13), (3.15), and (3.11) [or by 
(3.12), (3.14), and (3.11)]. Or from (3.12) given the /3 
plane /31j' there is a unique a plane ar; which it intersects. 
The intersection is not at a point but along a curve. 
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(3.20) 

GN = G(Xa,1]I;fJ), Gs = G(Xa,1]2;fJ). (3.21) 

Comparison of (3.20) with (2.14) shows that if we 
identify fJ withzthen, at least formally, (3.20) is aRH prob-

FIG. 1. Thepplanep~ through xaintersecting the twopplanes p"and P" 
on Cy at the pointsp, andp2 yielding the triangle ,6.(x,fj). 
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lem for the determination of G(xa,1],fJ) for a given 
a(fJ;1]I,1]2)' 

The function a ( fJ;1] 1,1]2) is determined from the (holo
morphic) characteristic data, namely the components of the 
connection on Cy via (3.18). The values of 1]1 and 1]2 (or 
equivalently; I and;2)' along with the choice of characteris
tic data, determine the singularities of a as a function of fJ. 
We will assume that these singularities occur when fJ is in a 
neighborhood of both 

fJ = fJs== - 1/1]1' (3.22) 

(3.23 ) 

This occurs when the YM field is regular on finite regions of 
C y and when ya is a sufficiently large timelike displacement 
from xa. Geometrically this means that a (fJ;1]I,1]2) is singu
lar when the P fJ plane is parallel to either the P {;, or P (;, 
plane; the intersection points PI and P2 both being then at 00. 

When ya tends to timelike infinity Eqs. (3.14) and (3.15) 
simplify to 1] = -; -I and fJ = -; -I. [The assumption 
(3.23) does not appear to be very restrictive.] 

If we consider fJs and fJN as two points of the Riemann 
sphere, then in the annular region between them, a( fJ,1]I,1]2) 
is holomorphic in fJ and we po have in fact a RH problem 
with 

GN = G(Xa,1]I;fJ), Gs = G(Xa,1]2;fJ) 

as the splitting matrices. Note that since GN is to be holo
morphic in the region far from fJ s = - 1] 1- I, it must be ho
lomorphic in the region antipodal to fJs, namely in the region 
r,-zr/J. (Two points, on the Riemann sphere, 1] and 1]' are 
antipodal if 1]' = _1]-1.) We then have the important re
sult that G(xa,1],fJ) is to be holomorphic in both variables 1] 
and fJ in the region fJ-z1]. This becomes our boundary condi
tion for the differential equation derived from the RH prob
lem in the next section. 

We see that we have a variation on the usual RH prob
lem. Instead of having the data being given withfixed singu
larities and having the two "splitting" functions GN and Gs , 
we have the situation where the positions of the singularities 
are variable and determined by the value of 1]. This leads to a 
single "splitting" function G(xa,1],fJ) holomorphic in the 
two variables (1],fJ) in the antiholomorphic strip fJ-z1]. The 
two usual "splitting" functions GN and Gs arise by choosing 
two fixed values for 1], i.e., 1]1 and 1]2' 

This new point of view towards the RH problem allows 
us in the next section to derive a simple linear differential 
equation for the G(xa,1],fJ), which is considerably simpler to 
study than the original RH problem. 

To conclude this section we mention for use in Sec. V 
that from knowledge of G(xa,1],r,) it is a simple matter to 
calculate the Yang-Mills connection. This is done by differ
entiating (3.17) with respect to x a yielding 

laVaGG -I = Yala, 

which becomes, after some manipulation 10 

Ya = G,aG -I + ~hla - hma 

with 

h = lb1J(G,b G -I) 
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(3.24) 

(3.25) 

and 

VaG= G,a' 

One can rewrite Eq. (3.25) in a somewhat simpler form, 
which will be useful to us later. We note that the left side of 
(3.25) is only a function of xa, and therefore we can use 
different values of 1] and fJ on the right side. Thus (3.25) can 
also be written as 

Ya (xa) = G :aG ,-I + ~h'/ ~ - h 'm~, (3.26) 

where the prime means, replace (1],fJ) by (1]',fJ'). By multi
plying (3.25) by la and ma, respectively, and (3.26) by / la 
and m la we have 

Y I a = I aG G - 1 Y ma = maG G - 1 
a ,a' a ,a' (3.27) 

Y l,a=/,aG' G,-I Y m,a=m,aG' G'-I 
a ,a' a ,a· 

By choosing (1]',fJ') = (1], _~-I), (3.27) can be rewritten 
as 

Ya 1a(1],fJ) = la(1],fJ)G,a G -I, 

Ya ma (1],r,) = ma(1],fJ)G,aG -I, 

Ya na (1],fJ) = na(1],fJ)G :aG'-I, 

Yama(1],fJ) = m a(1],fJ)G:aG'-I, 

(3.28 ) 

where I a,na,ma,ma form a null tetrad system 
lana = - mama = 1, with all other products vanishing. 
[This result follows from (3.27) becuasel la( 1], - ~-I) and 
mta(1],~-I) are linear combinations of na(1],fJ) and 
m a(1],fJ).] [See (2.13).] 

Equation (3.28) can be solved for Ya' i.e., 

Ya = (l bG,bG -I)na - (mbG,bG -I)ma 

+ (1]bG,J; -I)/a - (mbG,bG -I)ma, (3.29) 

where we have defined G = G(xa,1], _1]-1). 

One can by a gauge transformation make G = I in which 
case we have (in a particular gauge) 

IV. THE RIEMANN-HILBERT PROBLEM AS A 
DIFFERENTIAL EQUATION 

Returning to the RH problem (3.20) written as 

G -1(xa,1]I,fJ)G(Xa,1]2,fJ) = a (fJ;1]I,1]2)' 

(3.30) 

we wish to convert it to a differential equation for G(xa
, 1], fJ), 

Though this can easily be done, it turns out that the resulting 
equation is simpler if, via (3.12) and (3.13), we use; and; 
as the basic variables and ask for an equation for G(xa,;,;). 
Equation (3.20) then has the form 

G -I (Xa';';I)G(Xa';';2) = a(;';I';2)' (4.1) 

We obtain the differential equation by taking the;, deriva
tive of (4.1), evaluated at;1 = ;2' i,e., 

-G-IG-G-1G=a- - - - (4.2) ,(; ,(;,1(;,=(;,=(;' 

From (3.18) and (2.11) we have 

dya -a - - _ 
a,{;,.I{;,={;,={; =Ya d; =Ya m (;,;)R(l +;;) 1 

and thus (4.2) becomes 

E. T. Newman 2800 



                                                                                                                                    

~?;G = - GA (R,~,;) 

with 

~?;G=(l + ~;)G,?; 
and 

(4.3) 

A = ramaR. (4.4) 

Equation (4.3), a first-order homogeneous linear partial dif
ferential equation well known in the literaturelO

,13 and re
ferred to as the Sparling equation, is our sought for equation. 

One seeks solutions of the Sparling equation G(xa,~i) 
holomorphic in the strip; zt. These solutions solve the 
original RH problem. 

We, however, must say a bit more about a(~;;I';2) and 
A (R,~,;). Our notation has suppressed the fact that they are 
both dependent on xa

, the field point. It is, in fact, this depen
dence which forces G to be also a function of xa. We first 
point out that we can always, for self-dual fields, make a 
choice of gauge such that on the data surface Cy we have 
ral a(~,;) = rama(~,;) 0, theonlynonvanishingcompo
nent on Cy being rama. Though this choice of gauge is not 
necessary, it does make the exposition simpler and hence
forth will be used. 

It is easily seen from (3.18) and (4.4) thatA(R,~,;) is 
the component of the connection on C y which is tangent to 
the curve B connecting PI and P2' Here A, which is our free 
characteristic data given on C y , is to be thought of as an 
arbitrary (spin-weight - 1) function of R,~,;. If we, how
ever, use (3.11) with (3.14) and (3.15), we obtain a rela
tionship 

(4.5) 

i.e., that value of R on the intersection ofCx with Cy which is 
to be used in (4.3). We thus have 

A(R,~,;) =A (R(wa,~i),~,;) =A(xa _ ya,~,;), 
(4.6) 

which is the appropriate form to be used in the Sparling 
equation. 

For completeness we give the form for (4.5), namely 

R = wala ( ; -l,i1> (4.7) 

with 

11 = - (u + fl);)/(iiJ + u;). 

In the very important case of Cy becoming null infinity, 
i.e., when ya~ timelike infinity and 11 = - ~-I, 
1] = -; -I, Eq. (4.3) is shown easily to be the usual Spar
ling equation for G(xa,1],l1), i.e., 

v. FURTHER COMMENTS ON THE HOLONOMY 
OPERATOR 

(4.8) 

We saw that the triviality of the holonomy operator 
h = Ion the,Bplanes led to the RH problem (3.20). A natu
ral question is what use is the holonomy operator (which we 
will refer to as h) on the a planes. 

The closed paths we use on the a'T/ planes are the direct 
analogs of the paths we used on the,B 17 planes. 
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_ From a field point x a on a1] we construct a triangle 
ll(x,1]) with two legs given by the generators (1],111) and 
(1],112) fromxa top; andp~ on Cy and the base B being the 
unique curve on Cy connecting pi and p~ on a . _ 1] 

The holonomy operator around ll(x,1]) (starting from 
a point on C y) is simply given by 

h(x.1];111112) = G -1(xa,1],111)G(xa,1]1112)' (5.1) 

which, in general, is nontrivial. Note that there is no contri
bution to h from the curve B since by our choice of gauge 
rama(~,;) = O. Note further that h is gauge invariant, i.e., 
from G~g(x)G, we have h~ii. 

h (x,1];111,112) is an interesting and important variable. 
Directly from h alone one can calculate the Yang-Mills 
field. Furthermore h satisfies equations equivalent to the 
self-dual YM equations. In other words, the nonlocal holon
omy operator h contains all the information about the gauge 
field. 

One can look at h in two ways; we can first consider it as 
a function of the seven variables (xa,1],111,112) and second, for 
somejixed values of (1],111,112)' consider it simply as a func
tion of ~ alone. From the first point of view one can derive a 
generalized RH problem and its "localized" differential 
equation analogous to the Sparling equation. The second 
point of view leads to a simple second-order nonlinear differ
ential equation for h(xa

) obtained in a different context by 
Yang, 14 which replaces the usual self-dual equations. 

To elucidate these claims we begin by writing the RH 
problem for two,B planes, ,B 17, and ,B 1), : 

a( 111;1]11]2) = G -I (X,1]1111 )G(x,r12,l1l), 

a(112;1]11]2) = G -I (x,1]1112)G(x.1]z,l1z), 
(5.2) 

and the holonomy operator h on two a planes a'T/, and a'T/,' 
i.e., 

h (x,1]1;111,112) G -I (x,1]I,l1l) G(x,1]1,112), 

h(x,1]z;111,112) = G -I (x,1]2.11I)G(x,1]2,112)' 
(5.3) 

By inspection of (5.2) and (5.3) we see that Gcanbe elimin
ated yielding an expression involving on h and a, i.e., 

a( 111;1]I,1]2)h( 1]1;l1l,l1z) = h( 1]2;111,l1z)a( 112,1]11]2)' (5.4) 

which can be thought of as a generalized RH problem in two 
variables 111 and 112' given a( 11,1]1,1]2)' By differentiating 
(5.4) with respect to 1]2 and 112 at 1]2 = 1]1 and l1z = 111 one 
obtains the differential version of (5.4 ), namely 

DH+[H,A]+DA=O (5.5) 

with the infinitesimal holonomy operator H given by 

- _ ah I H = (1 + 1]11]1) -_- • 
a1]z 1), 17. 

[For simplicity here we have tacitly assumed that Cy is null 
infinity as in (4.8).] As in the case of the Sparling equation 
versus the RH problem, (3.20), it is easier to study (5.5), a 
linear inhomogeneous differential equation, than (5.4). 

For our final result we derive Yang's equation on h 
thought of as a function only of xO. We fix, in (5.1),1],111' 

and l1z = - nIl and write (5.1) as 
_ A 

h(xa ) = G -IG. (5.1') 

E. T.Newman 2801 



                                                                                                                                    

In a straightforward fashion we compute 

lab=(h -Ih,o ),b (5.6) 

using 

(G G- I
) = (G G- I

) - [G G- I G G- I
] (5.7) ,a ,h ,h ,a a 'b 

obtaining 

f. = G -I{ (G G -I) - (G G -I) 
d ~. ~ ~ 

+ [G,b G -1;G,oG -I]}G. (5.8) 

Thoughlab is not skew on a and b and is not the Yang-Mills 
field, it does contain all the Yang-Mills field information as 
we now demonstrate. 

Using either (3.29) or (3.30) one can show that (in a 
particular gauge) the three nonvanishing self-dual compo
nents of the YM field are 

FOb10;nb = -lab l a;nb, 

Fob (l °nb + mO;nb) = - fab (l anb + mO;nb), (5.9) 

Fob rtmb = -labmonb. 

(Note that on the right side the placement of the indices are 
important. ) 

Furthermore one can calculate 

Fob (l anb - mO;nb) = -lab (l °nb - ma;nb) , (5.10) 

which must vanish by virtue of the fact that! 10nb J - m 10;nb J 

is anti-self-dual and Fob is self-dual. This leads to the simple 
differential equation for h 

(h-Ih,u),v - (h-Ih,w)w =0, (5.11) 

where we have introduced coordinates u,v,w,w by 

la~=~, na~=~, 
axa au axo av ( 5.12) 

o a a -a a a m -=-, m -=-. axo aw axo Ow 
Equation (5.11) is the Lorentzian version of an equation 
derived by Yang l4 for Euclidean self-dual fields. 

VI. CONCLUSION 

In a future paper we will show how, for the gauge groups 
SL(2,C) or SU(2), it is possible to solve in closed form, i.e., 
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by quadratures, the RH problem (3.20) or the related Spar
ling equation ( 4. 3 ). This means, at least in principle, one can 
calculate by quadratures any of the symmetry reductions of 
the SL(2,C) self-dual equations and in particular the sta
tionary axial symmetric solutions of the Einstein equations. 
It appears likely, but at the moment unproved, that our 
method of integrating the SL(2,C) RH problem or Sparling 
equation can be extended to other groups. 
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Seventy-five years ago Cartan invented spinors by mapping C 2 onto isotropic (null) vectors in 
C 3

• In recent work this map was extended and it was shown that bispinors are isomorphic to a 
class of Yang-Mills vector triplets Fk = Ek + IHk which satisfy the following SU(2) XU( 1) 
gauge invariant constraint: Fj • F k = ~ 8jk , where S2 = !F k • F k (k summed from 1 to 3). Thus 
bispinors have inherent SU (2) xU ( 1) gauge symmetry. In this paper it is shown, using the 
extended Cartan map and the gauge symmetry ofthe constrained Yang-Mills fields, that all 
the Fierz identities reduce to a single equation. Moreover, this equation includes not only the 
75 identities recently derived by Takahashi [Yo Takahashi, J. Math. Phys. 24, 1783 (1983)] 
but an additional 75 which come from interchanging gauge and vector components. It is 
further shown that the Fierz identities for bispinors can be generalized to any multiplet, 

'l'EC 2
", consisting of r - I spinors (n = 1 for spinors, n = 2 for bispinors, n = 3 for bispinor 

doublets, etc.). The generalized identities can also be used to show that the 2n 
-I spinor 

multiplets are isomorphic to multiplets of constrained Yang-Mills vector fields. 

I. INTRODUCTION ( 1.5) 

A bispinor \Ii = (S,1]*)EC 4 consists ofa spinor S and a 
conjugated spinor 1]*. We have shown in recent papers l

-
5 

that bispinors could be mapped isomorphically onto spinor 
pairs 'I' = (S,1] )EC 4 or equivalently onto a set of Yang-Mills 
vector triplets (see Fig. 1), 

WritingF'fc = (F~,FK)' wedefineFk withk = 1,2,3 as the 
Yang-Mills vector triplet ~nd s = Fg as the scalar corre
sponding to '1'. (F 0 and F~ identically vanish.) 

Fk=Ek+IHk (k=1,2,3 and Ek,HkER 3
), (Ll) 

which satisfy the following constraint: 

Fj • Fk = s28jk , 

where 

~ = jFk • F k • 

( 1.2) 

(1.3 ) 

The isomorphism between the bispinors and the Yang
Mills vector triplets satisfying (1. 2 ), revealed that the bi
spinors have an inherent SU(2) XU(1) gauge symmetry. 
The gauge group SU(2) acts on the Yang-Mills triplets 
(FI , F2, F3 ) by formal rotations of the Fk • However, the 
equivalent action on the bispinors is noncomplex linear, 
which obfuscates their inherent gauge symmetry.6 In this 
paper we use the gauge symmetry of the Yang-Mills vector 
triplets to simplify the Fierz bispinor identities recently de
rived by Takahashi. 7 

The map from bispinors \Ii to constrained Yang-Mills 
vector triplets F k we called the Cartan map. 8 We defined the 
Cartan map to be the bilinear map B'fc from C 4 XC 4 into 
C 4 ® C 4 given as follows (see Sec. II): 

B'fc('I',X) = ~*1'Ku"X' 
where 

a = 0, 1, 2, 3 = Lorentz indices, 
K = 0, 1, 2, 3 = gauge indices, 
'1', X = spinor pairs, 
'1'* = conjugate of 'I' (see Sec. II), 
u" = Pauli spin matrices, 
l' K = gauge matrices. 

For each spinor pair 'l'EC 4
, we define 

(1.4) 

The complete set of 15 Fierz identities derived by Taka
hashi9 can be combined into a single gauge symmetric for
mula as follows: 

( 1.6) 

where C~: is the tensorlO whose covariant components are 
given by 

CaPY6 =gaygp6 +ga6gpy -gapgy6 -iEapy6 , (1.7) 

where 

gaP = Lorentz metric tensor, 
Eapy6 = permutation tensor, 
'1', '1", X, X' = spinor pairs. 

DIRAC 
BISPINOR , 

[:. ] 

CARTAN 
MAP 
ISOMORPHISM 

• 
BIJECTION 

+ 
F3 

YANG-MILLS 
TRIPLET 

(ISOTROPIC) 

FIG. 1. Isomorphisms. 
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2803 J. Math. Phys. 27 (11), November 1986 0022-2488/86/112803-04$02.50 @ 1986 American Institute of Physics 2803 



                                                                                                                                    

The operation e denotes the formal Clifford algebra multipli
cation defined on formal quadruplets ¢JK' ftK' and AK 
(K = 0, 1, 2, 3) as follows for A = ¢Jew 

,.1,0 = ¢JK ftK' (1.8 ) 

(see Sec. II). 
Since the Lorentz indices a and the gauge indices K are 

symmetric in formula (1.4), interchanging them in (1.6) 
leads to a second gauge symmetric formula given as follows: 

BJ ('I1,X)oBK (X','I1') = C~B~ ('I1,'I1')BQ (X',X), (1.9) 

where C~ is the same tensorll defined in (1.7), i.e., 

CJKPQ =g JPgKQ + g JQgKP _ g JKgPO _ iE'KPQ, (1.10) 

and the operation ° denotes Clifford algebra multiplication 
with respect to the Lorentz indices (that is, for four-vectors: 
pa, qa, r"EC 4 such that r = poq, then 

rO = pOqO + p • q, 

r = pOq + qOp + ipXq) 

(see Sec. II). 

(1.11) 

We first derive formulas (1.6) and (1.9), and then show 
that the 75 nongauge symmetric identities relating bispinor 
observables obtained by Takahashi 12 are specific cases offor
mula (1.6). We further show that these identities, which 
pertain to a single bispinor, can also be reduced to a single 
gauge symmetric identity. 

The Fierz identities (1.6) and (1.9) can be easily gener
alized to any multiplet, 

'I1EC 2n (1.12) 

(n = 1,2,3, ... ) consisting of 2n
-

1 spinors. The case n = 1 
(spinors) is discussed in Sec. II. Fierz identities (1.6) and 
(1.9) are for the case n = 2 (spinor pairs). Special cases of 
the Fierz identities for n = 3 (spinor pair doublets) were 
used in the SU(2) XSU(2) xU(1) model of color
electroweak interactions. 13 

To facilitate extending the identities to any n, we consid
er first the case n = 3. The Cartan map for n = 3 is defined to 
be the bilinear map B~K from C 8 XC 8 into C 4 ®C 4 ®C 4 

given as follows l4
: 

B~K('I1,X) = - W*1"JtKo"X, (1.13) 

where 'I1,XEC 8 and 

a = 0,1,2,3 = Lorentz indices, 
J,K = 0,1,2,3 = gauge indices, 
'11* = conjugate of '11, 
0" = Pauli spin matrices, 
1"K,tK = gauge matrices. 

Then for n = 3 formula (1.9) becomes the following Fierz 
identity using the formal tensor C JKPQ defined in formula 
( 1.10): 

BJM ('I1,X)OBKN (X', '11') 

(1.14 ) 

Since the Lorentz indices a and the gauge indices J and K are 
symmetric in formula (1.13), interchanging them leads to 
further identities. 
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As an application offormula ( 1.14) for n = 3, let 'I1EC 8. 

Define 

F~M = B ~M ('11, '11). (1.15) 

Writing F~M = (F~M' FJM ) we obtain ten Yang-Mills vec
tors Foo and Fjm , and sixscalarssj =F1 andrm =Fgm • The 
remaining components of F~M vanish. From (1.14) and 
( 1.15) we get the following formula for the scalar invariants 
of the nonet Fjm : 

F jm ·Fkn = -P2
0jk omn +SjSk omn +rmrn Ojk 

(1.16 ) 

wherep2 = SkSk = rkrk . 

Using the method discussed in Sec. II, the generaliza
tion of ( 1.14) to the cases n > 3 is a straightforward induc
tion on the products of the formal tensor C~, which gives 
the following formula for n > 1: 

BJ, ... J
n
_, ('I1,X)OBK, ... K

n
_, (X','I1') 

= (lIr- 2 ) [CP,Q, .•. cPn-,Qn-'] 
J.K. I n _ tKn _ l 

XB~, ... P
n 
_, ('11, 'I1')BQ, ... Qn _, (X' ,X), ( 1.17) 

where '11, X, 'I1',X'EC
2n 

and the Cartan mapB~, ... K
n
_, from 

C 2n X C 2n into C 4 ® ••. ® C 4 (n factors) is defined by 

B ('I1X) = (-l)nW*1" (1) "'1" (n-l)o"X 
K.···Kn _ 1 ' XI K n _ t ' 

(1.18) 

where the 1"K, (I), ••. ,1"Kn_, (n -I) are the gauge matrices. 
The generalization (1.17) also leads to the following 

isomorphisms between r - I spinor multiplets '11 and con
strained Yang-Mills vector fields: 

Fk, ... k
n
_, = Bk, ... k

n
_, ('11,'11). (1.19) 

The constraints may be derived from (1.17) in the same 
manner that (1.16) was derived from (1.14). 

For every n, the Yang-Mills vector fields F k, ... k
n 

_ , 

satisfy a vector Dirac equation 15 derived from the corre
sponding spinor (multiplet) equation using the Fierz identi
ty ( 1.17). Furthermore, the vector Dirac equations are more 
general than their spinor versions. Indeed, spinor multiplet 
fields cannot be defined generally for space-time mani
folds 16; whereas the vector fields F k, ... k. _, are defined on all 
space-time manifolds. Thus, it is the Fierz identity (1.17) 
that allows us to pass from spinor multiplets (which do not 
have curvilinear components) to vectors which are fully co
variant with respect to all coordinate transformations. 

II. FIERZ IDENTITIES 

By definition a spinor is a two-dimensional complex vec
tor; i.e., an element ofC 2

• Let 

$= [::]EC 2 

denote a spinor. The conjugate spinor $ * is defined as 

(2.1 ) 

where the bar denotes ordinary complex conjugation. The 
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map s-s * is called spinor conjugation. Since 

s** = -5 

spinor conjugation is a bijection. 
The Pauli matrices, denoted 0-", where a = 0, 1,2, 3, are 

the 2 X 2 Hermitian matrices acting on spinors SEC 2 defined 
by 

~], u
l 

= [~ ~], 

- ~], ~ = [~ -~]. 
We often use the following notation: 

a = (Ul,~,~), 0-" = (cfl,a). 

Let paEC 4 have the components 

pa= (po,p), p= (pl,p2,p3). 

Then by definition (2.2) 

[
pO + p3 pI _ ip2] 

pao-" -
- pI + ip2 pO _ p3 . 

(2.2) 

(2.3) 

Then 2X2 matrices (2.3) satisfy the following rule for mul
tiplication. Letpa, r/EC4, then 

(pao-") (qflu fl ) = rYuY, 

where rYEC 4 has the components 

rD = paqa, r = pDq + qOp + ipxq. 

(2.4) 

(2.5) 

Writing r = poq, formula (2.5) defines an associative multi
plication on C 4

, which makes C 4 a Clifford algebra. 
In order to obtain Lorentz covariant expressions we 

must consider products of the form poq, where 

qa = (qO, _ q) = qa' (2.6) 

Substituting (2.6) into (2.5) we get 

[poq]o=paqa , [poq]-=qOp-pOq-ipXq. (2.7) 

That is, ifpa, qaEc 4 transform as Lorentz four-vectors, and 
if we denote 

s = [poq]O, F = [poq]~, 
then s is a Lorentz scalar and F = E + IH is a Yang-Mills 
vector. 

The Cartan map is defined to be a bilinear map from 
C 2 XC 2 into C 4 as follows: 

[ 

SI7]2 - S2Th ] 

b a(s,7]) = .517]1 - S27]2 , 
I(SI7]1 + S27]2) 
- 517]2 - S27]1 

(2.8) 

where S,7]EC 2 are spinors. From (2.1) and (2.2), formula 
(2.8) may be written as 

b a(s,7]) = -t*o-"7]. (2.9) 

From (2.8), the Cartan map b: C 2 XC 2_C 4 has the 
symmetry property 

b(S,7]) = - b( 7],S) (2.10) 

and from (2.9), the following conjugation properties: 

b(s,7]) = b(S*,7]*), b(s*,7]) = - b(S,7]*)· 
(2.11 ) 
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Moreover, from (2.4), (2.5), and (2.9), the Cartan map 
commutes with the matrices (2.3) as follows: 

(2.12) 

In addition, from (2.8) a straightforward derivation shows 
that the Cartan map satisfies the following identity for all S, 
7], S', 7]'EC 2: 

(2.13 ) 

Formula (2.13) shows that the image of the Cartan map is 
closed under the operation of Clifford algebra multiplica
tion. Equivalently, using (2.10), we have 

b(S,7])Ob(S',7]') = 2bO(S,s')b(7],7]'). (2.14) 

From (2.14) we derive Lorentz covariant equations. Using 
(2.7) and denoting b a = (bo,b) we can expand formula 
(2.14) in component form as follows 

2bo(s,s')bo(7],7]') = b a(S,7])ba (S',7]'), 

2b o(s,s') b( 7],7]') = b ° (S,7] )b(S ',7]') 

- b(S,7])bo(s',7]') 

+ Ib(s,7]) Xb(s ',7]'). (2.15 ) 

Formula (2.14) gives us all possible Fierz identities for spin
ors. Fierz identities for bispinors will now be derived as a 
straightforward generalization of (2.14). 

A bispinor \Ii = (S, 7]*) EC 4 consists of a spinor SEC 2 and 
a conjugated spinor 7]*EC 2. Associated with the bispinor 
\Ii = (S,7]*) is the spinor pair 'I' = (5,7]), where 7] = 
- (7]*) *, and the conjugate spinor pair '1'* = (7]*, - S *). 
Note that 'I' = '1'**. The map \Ii-'I' and '1'_'1'* are bijec
tions. The Cartan map (2.8) can be extended to spinor pairs 
(bispinors) as follows: For each K = 0, 1, 2, 3 the Cartan 
map is defined to be the bilinear map from C 4 xC 4 into C 4 
given byl7 

[ 

ba(s,v) - b
a

(7],K) ] 

Ba 'I' _ ba(S,K) - b a(7],v) 
K ( ,X) - i[b a(s,K) + b a( 7],v)] , 

- b a(s,v) - b a( 7],K) 

(2.16) 

where 'I' = (S, 7]) and X = (K, v) denote spinor pairs and b a 

is defined by (2.8). Note that the extended Cartan map 
(2.16) can be rearranged as follows: 

ba(S,K) = - (i/2)(B~ +iBn, 

b a(7],v) = - (i/2)(B~ - iBn, 

ba(S,V) = -!(B~ -Bg), 

b a(7],K) = - !(B~ + Bg), 

where we have denoted 

B'k. = B'k. ('I',X)· 

(2.17) 

The SU (2) xU (1 ) gauge generators, denoted r K' 

whereK = 0,1,2,3, are the 4X4 Hermitian matrices acting 
on spinor pairs 'I' = (S,7])EC 4 defined by ro = identity ma-
trix, 

- il2] 
o ' 
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where 12 is the identity of C 2
• We often use the following 

notation: 

1"k = (1"1,1"2,1"3)' 1"K = (1"O,1"k)' 

with k = 1, 2, 3. Using the gauge generators 1"K' formula 
(2.16) may be written as 

B~('I',X) = W*1"K a"X. (2.19) 

The B ~ = (B~, BK ) have the following symmetries: 

with k = 1,2,3. It follows from (2.20) that B ~ ('1','1') and 
Bo ('I', '1') vanish. Similar to (2.10), we define 

B('I',X) = B(X,'I'). (2.21) 

Then the B ~ satisfy the following conjugation properties: 

(2.22) 

From (2.13), (2.16), and (2.17), we derive the follow
ing Fierz identity for spinor pairs (bispinors): 

BJ ('I',X)oBK (X','I") = C~~B~('I','I")BQ(X"X)' (2.23) 

with 

CJKPQ =gJP~Q +gJQ~P _gJK~ _ ie'KPQ, (2.24) 

where l8 

J, K, P, Q = 0, 1, 2, 3, 

g JK = formal Lorentz metric tensor, 

e'KPQ = formal permutation tensor, 

'1', '1", X, X' = spinor pairs. 
A 

[We may substitute B for B in the Fierz identity (2.23) to 
obtain Lorentz covariant equations similar to (2.15).] 

We may also define a Clifford algebra product with re
spect to the gauge indices K, rather than using the Lorentz 
indices a as in formula (2.5). Thus, consider quadruplets: 
¢>K' /-lK' and AK, with K = 0, 1,2,3, then A = ¢>e/-l is defined 
by 

AO = ¢>K /-lK' Ak = ¢>o/-lk + ¢>k /-lo + i€kpq¢>p /-lq. 
(2.25) 

This associative multiplication makes the quadruplets a for
mal Clifford algebra. [In order to obtain formal Lorentz 
expressions we use products of the form ¢>ejl, where 
jl = ( /-lo, - /-l k ) similar to formula (2.6).] 

Using the symmetry between the Lorentz and gauge in
dices in formula (2.19) we immediately obtain from (2.23) 
the following Fierz identity: 

Ba('I',x)eBP(x','I") = C~gBb('I','I")BO(X"X) (2.26) 

with 

(2.27) 

and where gaP is the Lorentz metric tensor ~d €aPyo is the 
permutation tensor.19 [We may substitute B for B in the 
Fierz identity (2.26) to obtain formal Lorentz equations.] 

As an application of formulas (2.23) and (2.26), let 
'l'EC 4 be a spinor pair. Define 
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II.. = B ~ ('1'*, '1'), F~ = is ~ ('I', '1'). (2.28) 

Thens = Fg is a scalar and F k isa Yang-Mills vector triplet. 
From (2.20), Fo andF~ vanish. Thej~ are a quadruplet of 
real Lorentz four-vector currents. Then (2.23) and (2.26) 
give, using (2.22) and (2.28), 

J. o']~ - CPQ-FoF J:a-:J~P - catipYFo 
J K - JK P Q' - yo 0 . (2.29) 

Using the fact that F~ = (s,O) and F% = (O,Fk ), and also 
j-g = jOa and 11 = - j ka' we get from the first equation of 
(2.29), 

Ii jKa = IsI2gJK' (2.30) 

which shows that e~ = J~/Isl, for K = 0, 1, 2, 3, form an 
orthonormal Lorentz basis for R 4. Also, from the first equa
tion of (2.29) we get 

Fk = s(egek - e~eo + ieOxek )· 

From the second equation of (2.29) we get 

e~ePK =~P, 

(2.31 ) 

(2.32) 

which again shows that the e~ form an orthonormal Lorentz 
basis. Also from the second equation of (2.29) we obtain the 
following equation which is equivalent to (2.31): 

F%P=s(e~d -e%eg +i€kpqe;e~), (2.33) 

where F%P = (F k' - IF k) are the antisymmetric tensors as
sociated with the Yang-Mills vectors F k' Given that the e~ 
are orthonormal, formula (2.33) reduces to (2.31) and is 
equivalent to all 75 equations derived by Takahashi.20 

'P. Reifler, J. Math. Phys. 25,1088 (1984). 
2p. Reifler, J. Math. Phys. 26, 542 (1985). 
3p. Reifler and R. Morris, J. Math. Phys. 26, 2059 (1985). 
'P. Reifler and R. Morris, "A SU(2)XSU(2)XU(1) model for color
electroweak interactions," submitted to J. Math. Phys. 

SR. Morris and P. Reifler, "Higgs field dynamics in the SU(2) 
XSU(2) XU( I) model of color-electroweak interactions," submitted to 
J. Math. Phys. 

6See Ref. 2, pp. 547 and 548. 
7y. Takahashi, J. Math. Phys. 24,1783 (1983). 
8See Ref. 2, p. 548. 
"Y. Takahashi, J. Math. Phys. 24, 1783 (1983), pp. 1786 and 1787. Taka
hashi lists these general Pierz identities as P-I to P-15. 

IOBy substituting 'Ii* and 'Ii and X'· for X', formula ( 1.6) becomes a tensor 
identity, and hence the components c~g form a tensor. See Ref. 2, p. 548. 
Note that we can express c~g directly as follows: 

c~g = t;g~ + g8g ~ + gaPgr6 - ig'm'gPP'Ea'p'r6' 

where gaP = Lorentz metric tensor and EaPr6 = permutation tensor. 
"Conforming with our previous notation in Refs. 1-5, covariant gauge in

dices K are written in the raised position, which is the opposite convention 
used for Lorentz indices a. This helps us separate the two types of indices 
in the formulas. Por example, g'K is theformal metric tensor, which is the 
gauge analog of gaP' the Lorentz metric tensor. 

l2y. Takahashi, J. Math. Phys. 24,1783 (1983), pp. 1787-1790. Takahashi 
lists these Pierz identities as JJ-l to RR-15. 

13See Ref. 4, Sec. IV. 
14See Ref. 4, Sec. II. 
"Por the cases n = 1,2, and 3, see Refs. 1-5. 
'6R. Geroch, J. Math. Phys. 9,1739 (1968). 
17See Ref. 2, p. 548. 
'8The components C ~ form a formal gauge tensor. See footnote II. 
]9See footnote 10, 
20y' Takahashi, J. Math, Phys. 24, 1783 (1983). 
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Starting from a Lippmann-Schwinger-type equation, which is very similar to that of quantum 
mechanical multiple scattering theory, Zeller and Dederichs [Phys. Status Solidi B 55,831 
(1973)] have developed the effective medium theory. This theory has found wide application in 
understanding the mechanical behavior of disordered solids. However, unlike the problem in 
quantum mechanics, this equation of the random elasticity is only approximate since this is a 
linear response theory. So, it is proposed in this work for the first time to go beyond this 
approximation to treat nonlinear properties of such solids of which the third-order elastic 
constant is a generic. Again, so far as the nonlinear elastic behavior of these solids is concerned, no 
work has been done except the simple Voigt- and Reuss-type averaging. Both are extreme 
approximations and are, moreover, known to lead to violation ofthe equilibrium condition. The 
salient feature of the present calculation is to get an exact formal solution of the problem in terms 
of an appropriate Green's function in a closed form. The result obtained is quite general and may 
be adopted to treat nonlinearity in any tensor property of disordered materials. Finally several 
approximations, including a self-consistent solution, have been discussed for obtaining the 
effective nonlinear static mechanical susceptibility. 

I. INTRODUCTION 

It is becoming increasingly evident that the different 
theoretical methods 1-4 developed for calculating the macro
scopic elastic properties of disordered materials, though 
highly instructive and ingenious, are basically intuitive and 
hence are rather difficult to apply. Even in the case of the 
most effective and rigorous technique involving the vari
ational procedures an educated guess is essential for the 
choice of the trial functions. On the other hand, as empha
sized by Gubernatis and Krumhansl,6 starting from the local 
stress-strain relation a rigorous theoretical formulation of 
the problem seems to have been inhibited so far by the diffi
culties of solving the resulting differential equations with 
randomly fluctuating values of the coefficients. However, 
the same equation being cast in the framework of an integral 
equation formalism is amenable to iterative or perturbative 
methods of solution. 

The above idea has been used by many authors 7.8 for 
calculating various effective properties of a macroscopically 
homogeneous medium with fluctuating values of the same 
property on a microscopic scale. In particular Zeller and 
Dederichs9•10 have developed an interesting and theoretical
ly satisfying formulation of the problem for the effective elas
tic properties of disordered materials. They have quite suc
cessfully exploited the idea of an effective medium whose 
mathematical formulation is algebraically equivalent to that 
of the quantum mechanical scattering theory. Recently Mid
daya, Sarkar, and Sengupta 11 have applied the method to 
discuss the elastic properties of noncubic polycrystals. Oper
ationally a self-consistent effective medium solution implies 
that the average scattering by the crystallites composing the 
solid is zero, when they scatter independently. This idea has 

been employed in different areas of condensed matter phys
ics that contain some disorder. 12 In the case of elastic proper
ties, the idea has been somewhat as follows. The strain, at 
any point in a specimen, is not determined alone by the local 
stress at the point under consideration. The strains from oth
er parts of the solid, due to different values of the elastic 
constants at those parts generated owing to the microscopic 
inhomogeneity of structure, propagate to the given point. 
Then solving the relevant equations self-consistently we ar
rive at the effective elastic constants corresponding to which 
the fictitious medium is called the effective medium. 

It is, however, to be noted that all the applications envi
saging the idea of the effective medium have so far been con
fined to only the linear response regime; namely, the second
order elastic constants, the second-rank dielectric tensor, 
and similar linear response susceptibilities of thermal and 
magnetic properties of disordered materials. The main pur
pose of the present investigation is to extend the idea of the 
effective medium approach to the nonlinear domain. The 
particular case that we shall treat is the case of the third
order elastic constants, which is a generic for all static non
linear susceptibilities. Specifically the theory of Zeller and 
Dederichs9 will be employed for the calculation. The solu
tion of the resulting integral equation may be suitably adopt
ed to treat nonlinearity in the other physical properties also. 

In the next section we develop the general theory includ
ing the nonlinear response. It is shown that under some phy
sically valid assumptions the exact formal solution for the 
effective tensor of the third-order elastic constants is ob
tained. Then the different approximate methods of solution 
and a self-consistent solution ofthe final equation have been 
discussed. 

In the last section we discuss the results and their possi
ble applications. 
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II. THEORY 

A. Strain distribution 

In order to calculate the third-order elastic constants of 
a polycrystal the usual method 13 has so far been to assume 
either the constant strain (Voigt average) or the constant 
stress (Reuss average) throughout the specimen. The iso
tropy observed is satisfied by one of the above averages. Both 
are extreme approximations and they are not theoretically 
consistent either, because in both cases the equilibrium con
dition is violated at the boundaries of the crystallites. Some
times a mean of the above two averages is calculated (Hill 
average), which, of course, does not correspond to any de
fined stress-stress relation. So, it is imperative, for any the
ory that tries to go beyond these approximations, to take into 
consideration the basic equilibrium equation to determine 
the actual strain distribution among the crystallites. In the 
following discussion we make such an attempt. 

Since the nonlinear part of the response cannot be con
sidered separately from the linear part, we relate the total 
local stress and strain fields by the following relation: 

O'ij(r) =Cijkl(r) +!Cijklmn(r)Ek1(r)Emn(r), (1) 

where 0' ij and Ekl 's represent the stress and the strain, respec
tively. The second-order and third-order elastic moduli ten
sors, Cijkl and Cijklmn, and the corresponding compliances 
Sijkl and Sijklmn are in general functions ofr. For disordered 
materials these quantities will vary in a statistical manner on 
a microscopic scale. We shall specialize our calculation in 
subsequent work for a polycrystal for which the statistical 
distribution will refer, in particular, to grain orientation. The 
term "grain" is used generically to mean even dislocations, 
cracks, voids, and similar other irregularities. Our purpose is 
similar to what Zeller and Dederichs have achieved with Eq. 
(1) neglecting the second term on the right-hand side of the 
equation; namely, to establish a connection between the en
semble averaged stress and strain fields (defined as (0') and 
(E» for macroscopic homogeneous materials through the 
following sets of nonlocal second- and third-order elastic 
constants defined as follows: 

(O'ij(r» = f dr' Cij~l(r,r')(Ekl(r'» 

+ ~ f dr'Cij~lmn(r,r')(Ekl(r'» (Emn(r'». 

(2) 

It should be emphasized that Eq. (2), as it may apparently 
seem, does not imply the approximation 

which decouples the combined effects of fluctuation and 
nonlinearity, which will, of course, be evident from the de
tailed calculation given in Eqs. (11) - ( 17) . 

Equation (2) should be interpreted as follows. 
The strain field E( r) is rapidly varying in the sense that it 

changes value from one crystallite to another. The strain 
fields (E) and EO [the strain field corresponding to the non
fluctuating part; see Eq. (11)] on the other hand are slowly 
varying. For a given distribution of elastic constants, how
ever, one can map both the E field and (E) field from EO. 
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Symbolically writing this nonlocal integral relation as 

E=JEo 

where J is an integral operator, we get 

(E) = (J)E0. 

Using the above expression for E we get from Eq. (1) 

0' = C(2)JEo +! C(3)JJEoEo 

and 

(0') = (C(2)J)EO + !(C(3)JJ)~~ 
= (C(2)J) (J)-l(E) 

+ ~(C(3)JJ) (J)-l(J)-l(E) (E), 

where C(2)=Cijkl and C(3)==Cijklmn' 

It is precisely the above result that is given in Eq. (2) to 
indicate just the fact that (0') and (E) are related by nonlocal 
integral relation. 

As emphasized in Ref. 9, the nonlocality of C7}rl and 
Cij~lmn are not very important. Therefore, Eq. (2) can be 
replaced by a local stress-strain relation with the constant 
effective tensors C'" and C ** 
(O'ij (r» = Ctkl (Ek1 (r» + ! Ctklmn (Ek1 (r» (Emn (r», 

(2'a) 

where 

Ctkl = f dr' Cij~l(r,r') 
and 

c• ... -fd,celf ( ') ijklmn - r ijklmn r,r . 

(2'b) 

(2'c) 

If we neglect the second term in Eq. (2') we retrieve the 
relation of Zeller and Dederichs.9 The present treatment will 
yield two sets of effective elastic constants. Of them the sec
ond order will be identical with that of Ref. 9. The only thing 
known about the disordered system is the statistical distribu
tion of Cijkl (r) and Cijklmn (r). The equation describing the 
equilibrium condition is obtained by taking the divergence of 
Eq. (1), 

div(O'ij(r») = 0, (3) 

which written explicitly gives 

div(CijklEkl +! CijklmnEklEmn) = 0. (4) 

This equation satisfies the equilibrium condition regarding 
the displacement vectors S k' The boundary conditions are 
given in the form of either the surface displacements or the 
surface forces. 

For obtaining the solution of the above equation we split 
both the fluctuating tensors Cijkl (r) and Cijklmn (r) into a 
constant part and a fluctuating part as follows: 

Cijkl (r) = C~kl + 8Cijkl (r)==C(2) 

and 

Cijklmn (r) = C'Jilmn + 8Cijklmn (r)=C(3). (5) 

Now introducing the displacement vectors we write Eq. (4) 
in the following form: 

(Cijkl(r)skll(r»)lj + !(Cijklmn (r)skllSmln )Ij = 0, (6) 
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where 

a 
Ij = ar .. 

] 

Now considering both the fluctuating parts of the second
order and the third-order elastic tensors, as well as the con
stant part of the third-order elastic tensor as the inhomogen
eous terms in the above equation, we give below the above 
equation with the homogeneous and inhomogeneous parts 

° a
2
s k a [ aSk C ijkl ---+ - t5Cijkl(r) -

arj arj arj arl 

1 aSk aSm ] + - Cijklmn (r) - -- = O. 
2 arl arn 

( 6') 

The solution of the homogeneous equation is solved by intro
ducing the Green's function 

C~kl gkpIU(r,r') = - t5 iP t5(r - r'). (7) 

This part of the equation remains the same as that given by 
Zeller and Dederichs. The boundary conditions also remain 
unaltered, namely gkp (r,r') = 0, for all r on the surface or 
there are no surface forces. Then for the given surface displa
cementss~ we obtain from Eq. (6) 

Sk =s~(r) + f dr' gki (r,r') [(t5Cijkl(r')skl/(r'»)lf 

+! C~/mn(Skll (r')smln (r'»)lf 

+ ! (t5C ijklmn (r' )Sk II (r')smln (r') )11 ], (8) 

where s~ (r) is the displacement field corresponding to the 
constant part of the elastic constant, Co. By partially inte
grating the above equation and then differentiating we get 
the resulting integral equation for the strain tensor: 

Ekq (r) = ~kq (r) + f dr' G kqij (r,r')t5Cijkl (r')Ekl (r') 

+ ~ f dr' G kqij (r,r')C~/mnEkl (r')Emn (r') 

with 

+ ~ f dr' G kqij (r,r')t5C ijklmn (r')Ekl (r')Emn (r') 

(9) 

G kqij = - ~(gkilql + gqilkf) (10) 

and 
a 

1/=-' 
arj 

The terms Gkqij and E~ depend neither on the fluctuating 
quantities nor on the constant nonlinear part of the elastic 
constants. An excellent discussion of the fundamental Eq. 
(8) excluding third order is given in Ref. 14. Introducing 
short notation, Eq. (9) may be written in either of the fol
lowing forms: 

E = EO + Gt5CE +! GCoou + ~ Gt5C'u 

or (11 ) 

E = EO + Gt5CE +! GC(3)EE. 

It is to be remembered that the integral Eq. (9) is the basic 
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equation for most of what follows. We have, however, sup
pressed the r dependence and the tensor indices in Eq. (11) 
for subsequent manipulative purposes. 

Let us now have recourse to an iterative method of the 
solution of Eq. (11). The iteration immediately leads to the 
following two sets of infinite series in terms of which the 
solution is given by 

E = EO + G(t5C + t5 CG t5C + t5CG t5CG t5C + ... oo)~ 
+! G(C(3) + 3C(3)G t5C + 6C(3)G t5CG t5C 

+ lOC(3)G t5CG t5CG t5C + ... 00 )~~ 

+ higher-order terms. (12) 

The different type of product operators will have the follow
ing meaning. In general the r-dependent quantities 
are G(r,r'), C(2)(r,r') = C(2)(r)t5(r,r'), C(3)(r,r') 
= C(3)(r)t5(r,r'), and the fundamental tensors are of rank 2, 

4, 6, etc. The products are defined as follows: 

(G t5CE) ij = f dy Gijkl (x,y)t5Cklmn (Y)Emn (y), (13a) 

(G t5CG t5CE) ij = f dx f dy Gijkl (z,X)t5Cklmn (x) 

X G mnpq (x,y)t5Cpqrs (Y)Ers (y), (13b) 

(GC(3)u)ij = f dy Gijkl (x,y)CWnnop (y)Emn (y)Eop (y), 

( 13c) 

and 

(GC(3)G t5Cu)ij = f dx f dy Gijkl (Z,X)BklmnopEmnEop' 

(13d) 

where 

Bklmnop = C g~nab (x) G abcd (x,y)t5Ccdop (y), (13e) 

etc. It is further important to note that in the second series in 
Eq. (12) the same quantities occur in mixed order in differ
ent terms. The order may be interchanged provided the 
Voigt symmetry of each term is ensured. This happens be
cause the terms involve products of tensors of ranks 6 and 4. 
So, in any application of the above formula each term has to 
be properly symmetrized. There is no such problem with the 
first series where the symmetry is automatically satisfied. 
Now, the above two series may be summed up to yield an 
exact formal solution in closed form. This is possible since on 
repeated interation of Eq. (12) no terms other than those 
indicated in the series representing the coefficients of ~ and 
~Eo will be generated. So for obtaining the second- and the 
third-order elastic constants the cubic and and higher-order 
terms in ~ are neglected and we write 

E = EO + GTEo + ~ GT'~Eo, (14a) 

where 

T= t5C(l- Gt5C)-1 (14b) 

and 

T' = C(3)(l - G t5C)-3 (14c) 
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and the previously defined multiplication rules for operators 
apply. The unit operator I is defined as 

IijkI (r,r/) = !(8ik 8jI + 8u 8jk )8(r - r/). (15) 

It is interesting to note that in Eq. (14) the terms linear in EO 
incorporating the fluctuations in the second-order elastic 
constants remain unchanged, while the higher-order term 
involves both the fluctuations of the second order and the 
whole of the third-order elastic constants. A knowledge of T 
and T / completely specifies both the linear and the nonlinear 
susceptibilities. In order to avoid the rather unwieldy expres
sions in the algebra, a shorthand notation is often used to 
represent the above formulas by diagrams. The associated 
diagram for calculation is shown in Fig. 1. Next we shall use 
Eq. (14) to derive the effective elastic constants of the medi
um. 

B. Effective elastic constants 

In order to get the expression for the effective nonlocal 
elastic constants C~ff =C(2)eff and C eff =c(3)eff we re-IJkI IJklmn -

quire the macroscopic strain given by Eq. (14). Thus we get 

(16) 

The macroscopic stress is given by [averaging Eq. (1)] 

(0) = (C(2)E) + !(C(3)EE), (17) 

which in terms of the effective elastic constant is 

(18) 

To find expressions for C (2)eff and C (3)eff in terms of the T
matrices we have to solve for ~ in terms of (E). Iterating Eq. 
( 16) in the reverse order we get retaining terms up to second 
order in macroscopic strains 

EO = (1 + (GT» -1(E) - (1 + (GT» -3(GT') (E) (E). 
(19) 

Next separating the constant and the fluctuating parts of the 
elastic constants Eq. (17) may be written as 

(0) = CO(E) + (8CE) +! COO(EE) + !(8C'EE). (20) 

Then with the help of Eqs. (14) and (19) we get the macro
scopic stress (0) in terms of (E) and the T matrices. Com
paring this final expression with Eq. (18) we finally arrive at 
the following expressions: 

C(2)eff=co+(T)(1+(GT»-1 (21) 

and 

t =E1 +t E2 
~ 

El=~+~+ 
~ ~ 
I '..-..-+----0:: 

t2=--Ju-+3( 1 

FIG. I. Diagrammatic representation of integral Eq. (12) for the total 
strain field. Each vertex (intersection point of different lines) implies opera
tor multiplication. The symbols are not unique. 
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c(3)eff = C OO «(1 + GT)2) (1 + (GT»-2 

- (T) (GT')(1 + (GT»-3 

+ (T(1+GT)- I GT')(1+ (GT»-2 

+ (T" (1 + GT) -1)(1 + (GT» -2, (22) 

where Eq. (21) is identical with that obtained by Zeller and 
Dederichs and Eq. (22) is the new result giving the effective 
third-order elastic constants. While writing Eq. (22) we 
have used the following notation: 

T' = C(3)(1- G 8C) -3 = C oo (1 + GT)3 + T" 

= C00(1- G8C)-3 + T" 

and 

(23a) 

(23b) 

Equations (21) and (22) provide the complete solution for 
the effective nonlocal second-order and third-order elastic 
constants if (T), (GT), (T"), and (GT /) can be computed. 
But all these quantities may only be approximated and the 
nature of the material will supply the necessary guidance. 

c. Method of evaluation and different approximations 

In this section we discuss some methods for obtaining 
the effective elastic constants from Eq. (21) and (22) as
suming different models of the solid. As shown in Ref. 6 the 
elastic stiffness constants may be decomposed without any 
loss of generality into the sum of contributions from differ
ent grains (i.e., in general it may include pores, vacancies, 
dislocations, etc.; the only assumption is that there is a distri
bution of species) 

(24) 

(25) 
a 

where e a (r) is a step function whose value is unity when r is 
in the ath grain and zero otherwise. Here 8C a and 8C 'a are 
both constant fourth-and sixth-rank tensors, respectively. 
Hence forth we drop writing the step function explicitly; the 
presence of a will imply it. We now indicate some approxi
mations of increasing accuracy. 

1. Voigt average 

The simplest application of the above theory will lead to 
results already known. 13,15 In particular if the disorder refers 
to different orientation of the crystallites in a specimen and if 
we make the assumption that the strain everywhere is the 
same, i.e., E = EO we find from Eqs. (21), (22), (23a), and 
(23b) 

C * - (C(2» 
- Voigt (26) 

and 

C** - (C(3» (27) - Voigt' 

where (C(2)Voigt and (C(3»VOigt are simple volume average 
of the elastic constants. In this approximation both the en
semble averages (8C) and (8C') are zero, i.e., there is no 
fluctuation in the medium. From a certain point of view the 
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above results may be seen as the correction to the effective 
elastic constants of lowest order in 8C and 8C'. Similarly 
with constant stress approximation we get the known result, 
namely, the Reuss average. As has been indicated earlier 
these approximations, however, lead to certain difficulties 
regarding equilibrium equation. 

2. Self-consistent solution 

In order to keep the discussion general we briefly indi
cate the method of the self-consistent solution of Eqs. (21) 
and (22). Although the T-matrices have been extensively 
used in the quantum mechanical problems connected with 
the disordered systems there have been only a few attempts 
to tackle problems related to classical mixtures. A particu
larly illuminating discussion in the case of the continuum 
problem is given by Zeller and Dederichs 14 and in another 
case of network problems by Kirkpatrick. 16 Recently 
Hori, 17 in a series of papers, has treated the problem of classi
cal mixtures of dielectrics. He has given a critical discussion 
of the T-matrix expansion. Following these works we define 
the following two matrices for a single grain a in analogy 
with the T and T" matrices for the whole system: 

ta =8ca+8caGta =8C a(l-G8ca)-1 (28) 

and 

t;; = 8c'a + 8C'aGt;; = 8c'a(l- G 8c a) -3, (29) 

where 8C 's are given by Eqs. (24) and (25). Then the well
known T-matrix expansion as in the multiple scattering the
orybecomes 

and 

T" = L t;; + LL t;; Gt;; + LLL t;; Gt;; Gt;, 
a 

(31) 

where each sum is taken where no two successive subscripts 
are equal. The Green's function depends on the statistical 
information about the shape, the orientation, and the rela
tive position of the grains. So averaging the terms other than 
the first one in Eqs. (30) and (31) will include intergranular 
correlations even for the statistically independent grains. 
Now, if we assume that the intergranu1ar correlations are 
small, all the higher-order correlative terms are neglected. 
This is the usual procedure of truncation, which is found to 
be a good approximation. 

Although the t-matrices in Eqs. (30) and (31) appear 
formally similar, they are quite distinct both physically and 
operationally. Both, however, refer to scattering from the 
same grain and give rise to intragranular scattering. While 
the former refers to the scattering of stress due to fluctuation 
of the same tensorial property, namely, of second-order elas
tic constants, the latter envisages scattering the stress due to 
fluctuations of both the third-order (sixth-rank tensor) and 
the second-order elastic constants (fourth-rank tensor). In 
the latter case also, both the scattering occur from the same 
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grain and hence the grainwise decomposition of terms in the 
new T" -matrix has been possible. The difference in character 
of the two types of T-matrices is seen in a more transparent 
way from the related diagrams shown in Fig. 2. The second 
diagram of Fig. 2 clearly projects the correlated character of 
the two types of fluctuations. The absence of fluctuation in 
the third-order constants immediately leads to a vanishing of 
the t " -matrix and that ofin the second order to a vanishing of 
both. 

After the grainwise decomposition and using the above
mentioned approximations let us write 

(T)~(r), 

(T")~(r" ), 

(32) 

(33) 

where 

and r" =" t" ~ a' 
a 

where all the higher-order intergranular correlations are ab
sent. We may now substitute values in the equations for the 
effective elastic constants, but we have not yet specified the 
CO and COO on which r, r" , and G depend. There are several 
prescriptions possible. For example, if we have this plausible 
choice, namely, 

CO = (C(2)YOigp Coo = (C(3)>VOigt' G = (G)YOigt' etc., 

we have the approximation analogous to the average T-ma
trix approximation (AT A) in the theory of disordered mate
rials6,12; when 

c(2)eff = (C(2)ATA (34) 

and 

C<3)eff = (C(3»ATA' (35) 

the AT A averages the strain field by single grain inclusion. 
Further refinement of the solution may be possible if we 

look for a self-consistent solution by taking advantage of the 
free choice of C 0 and Coo. This is equivalent to absorbing the 
effects of the higher-order terms excluding intergranular 

teL = 

t~ = 

oc'= i 
(al 

(bl 

FIG. 2.(a) Diagrammatic representation ofEqs. (28) and (29), which rep
resent two types of the single grain T-matrices. The recipe for calculating 
the diagrams is as follows. (i) The different points r.,r2, ... are represented 
by nodes on the horizontal line. (ii) The propagator G(r.,r2) is assigned to 
the solid line connecting r 1 and r2 as in the previous figure. (iii) The crossed 
vertex with a following dotted line is the elastic constant operator in the 
second order and the same with a following wavy line is the elastic constant 
operator in the third order. (iv) Finally one has to take the operator product 
of all the Green's functions and the elastic operators to evaluate the dia
grams. (b) The definition of the ensemble average ofa single grain T-matrix 
in Fig. 2 (a). A circle followed by a dotted line and a wavy line, respectively, 
is used to denote average for the second-order and the third-order cases. 
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scatterings. Since T and T" are functions of C ° and CO and 
Coo, a self-consistent solution is achieved by the following 
implicit coupled equations: 

(7) = (7') = (7") = 0, 

where 

(2G 2-? + 2G 3r) = (7'), (36) 

which finally deliver the nonlocal self-consistent (SC) val
ues of the second-order and third-order elastic constants, 

c(2)etf = (C(2)sc = Co, (37) 

c(3)etf = (C(3)sc = Coo. (38) 

Equations (36) are the central result of the self-consistent 
approach corresponding to which the medium is an effective 
medium. 

The local effective second-order elastic constants (C *) 
and third-order elastic constants (C **) can be obtained by 
usingEqs. (2'a),(2'b), and (36). The method ofsolving Eq. 
(36) on a computer may be developed following the strategy 
outlined by Gubernatis and Krumhansl6 for the second-or
der elastic constants, which is, however, much more com
plex in the present case. 

III. DISCUSSION 

In this investigation we have found out the strain distri
bution, including the nonlinear part for a macroscopic ho
mogeneous material with microscopic inhomogeneities. A 
formal solution of the problem has been obtained in Eq. (14) 
by the introduction of a T'-matrix. This solution has been 
utilized to get an expression of the effective third-order elas
tic constants of the medium. Equation (22) is quite general 
and may be applied for the calculation of the nonlinear sus
ceptibilities in a variety of situations including homogeneous 
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mechanical mixtures. A particularly important area of ap
plication will be that of single crystal aggregates, namely, 
polycrystals, which are real materials used in practical situa
tions, which we shall consider in a future communication. 
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